Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Cell Res ; 434(2): 113889, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38113969

ABSTRACT

The potential protective effect of basic fibroblast growth factor (BFGF) on the cardiovascular system has been proposed previously, however, its effect on calcific aortic valve disease (CAVD) and underlying mechanisms have not been elucidated. The valvular interstitial cell (VIC) were isolated from porcine aortic valve leaflets. To investigate the effect of BFGF on osteogenic differentiation of VIC, the osteogenic induced medium (OIM) and BFGF were added. The protein expression level was detected by Western blot, and apoptosis was determined by flow cytometry. The effect of BFGF on CAVD process in vivo was assessed by a rat CAVD model, which was identified by echocardiography and Alizarin red staining. The expression level of BFGF in the aortic valve and serum were significantly upregulated in CAVD patients compared to control group. In addition, exogenous BFGF injection attenuates CAVD process in vivo. The protein markers of osteogenic differentiation, endoplasmic reticulum stress (ERS), and apoptosis were significantly upregulated by culture with OIM. On the contrary, the aforementioned proteins were suppressed after adding 100 ng/mL of BFGF. Inhibition of PI3K/Akt and ERK1/2 pathways by specific inhibitors abolished the protective effect of BFGF. In conclusion, BFGF could alleviate the VIC calcification by inhibiting ERS-mediated apoptosis, which is partly regulated by activation of the PI3K/Akt and ERK1/2 signaling pathways. BFGF may provide a potential avenue for CAVD therapy.


Subject(s)
Aortic Valve , Fibroblast Growth Factor 2 , Humans , Rats , Animals , Swine , Aortic Valve/metabolism , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Osteogenesis , Phosphatidylinositol 3-Kinases/metabolism , Cells, Cultured , Apoptosis
2.
Biochem J ; 481(19): 1277-1296, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39302109

ABSTRACT

Elevated plasma levels of lipoprotein(a) (Lp(a)) are a prevalent, independent, and causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve disease. Lp(a) consists of a lipoprotein particle resembling low density lipoprotein and the covalently-attached glycoprotein apolipoprotein(a) (apo(a)). Novel therapeutics that specifically and potently lower Lp(a) levels are currently in advanced stages of clinical development, including in large, phase 3 cardiovascular outcomes trials. However, fundamental unanswered questions remain concerning some key aspects of Lp(a) biosynthesis and catabolism as well as the true pathogenic mechanisms of the particle. In this review, we describe the salient biochemical features of Lp(a) and apo(a) and how they underlie the disease-causing potential of Lp(a), the factors that determine plasma Lp(a) concentrations, and the mechanism of action of Lp(a)-lowering drugs.


Subject(s)
Cardiovascular Diseases , Lipoprotein(a) , Humans , Lipoprotein(a)/blood , Lipoprotein(a)/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/blood , Animals , Atherosclerosis/metabolism , Atherosclerosis/blood
3.
BMC Med ; 22(1): 122, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486246

ABSTRACT

BACKGROUND: Patients with fibro-calcific aortic valve disease (FCAVD) have lipid depositions in their aortic valve that engender a proinflammatory impetus toward fibrosis and calcification and ultimately valve leaflet stenosis. Although the lipoprotein(a)-autotaxin (ATX)-lysophosphatidic acid axis has been suggested as a potential therapeutic target to prevent the development of FCAVD, supportive evidence using ATX inhibitors is lacking. We here evaluated the therapeutic potency of an ATX inhibitor to attenuate valvular calcification in the FCAVD animal models. METHODS: ATX level and activity in healthy participants and patients with FCAVD were analyzed using a bioinformatics approach using the Gene Expression Omnibus datasets, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and western blotting. To evaluate the efficacy of ATX inhibitor, interleukin-1 receptor antagonist-deficient (Il1rn-/-) mice and cholesterol-enriched diet-induced rabbits were used as the FCAVD models, and primary human valvular interstitial cells (VICs) from patients with calcification were employed. RESULTS: The global gene expression profiles of the aortic valve tissue of patients with severe FCAVD demonstrated that ATX gene expression was significantly upregulated and correlated with lipid retention (r = 0.96) or fibro-calcific remodeling-related genes (r = 0.77) in comparison to age-matched non-FCAVD controls. Orally available ATX inhibitor, BBT-877, markedly ameliorated the osteogenic differentiation and further mineralization of primary human VICs in vitro. Additionally, ATX inhibition significantly attenuated fibrosis-related factors' production, with a detectable reduction of osteogenesis-related factors, in human VICs. Mechanistically, ATX inhibitor prohibited fibrotic changes in human VICs via both canonical and non-canonical TGF-ß signaling, and subsequent induction of CTGF, a key factor in tissue fibrosis. In the in vivo FCAVD model system, ATX inhibitor exposure markedly reduced calcific lesion formation in interleukin-1 receptor antagonist-deficient mice (Il1rn-/-, P = 0.0210). This inhibition ameliorated the rate of change in the aortic valve area (P = 0.0287) and mean pressure gradient (P = 0.0249) in the FCAVD rabbit model. Moreover, transaortic maximal velocity (Vmax) was diminished with ATX inhibitor administration (mean Vmax = 1.082) compared to vehicle control (mean Vmax = 1.508, P = 0.0221). Importantly, ATX inhibitor administration suppressed the effects of a high-cholesterol diet and vitamin D2-driven fibrosis, in association with a reduction in macrophage infiltration and calcific deposition, in the aortic valves of this rabbit model. CONCLUSIONS: ATX inhibition attenuates the development of FCAVD while protecting against fibrosis and calcification in VICs, suggesting the potential of using ATX inhibitors to treat FCAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve/pathology , Calcinosis , Humans , Animals , Mice , Rabbits , Aortic Valve Stenosis/drug therapy , Osteogenesis , Calcinosis/drug therapy , Cells, Cultured , Fibrosis , Cholesterol , Receptors, Interleukin-1 , Lipids
4.
Cardiology ; 149(2): 155-162, 2024.
Article in English | MEDLINE | ID: mdl-37899036

