Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Exp Parasitol ; 221: 108061, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383023

ABSTRACT

Chagas disease (CD) caused by Trypanosoma cruzi remains a serious public health problem in Latin America. The available treatment is limited to two old drugs, benznidazole (Bz) and nifurtimox, which exhibit limited efficacy and trigger side effects, justifying the search for new therapies. Also, more accurate and sensitive experimental protocols for drug discovery programs are necessary to shrink the translational gaps found among pre-clinical and clinical trials. Presently, cardiac spheroids were used to evaluate host cell cytotoxicity and anti-T.cruzi activity of benznidazole, exploring its effect on the release of inflammatory mediators. Bz presented low toxic profile on 3D matrices (LC50 > 200 µM) and high potency in vitro (EC50 = 0.99 µM) evidenced by qPCR analysis of T.cruzi-infected cardiac spheroids. Flow cytometry appraisal of inflammatory mediators released at the cellular supernatant showed increases in IL - 6 and TNF contents (≈190 and ≈ 25-fold) in parasitized spheroids as compared to uninfected cultures. Bz at 10 µM suppressed parasite load (92%) concomitantly decreasing in IL-6 (36%) and TNF (68%). Our findings corroborate the successful use of 3D cardiac matrices for in vitro identification of novel anti-parasitic agents and potential impact in host cell physiology.


Subject(s)
Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Imaging, Three-Dimensional , Mice , Microscopy, Fluorescence , Molecular Conformation , Spheroids, Cellular , Trypanosoma cruzi/growth & development
2.
Int J Mol Sci ; 22(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440843

ABSTRACT

Numerous protocols of cardiac differentiation have been established by essentially focusing on specific growth factors on human pluripotent stem cell (hPSC) differentiation efficiency. However, the optimal environmental factors to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Here, we hypothesized that low oxygen exposure enhances the molecular and functional maturity of the cardiomyocytes. We aimed at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hPSCs in 2D- and 3D-based protocols. hPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed. The mitochondrial localization and metabolic properties were evaluated. The intracellular Ca2+ handling and contractile properties were also monitored. The 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac spheroids containing hPSC-CMs in LOE further exhibited cardiac markers, hypertrophy, steadier SR Ca2+ release properties revealing a better SR Ca2+ handling, and enhanced contractile force. Preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Our results brought evidences that LOE is moderately beneficial for the 3D cardiac spheroids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE.


Subject(s)
Cell Differentiation , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Oxygen/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Biomarkers , Calcium/metabolism , Cell Culture Techniques , Gene Expression , Humans , Mitochondria, Heart/metabolism , Sarcoplasmic Reticulum/metabolism , Spheroids, Cellular
3.
Bull Exp Biol Med ; 170(4): 550-554, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33725254

ABSTRACT

Cells of all tissues in human body interact with their neighboring cells and components of the extracellular matrix thereby creating a unique 3D microenvironment. These interactions are realized through a complex network of biochemical and mechanical signals that are important in maintaining normal cellular homeostasis. Numerous attempts have been undertaken during the last two decades to develop 3D models for studying their properties and understanding the mechanisms of regulation of cell microenvironment in vivo. Cardiac spheroids (cardiospheres) are one these models of cardiac microenvironment. In this study we demonstrate that unique microenvironment formed in cardiospheres consists of stem/progenitor and mesenchymal cells surrounded by extracellular matrix proteins synthesized by these cells. TGF-ß1 participates in the regulation of contraction of cells forming cardiospheres, promotes activation of the epithelial-mesenchymal transition and self-organization of cells, which leads to the formation of larger spheroids. Thereby, the effect of TGF-ß1 on the cells of cardiospheres can serve as a model for studying the mechanisms of regulation of cardiac microenvironment.


Subject(s)
Myocardium/cytology , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Heart/physiology , Immunophenotyping , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
4.
Exp Cell Res ; 362(2): 260-267, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29208458

ABSTRACT

Chagasic cardiomyopathy (CC) is the main manifestation of Chagas Disease (CD). CC is a progressive dysfunctional illness, in which transforming growth factor beta (TGF-ß) plays a central role in fibrogenesis and hypertrophy. In the present study, we tested in a three-dimensional (3D) model of cardiac cells culture (named cardiac spheroids), capable of mimicking the aspects of fibrosis and hypertrophy observed in CC, the role of TGF-ß pathway inhibition in restoring extracellular matrix (ECM) balance disrupted by T. cruzi infection. Treatment of T. cruzi-infected cardiac spheroids with SB 431542, a selective inhibitor of TGF-ß type I receptor, resulted in a reduction in the size of spheroids, which was accompanied by a decrease in parasite load and in fibronectin expression. The inhibition of TGF-ß pathway also promoted an increase in the activity of matrix metalloproteinase (MMP)-2 and a decrease in tissue inhibitor of matrix metalloproteinase (TIMP)-1 expression, which may be one of the mechanisms regulating extracellular matrix remodeling. Therefore, our study provides new insights into the molecular mechanisms by which inhibition of TGF-ß signaling reverts fibrosis and hypertrophy generated by T. cruzi during CC and also highlights the use of cardiac spheroids as a valuable tool for the study of fibrogenesis and anti-fibrotic compounds.