ABSTRACT

INTRODUCTION: Calcific aortic valve disease (CAVD) is the third most common cardiovascular disease in aging populations. Despite a growing number of biomarkers having been shown to be associated with CAVD, a marker suitable for routine testing in clinical practice is still needed. Plasma cell-free DNA (cfDNA) has been suggested as a biomarker for diagnosis and prognosis in multiple diseases. In this study, we aimed to test whether cfDNA could be used as a biomarker for the diagnosis of CAVD. METHODS: Serum samples were collected from 137 diagnosed CAVD patients and 180 normal controls. The amount of cfDNA was quantified by amplifying a short fragment (ALU 115) and a long fragment (ALU 247) using quantitative real-time PCR. The cfDNA integrity (cfDI) was calculated as the ratio of ALU247 to ALU115. The association between CAVD and cfDI was evaluated using regression analysis. RESULTS: CAVD patients had increased ALU 115 fragments (median, 185.14 (416.42) versus 302.83 (665.41), p < 0.05) but a decreased value of cfDI (mean, 0.50 ± 0.25 vs. 0.41 ± 0.26, p < 0.01) in their serum when compared to controls. This difference was more dramatic in non-rheumatic CAVD patients (p < 0.001) versus rheumatic CAVD patients (no significant difference). Similarly, CAVD patients with bicuspid aortic valve (BAV) (p < 0.01) showed a greater difference than non-BAV CAVD patients (p < 0.05). Linear regression and logistic regression showed that cfDI was independently and significantly associated with the presence of CAVD (95% CI, 0.096 to 0.773, p < 0.05). The ROC assay revealed that cfDI combined with clinical characteristics had a better diagnostic value than cfDI alone (AUC = 0.6191, p < 0.001). CONCLUSION: cfDI may be a potential biomarker for diagnosis of CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve/pathology , Bicuspid Aortic Valve Disease , Calcinosis , Cell-Free Nucleic Acids , Humans , Biomarkers , Aortic Valve Stenosis/diagnosis
5.
BMC Cardiovasc Disord ; 24(1): 128, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418967

ABSTRACT

OBJECTIVE: Calcific aortic valve disease (CAVD) is the leading cause of angina, heart failure, and death from aortic stenosis. However, the molecular mechanisms of its progression, especially the complex disease-related transcriptional regulatory mechanisms, remain to be further elucidated. METHODS: This study used porcine valvular interstitial cells (PVIC) as a model. We used osteogenic induced medium (OIM) to induce calcium deposition in PVICs to calcify them, followed by basic fibroblast growth factor (bFGF) treatment to inhibit calcium deposition. Transcriptome sequencing was used to study the mRNA expression profile of PVICs and its related transcriptional regulation. We used DaPars to further examine alternative polyadenylation (APA) between different treatment groups. RESULTS: We successfully induced calcium deposition of PVICs through OIM. Subsequently, mRNA-seq was used to identify differentially expressed mRNAs for three different treatments: control, OIM-induced and OIM-induced bFGF treatment. Global APA events were identified in the OIM and bFGF treatment groups by bioinformatics analysis. Finally, it was discovered and proven that catalase (CAT) is one of the potential targets of bFGF-induced APA regulation. CONCLUSION: We described a global APA change in a calcium deposition model related to CAVD. We revealed that transcriptional regulation of the CAT gene may contribute to bFGF-induced calcium deposition inhibition.


Subject(s)
Aortic Valve Stenosis , Aortic Valve/pathology , Calcinosis , Swine , Animals , Aortic Valve Stenosis/metabolism , Aortic Valve/metabolism , Calcium/metabolism , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Polyadenylation , Cells, Cultured , Calcinosis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Bioorg Chem ; 153: 107837, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39342892

ABSTRACT

The first examples of ent-atisane and ent-isopimarane diterpene lactones with an unusual 2,3-seco-2-nor-tetrahydro-2H-pyran-2-one nucleus, eufislactones A (1) and B (2), were isolated from the roots of Euphorbia fischeriana, together with a new (3) and fifteen known biosynthetic congeners (4-18). Their structures incorporating absolute configurations were elucidated via the comprehensive spectroscopic analyses, electronic circular dichroism (ECD) calculation, and single-crystal X-ray diffraction analyses. Biogenetically, compounds 1 and 2 were constructed by the plausible monomeric precursors, ent-atis-16-ene-3,14-dione (6) and ent-isopimara-8(14),15-dien-3-one (17), respectively, via key Baeyer-Villiger oxidation, decarboxylation, and semi-acetalization reactions to create a unique 2,3-seco-2-nor-tetrahydro-2H-pyran-2-one core. Our bioassays have revealed that eufislactone A (EFA, 1) displayed significant inhibitory effect on the osteogenic differentiation of human valvular interstitial cells (VICs), highlighting its potential as a preventive agent against the progression of human calcific aortic valve disease (CAVD).

7.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396969

ABSTRACT

Calcific aortic valve disease (CAVD) is characterized by the fibrosis and mineralization of the aortic valve, which leads to aortic stenosis and heart failure. At the cellular level, this is due to the osteoblastic-like differentiation of valve interstitial cells (VICs), resulting in the calcification of the tissue. Unfortunately, human VICs are not readily available to study CAVD pathogenesis and the implicated mechanisms in vitro; however, adipose-derived stromal/stem cells (ASCs), carrying the patient's specific genomic features, have emerged as a promising cell source to model cardiovascular diseases due to their multipotent nature, availability, and patient-specific characteristics. In this study, we describe a comprehensive transcriptomic analysis of tissue-engineered, scaffold-free, ASC-embedded mineralized tissue sheets using bulk RNA sequencing. Bioinformatic and gene set enrichment analyses revealed the up-regulation of genes associated with the organization of the extracellular matrix (ECM), suggesting that the ECM could play a vital role in the enhanced mineralization observed in these tissue-engineered ASC-embedded sheets. Upon comparison with publicly available gene expression datasets from CAVD patients, striking similarities emerged regarding cardiovascular diseases and ECM functions, suggesting a potential link between ECM gene expression and CAVDs pathogenesis. A matrisome-related sub-analysis revealed the ECM microenvironment promotes the transcriptional activation of the master gene runt-related transcription factor 2 (RUNX2), which is essential in CAVD development. Tissue-engineered ASC-embedded sheets with enhanced mineralization could be a valuable tool for research and a promising avenue for the identification of more effective aortic valve replacement therapies.


Subject(s)
Aortic Valve Disease , Aortic Valve Stenosis , Aortic Valve/pathology , Calcinosis , Humans , Aortic Valve Stenosis/metabolism , Calcinosis/metabolism , Aortic Valve Disease/metabolism , Stem Cells/metabolism , Cells, Cultured
8.
J Biol Chem ; 298(5): 101887, 2022 05.
Article in English | MEDLINE | ID: mdl-35367413

ABSTRACT

Recent genome-wide association and transcriptome-wide association studies have identified an association between the PALMD locus, encoding palmdelphin, a protein involved in myoblast differentiation, and calcific aortic valve disease (CAVD). Nevertheless, the function and underlying mechanisms of PALMD in CAVD remain unclear. We herein investigated whether and how PALMD affects the pathogenesis of CAVD using clinical samples from CAVD patients and a human valve interstitial cell (hVIC) in vitro calcification model. We showed that PALMD was upregulated in calcified regions of human aortic valves and calcified hVICs. Furthermore, silencing of PALMD reduced hVIC in vitro calcification, osteogenic differentiation, and apoptosis, whereas overexpression of PALMD had the opposite effect. RNA-Seq of PALMD-depleted hVICs revealed that silencing of PALMD reduced glycolysis and nuclear factor-κB (NF-κB)-mediated inflammation in hVICs and attenuated tumor necrosis factor α-induced monocyte adhesion to hVICs. Having established the role of PALMD in hVIC glycolysis, we examined whether glycolysis itself could regulate hVIC osteogenic differentiation and inflammation. Intriguingly, the inhibition of PFKFB3-mediated glycolysis significantly attenuated osteogenic differentiation and inflammation of hVICs. However, silencing of PFKFB3 inhibited PALMD-induced hVIC inflammation, but not osteogenic differentiation. Finally, we showed that the overexpression of PALMD enhanced hVIC osteogenic differentiation and inflammation, as opposed to glycolysis, through the activation of NF-κB. The present study demonstrates that the genome-wide association- and transcriptome-wide association-identified CAVD risk gene PALMD may promote CAVD development through regulation of glycolysis and NF-κB-mediated inflammation. We propose that targeting PALMD-mediated glycolysis may represent a novel therapeutic strategy for treating CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/metabolism , Calcinosis , Cells, Cultured , Genome-Wide Association Study , Glycolysis , Humans , Inflammation/metabolism , Membrane Proteins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Osteogenesis
9.
BMC Genomics ; 24(1): 419, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491214

ABSTRACT

BACKGROUND: Calcific aortic valve disease (CAVD) is a common valve disease with an increasing incidence, but no effective drugs as of yet. With the development of sequencing technology, non-coding RNAs have been found to play roles in many diseases as well as CAVD, but no circRNA/lncRNA-miRNA-mRNA interaction axis has been established. Moreover, valve interstitial cells (VICs) and valvular endothelial cells (VECs) play important roles in CAVD, and CAVD differed between leaflet phenotypes and genders. This work aims to explore the mechanism of circRNA/lncRNA-miRNA-mRNA network in CAVD, and perform subgroup analysis on the important characteristics of CAVD, such as key cells, leaflet phenotypes and genders. RESULTS: We identified 158 differentially expressed circRNAs (DEcircRNAs), 397 DElncRNAs, 45 DEmiRNAs and 167 DEmRNAs, and constructed a hsa-circ-0073813/hsa-circ-0027587-hsa-miR-525-5p-SPP1/HMOX1/CD28 network in CAVD after qRT-PCR verification. Additionally, 17 differentially expressed genes (DEGs) in VICs, 9 DEGs in VECs, 7 DEGs between different leaflet phenotypes and 24 DEGs between different genders were identified. Enrichment analysis suggested the potentially important pathways in inflammation and fibro-calcification during the pathogenesis of CAVD, and immune cell patterns in CAVD suggest that M0 macrophages and memory B cells memory were significantly increased, and many genes in immune cells were also differently expressed. CONCLUSIONS: The circRNA/lncRNA-miRNA-mRNA interaction axis constructed in this work and the DEGs identified between different characteristics of CAVD provide a direction for a deeper understanding of CAVD and provide possible diagnostic markers and treatment targets for CAVD in the future.


Subject(s)
Aortic Valve Stenosis , MicroRNAs , RNA, Long Noncoding , Female , Male , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Circular/metabolism , Endothelial Cells , Cells, Cultured , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
10.
Biochem Biophys Res Commun ; 672: 145-153, 2023 09 10.
Article in English | MEDLINE | ID: mdl-37354607

ABSTRACT

Calcific aortic valve disease (CAVD) is an aging related disease characterized by inflammation and fibrocalcific remodeling. IL-17A is a key cytokine associated with pathophysiology of inflammatory and fibrotic disease. Previous studies showed accumulation of IL-17A-producing T helper lymphocytes in human calcified aortic valves and significantly elevated IL-17RA expression in calcified valves. However, the role of IL-17A signaling in the initiation and development of CAVD is still unclear. In this study, by analyzing public transcriptome databases, we found that IL-17A-IL-17RA signaling is activated in calcified valves. Gene expression analysis revealed significantly increased IL-17A, IL-17RA, and RUNX2 expression in calcified human aortic valves compared to in non-calcified valves, and the expression of IL-17A and IL-17RA were positively correlated with RUNX2 expression. A 5/6 nephrectomy was performed in Apoe-/- (Apoe knockout) mice to establish a CAVD mouse model. IL-17A-neutralizing antibodies significantly reduced valve calcium deposition and decreased expression of RUNX2 in aortic valves. Immunofluorescence staining of human aortic valves and qRT-PCR analysis of primary aortic valve cells revealed abundant expression of IL-17RA in valvular endothelial cells (VECs). RNA sequencing indicated that IL-17A promoted the activation of inflammatory signaling pathways in VECs. Furthermore, qRT-PCR and cytometric bead array analysis confirmed that IL-17A promoted the expression or secretion of inflammatory cytokines IL-6 and IL-1ß, chemokines CXCL2 and CXCL8, and fibrosis-related gene COL16A1. Our findings indicate that elevated IL-17A in CAVD may promote valve inflammation, fibrosis, and calcification by inducing endothelial activation and inflammation. Targeting IL-17A-IL-17RA signaling may be a potential therapeutic strategy for CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Humans , Mice , Animals , Aortic Valve/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Endothelial Cells/metabolism , Interleukin-17/metabolism , Aortic Valve Stenosis/genetics , Cytokines/metabolism , Inflammation/pathology , Fibrosis , Apolipoproteins E/metabolism , Cells, Cultured
11.
BMC Med ; 21(1): 252, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443055

ABSTRACT

BACKGROUND: Calcific aortic valve disease (CAVD) is the most prevalent valvular disease and has high morbidity and mortality. CAVD is characterized by complex pathophysiological processes, including inflammation-induced osteoblastic differentiation in aortic valve interstitial cells (AVICs). Novel anti-CAVD agents are urgently needed. Protein tyrosine phosphatase nonreceptor type 22 (PTPN22), an intracellular nonreceptor-like protein tyrosine phosphatase, is involved in several chronic inflammatory diseases, including rheumatoid arthritis and diabetes. However, it is unclear whether PTPN22 is involved in the pathogenesis of CAVD. METHODS: We obtained the aortic valve tissue from human and cultured AVICs from aortic valve. We established CAVD mice model by wire injury. Transcriptome sequencing, western bolt, qPCR, and immunofluorescence were performed to elucidate the molecular mechanisms. RESULTS: Here, we determined that PTPN22 expression was upregulated in calcific aortic valve tissue, AVICs treated with osteogenic medium, and a mouse model of CAVD. In vitro, overexpression of PTPN22 induced osteogenic responses, whereas siRNA-mediated PTPN22 knockdown abolished osteogenic responses and mitochondrial stress in the presence of osteogenic medium. In vivo, PTPN22 ablation ameliorated aortic valve lesions in a wire injury-induced CAVD mouse model, validating the pathogenic role of PTPN22 in CAVD. Additionally, we discovered a novel compound, 13-hydroxypiericidin A 10-O-α-D-glucose (1 → 6)-ß-D-glucoside (S18), in a marine-derived Streptomyces strain that bound to PTPN22 with high affinity and acted as a novel inhibitor. Incubation with S18 suppressed osteogenic responses and mitochondrial stress in human AVICs induced by osteogenic medium. In mice with aortic valve injury, S18 administration markedly alleviated aortic valve lesions. CONCLUSION: PTPN22 plays an essential role in the progression of CAVD, and inhibition of PTPN22 with S18 is a novel option for the further development of potent anti-CAVD drugs. Therapeutic inhibition of PTPN22 retards aortic valve calcification through modulating mitochondrial dysfunction in AVICs.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Humans , Animals , Mice , Aortic Valve/metabolism , Aortic Valve/pathology , Phosphoric Monoester Hydrolases , Aortic Valve Stenosis/drug therapy , Aortic Valve Stenosis/genetics , Cells, Cultured , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
12.
J Transl Med ; 21(1): 359, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264340

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is one of the most significant cardiovascular risk factors, playing vital roles in various cardiovascular diseases such as calcific aortic valve disease (CAVD). We aim to explore the CKD-associated genes potentially involving CAVD pathogenesis, and to discover candidate biomarkers for the diagnosis of CKD with CAVD. METHODS: Three CAVD, one CKD-PBMC and one CKD-Kidney datasets of expression profiles were obtained from the GEO database. Firstly, to detect CAVD key genes and CKD-associated secretory proteins, differentially expressed analysis and WGCNA were carried out. Protein-protein interaction (PPI), functional enrichment and cMAP analyses were employed to reveal CKD-related pathogenic genes and underlying mechanisms in CKD-related CAVD as well as the potential drugs for CAVD treatment. Then, machine learning algorithms including LASSO regression and random forest were adopted for screening candidate biomarkers and constructing diagnostic nomogram for predicting CKD-related CAVD. Moreover, ROC curve, calibration curve and decision curve analyses were applied to evaluate the diagnostic performance of nomogram. Finally, the CIBERSORT algorithm was used to explore immune cell infiltration in CAVD. RESULTS: The integrated CAVD dataset identified 124 CAVD key genes by intersecting differential expression and WGCNA analyses. Totally 983 CKD-associated secretory proteins were screened by differential expression analysis of CKD-PBMC/Kidney datasets. PPI analysis identified two key modules containing 76 nodes, regarded as CKD-related pathogenic genes in CAVD, which were mostly enriched in inflammatory and immune regulation by enrichment analysis. The cMAP analysis exposed metyrapone as a more potential drug for CAVD treatment. 17 genes were overlapped between CAVD key genes and CKD-associated secretory proteins, and two hub genes were chosen as candidate biomarkers for developing nomogram with ideal diagnostic performance through machine learning. Furthermore, SLPI/MMP9 expression patterns were confirmed in our external cohort and the nomogram could serve as novel diagnosis models for distinguishing CAVD. Finally, immune cell infiltration results uncovered immune dysregulation in CAVD, and SLPI/MMP9 were significantly associated with invasive immune cells. CONCLUSIONS: We revealed the inflammatory-immune pathways underlying CKD-related CAVD, and developed SLPI/MMP9-based CAVD diagnostic nomogram, which offered novel insights into future serum-based diagnosis and therapeutic intervention of CKD with CAVD.


Subject(s)
Aortic Valve Disease , Aortic Valve Stenosis , Humans , Matrix Metalloproteinase 9 , Leukocytes, Mononuclear , Computational Biology
13.
Rev Cardiovasc Med ; 24(10): 293, 2023 Oct.
Article in English | MEDLINE | ID: mdl-39077564

ABSTRACT

Background: We aimed to evaluate echocardiographic parameters to predict calcific aortic valve disease (CAVD) progression. CAVD ranges from aortic valve sclerosis (ASc) with no functional impairment of the aortic valve to severe aortic stenosis (AS). It remains uncertain, which patients with ASc have a particularly high risk of developing AS. Methods: We included a total of 153 patients with visual signs of ASc and peak flow velocity (Vmax) below 2.5 m/s at baseline echocardiography. Progression of CAVD to AS was defined as an increase in Vmax ≥ 2.5 m/s with a delta of ≥ 0.1 m/s; stable ASc was defined as Vmax below 2.5 m/s and a delta < 0.1 m/s. Finally, we compared clinical and echocardiographic parameters between these two groups. Results: The mean age at baseline was 73.5 ( ± 8.2) years and 66.7% were of male sex. After a mean follow-up of 1463 days, 57 patients developed AS, while 96 patients remained in the ASc group. The AS group showed significantly more calcification (p < 0.001) and thickening (p < 0.001) of the aortic valve cusps at baseline, although hemodynamics showed no evidence of AS in both groups (ASc group: Vmax 1.6 ± 0.3 m/s versus AS group: Vmax 1.9 ± 0.3 m/s; p < 0.001). Advanced calcification (odds ratio [OR]: 4.8, 95% confidence interval [CI]: 1.5-15.9; p = 0.009) and a cusp thickness > 0.26 cm (OR: 16.6, 95% CI: 5.4-50.7; p < 0.001) were independent predictors for the development of AS. Conclusions: The acquisition of simple echocardiographic parameter may help to identify patients with particularly high risk of developing AS.

14.
Cell Biol Int ; 47(4): 754-767, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36542640

ABSTRACT

Inflammation and fibrosis are highly correlated with the progression of calcific aortic valve disease (CAVD). As one of the differentiated forms of valvular interstitial cells, myofibroblasts play a critical role in CAVD's development as do macrophages. Although numerous studies have been conducted on them separately, their communication and interaction remain unclear. We used porcine aortic valves to isolate valve interstitial cells (VICs). VICs were induced to differentiate into myofibroblasts by transforming growth factor-ß1 (TGF-ß1). After successful activation was determined, the myofibroblast-conditioned medium (CM) was collected and used to act on RAW264.7, a macrophage cell line. A migration and adhesion assay estimated the recruitment capability of myofibroblasts on macrophages. We used flow cytometry, quantitative polymerase chain reaction (qPCR), and Western blot analysis to investigate myofibroblasts' polarity promotion function in macrophages. Finally, we used macrophage-CM on VICs to explore the differentiation induction function of polarized macrophages. Myofibroblast marker alpha-smooth muscle actin and M2 macrophage marker CD163 were detected as upregulated in CAVD patients, and their expression has a certain correlation. The Smad3/HA/CD44 axis activated the differentiation of myofibroblasts by Western blot. The myofibroblast-CM can promote chemotaxis and adhesion of macrophages through protein kinase B/chemokine (C-C motif) ligand5 and Smad3/HA/CD44, respectively. Hyaluronic acid (HA) inside the myofibroblast-CM stimulates macrophages to polarize into M2 macrophages. In turn, M2 macrophage-CM has the promotive ability to activate myofibroblasts but fails to induce the osteoblast differentiation of VICs directly. The crosstalk between myofibroblasts and macrophages causes the excessive activation of myofibroblasts. This positive feedback loop may play a vital role in CAVD progression.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Swine , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Myofibroblasts/metabolism , Actins/metabolism , Cells, Cultured , Calcinosis/metabolism , Calcinosis/pathology , Cell Differentiation , Fibrosis , Macrophages/metabolism
15.
Cell Biol Int ; 47(10): 1749-1759, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37431269

ABSTRACT

Calcific aortic valve disease (CAVD) is the most common valvular heart disease, with an increasing prevalence due to an aging population. The pathobiology of CAVD is a multifaceted and actively regulated process, but the detailed mechanisms have not been elucidated. The present study aims to identify the differentially expressed genes (DEGs) in calcified aortic valve tissues, and to analyze the correlation between DEGs and clinical features in CAVD patients. The DEGs were screened by microarray in normal and CAVD groups (n = 2 for each group), and confirmed by quantitative real-time polymerase chain reaction in normal (n = 12) and calcified aortic valve tissues (n = 34). A total of 1048 DEGs were identified in calcified aortic valve tissues, including 227 upregulated mRNAs and 821 downregulated mRNAs. Based on multiple bioinformatic analyses, three 60S ribosomal subunit components (RPL15, RPL18, and RPL18A), and two 40S ribosomal subunit components (RPS15 and RPS21) were identified as the top 5 hub genes in the protein-protein interaction network of DEGs. The expression of RPL15 and RPL18 was also found significantly decreased in calcified aortic valve tissues (both p < .01), and negatively correlated with the osteogenic differentiation marker OPN in CAVD patients (both p < .01). Moreover, inhibition of RPL15 or RPL18 exacerbated the calcification of valve interstitial cells under osteogenic induction conditions. The present study proved that decreased expression of RPL15 and RPL18 was closely associated with aortic valve calcification, which provided valuable clues to find therapeutic targets for CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Aged , Humans , Aortic Valve/metabolism , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Cells, Cultured , Osteogenesis/genetics
16.
Cell Biol Toxicol ; 39(6): 2665-2684, 2023 12.
Article in English | MEDLINE | ID: mdl-36746840

ABSTRACT

OBJECTIVES: To evaluate the role and therapeutic value of homocysteine (hcy)-inducible endoplasmic reticulum stress (ERS) protein with ubiquitin like domain 1 (Herpud1) in hcy-induced calcific aortic valve disease (CAVD). BACKGROUND: The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. METHODS: In vivo, we use the low-density lipoprotein receptor (LDLR) and Herpud1 double knockout (LDLR-/-/Herpud1-/-) mice and used high methionine diet (HMD) to assess of aortic valve calcification lesions, ERS activation, autophagy, and osteogenic differentiation of aortic valve interstitial cells (AVICs). In vitro, the role of Herpud1 in the Hcy-related osteogenic differentiation of AVICs was investigated by manipulating of Herpud1 expression. RESULTS: Herpud1 was highly expressed in calcified human and mouse aortic valves as well as primary aortic valve interstitial cells (AVICs). Hcy increased Herpud1 expression through the ERS pathway and promoted CAVD progression. Herpud1 deficiency inhibited hcy-induced CAVD in vitro and in vivo. Herpud1 silencing activated cell autophagy, which subsequently inhibited hcy-induced osteogenic differentiation of AVICs. ERS inhibitor 4-phenyl butyric acid (4-PBA) significantly attenuated aortic valve calcification in HMD-fed low-density lipoprotein receptor-/- (LDLR-/-) mice by suppressing ERS and subsequent Herpud1 biosynthesis. CONCLUSIONS: These findings identify a previously unknown mechanism of Herpud1 upregulation in Hcy-related CAVD, suggesting that Herpud1 silencing or inhibition is a viable therapeutic strategy for arresting CAVD progression. HIGHLIGHTS: • Herpud1 is upregulated in the leaflets of Hcy-treated mice and patients with CAVD. • In mice, global knockout of Herpud1 alleviates aortic valve calcification and Herpud1 silencing activates cell autophagy, inhibiting osteogenic differentiation of AVICs induced by Hcy. • 4-PBA suppressed Herpud1 expression to alleviate AVIC calcification in Hcy treated AVICs and to mitigate aortic valve calcification in mice.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Humans , Mice , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Osteogenesis , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Transcription Factors/metabolism , Lipoproteins, LDL/metabolism , Cells, Cultured , Membrane Proteins/metabolism
17.
BMC Cardiovasc Disord ; 23(1): 326, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369992

ABSTRACT

AIM: To evaluate the expression profile of long non-coding RNAs (lncRNAs) in calcific aortic valve disease (CAVD) and explore their potential mechanism of action. METHODS: The gene expression profiles (GSE153555, GSE148219, GSE199718) were downloaded from the Gene Expression Omnibus (GEO) database and FastQC was run for quality control checks. After filtering and classifying candidate lncRNAs by differentially expressed genes (DEGs) and weighted co-expression networks (WGCNA) in GSE153555, we predicted the potential cis- or trans-regulatory target genes of differentially expressed lncRNAs (DELs) by using FEELnc and established the competitive endogenous RNA (ceRNA) network by miRanda, more over functional enrichment was analyzed using the ClusterProfiler package in R Bioconductor. The hub cis- or trans-regulatory genes were verified in GSE148219 and GSE199718 respectively. RESULTS: There were 340 up-regulated lncRNAs identified in AS group compared with the control group (|log2Fold Change| ≥ 1.0 and Padj ≤ 0.05), and 460 down-regulated lncRNAs. Based on target gene prediction and co-expression network construction, twelve Long non-coding RNAs (CDKN2B-AS1, AC244453.2, APCDD1L-DT, SLC12A5-AS1, TGFB3, AC243829.4, MIR4435-2HG, FAM225A, BHLHE40-AS1, LINC01614, AL356417.2, LINC01150) were identified as the hub cis- or trans-regulatory genes in the pathogenesis of CAVD which were validated in GSE148219 and GSE19971. Additionally, we found that MIR4435-2HG was the top hub trans-acting lncRNA which also plays a crucial role by ceRNA pattern. CONCLUSION: LncRNAs may play an important role in CAVD and may provide a new perspective on the pathogenesis, diagnosis, and treatment of this disease. Further studies are required to illuminate the underlying mechanisms and provide potential therapeutic targets.


Subject(s)
Aortic Valve Disease , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Regulatory Networks , Transcriptome , MicroRNAs/genetics
18.
Cell Mol Life Sci ; 79(3): 146, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35190902

ABSTRACT

Calcific aortic valve disease (CAVD) is a common valve disease characterized by the fibro-calcific remodeling of the aortic valves, which is an actively regulated process involving osteogenic differentiation of valvular interstitial cells (VICs). MicroRNA (miRNA) is an essential regulator in diverse biological processes in cells. The present study aimed to explore the role and mechanism of miR-22 in the osteogenic differentiation of VICs. The expression profile of osteogenesis-related miRNAs was first detected in aortic valve tissue from CAVD patients (n = 33) and healthy controls (n = 12). miR-22 was highly expressed in calcified valve tissues (P < 0.01), and the expression was positively correlated with the expression of OPN (rs = 0.820, P < 0.01) and Runx2 (rs = 0.563, P < 0.01) in VICs isolated from mild or moderately calcified valves. The sustained high expression of miR-22 was also validated in an in-vitro VICs osteogenic model. Adenovirus-mediated gain-of-function and loss-of-function experiments were then performed. Overexpression of miR-22 significantly accelerated the calcification process of VICs, manifested by significant increases in calcium deposition, alkaline phosphate activity, and expression of osteoblastic differentiation markers. Conversely, inhibition of miR-22 significantly negated the calcification process. Subsequently, calcium-binding protein 39 (CAB39) was identified as a target of miR-22. Overexpression of miR-22 significantly reduced the expression of CAB39 in VICs, leading to decreased catalytic activity of the CAB39-LKB1-STRAD complex, which, in turn, exacerbated changes in the AMPK-mTOR signaling pathway, and ultimately accelerated the calcification process. In addition, ROS generation and autophagic activity during VIC calcification were also regulated by miR-22/CAB39 pathway. These results indicate that miR-22 is an important accelerator of the osteogenic differentiation of VICs, and a potential therapeutic target in CAVD.


Subject(s)
Aortic Valve Stenosis/pathology , Aortic Valve/pathology , Calcinosis/pathology , Calcium-Binding Proteins/metabolism , Cell Differentiation , MicroRNAs/genetics , Osteogenesis , Aged , Aortic Valve/metabolism , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Calcinosis/genetics , Calcinosis/metabolism , Calcium-Binding Proteins/genetics , Case-Control Studies , Female , Humans , Male , Middle Aged
19.
Curr Cardiol Rep ; 25(10): 1175-1187, 2023 10.
Article in English | MEDLINE | ID: mdl-37632608

ABSTRACT

PURPOSE OF REVIEW: Lipoprotein(a) is an independent risk factor for cardiovascular disease. We review the ongoing shifts in consensus guidelines for the testing and management of Lp(a) and provide insight into whether current evidence suggests that awareness and testing of Lp(a) is clinically actionable. RECENT FINDINGS: GWAS and Mendelian randomization studies have established causal links between elevated Lp(a) and forms of CVD, including CAD and calcific aortic valve disease. Testing of Lp(a) identifies patients with similar risk to that of heterozygous FH, enhances risk stratification in patients with borderline/intermediate risk as determined through traditional factors, and facilitates the assessment of inherited CVD risk through cascade screening in patients with known family history of elevated Lp(a). Reductions in Lp(a) through non-targeted therapies including PCSK9 inhibition and lipoprotein apheresis have demonstrated reductions in ASCVD risk that are likely attributable to lowering Lp(a). Targeted therapies to potently lower Lp(a) are in clinical development. Lp(a) is actionable, and can be used to identify high risk patients for primary prevention and their family members through cascade screening, and to guide intensification of therapy in primary and secondary prevention of ASCVD.


Subject(s)
Aortic Valve Stenosis , Cardiovascular Diseases , Humans , Lipoprotein(a) , Proprotein Convertase 9 , Risk Factors , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/diagnosis
20.
Eur Heart J ; 43(7): 683-697, 2022 02 12.
Article in English | MEDLINE | ID: mdl-34849696

ABSTRACT

Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Aortic Valve/pathology , Aortic Valve Stenosis/complications , Calcinosis/complications , Cells, Cultured , Humans , Osteogenesis
SELECTION OF CITATIONS
SEARCH DETAIL