Subject(s)
Cardiomyopathies/drug therapy , Chagas Disease/drug therapy , Heart/physiopathology , Protein Serine-Threonine Kinases/genetics , Receptors, Transforming Growth Factor beta/genetics , Benzamides/pharmacology , Cardiomyopathies/genetics , Cardiomyopathies/parasitology , Cardiomyopathies/physiopathology , Chagas Disease/genetics , Chagas Disease/parasitology , Chagas Disease/physiopathology , Dioxoles/pharmacology , Extracellular Matrix/genetics , Fibronectins/genetics , Gene Expression Regulation/drug effects , Heart/parasitology , Humans , Matrix Metalloproteinase 2/genetics , Receptor, Transforming Growth Factor-beta Type I , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta/genetics , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/pathogenicity
5.
Cells Tissues Organs ; 204(3-4): 191-198, 2017.
Article in English | MEDLINE | ID: mdl-28772272

ABSTRACT

Spheroid cultures are among the most explored cellular biomaterials used in cardiovascular research, due to their improved integration of biochemical and physiological features of the heart in a defined architectural three-dimensional microenvironment when compared to monolayer cultures. To further explore the potential use of spheroid cultures for research, we engineered a novel in vitro model of the heart with vascularized cardiac spheroids (VCSs), by coculturing cardiac myocytes, endothelial cells, and fibroblasts isolated from dissociated rat neonatal hearts (aged 1-3 days) in hanging drop cultures. To evaluate the validity of VCSs in recapitulating pathophysiological processes typical of the in vivo heart, such as cardiac fibrosis, we then treated VCSs with transforming growth factor beta 1 (TGFß1), a known profibrotic agent. Our mRNA analysis demonstrated that TGFß1-treated VCSs present elevated levels of expression of connective tissue growth factor, fibronectin, and TGFß1 when compared to control cultures. We demonstrated a dramatic increase in collagen deposition following TGFß1 treatment in VCSs in the PicroSirius Red-stained sections. Doxorubicin, a renowned cardiotoxic and profibrotic agent, triggered apoptosis and disrupted vascular networks in VCSs. Taken together, our findings demonstrate that VCSs are a valid model for the study of the mechanisms involved in cardiac fibrosis, with the potential to be used to investigate novel mechanisms and therapeutics for treating and preventing cardiac fibrosis in vitro.


Subject(s)
Endothelial Cells/metabolism , Fibrosis/etiology , Imaging, Three-Dimensional/methods , Myocytes, Cardiac/metabolism , Animals , Apoptosis , Extracellular Matrix , Humans , Mice , Myocytes, Cardiac/cytology
6.
Nano Lett ; 16(7): 4670-8, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27328393

ABSTRACT

The advancement of human induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology has shown promising potential to provide a patient-specific, regenerative cell therapy strategy to treat cardiovascular disease. Despite the progress, the unspecific, underdeveloped phenotype of hiPSC-CMs has shown arrhythmogenic risk and limited functional improvements after transplantation. To address this, tissue engineering strategies have utilized both exogenous and endogenous stimuli to accelerate the development of hiPSC-CMs. Exogenous electrical stimulation provides a biomimetic pacemaker-like stimuli that has been shown to advance the electrical properties of tissue engineered cardiac constructs. Recently, we demonstrated that the incorporation of electrically conductive silicon nanowires to hiPSC cardiac spheroids led to advanced structural and functional development of hiPSC-CMs by improving the endogenous electrical microenvironment. Here, we reasoned that the enhanced endogenous electrical microenvironment of nanowired hiPSC cardiac spheroids would synergize with exogenous electrical stimulation to further advance the functional development of nanowired hiPSC cardiac spheroids. For the first time, we report that the combination of nanowires and electrical stimulation enhanced cell-cell junction formation, improved development of contractile machinery, and led to a significant decrease in the spontaneous beat rate of hiPSC cardiac spheroids. The advancements made here address critical challenges for the use of hiPSC-CMs in cardiac developmental and translational research and provide an advanced cell delivery vehicle for the next generation of cardiac repair.


Subject(s)
Electric Stimulation , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Nanowires , Cell Differentiation , Cells, Cultured , Humans , Silicon
7.
Nano Lett ; 15(5): 2765-72, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25826336

ABSTRACT

The current inability to derive mature cardiomyocytes from human pluripotent stem cells has been the limiting step for transitioning this powerful technology into clinical therapies. To address this, scaffold-based tissue engineering approaches have been utilized to mimic heart development in vitro and promote maturation of cardiomyocytes derived from human pluripotent stem cells. While scaffolds can provide 3D microenvironments, current scaffolds lack the matched physical/chemical/biological properties of native extracellular environments. On the other hand, scaffold-free, 3D cardiac spheroids (i.e., spherical-shaped microtissues) prepared by seeding cardiomyocytes into agarose microwells were shown to improve cardiac functions. However, cardiomyocytes within the spheroids could not assemble in a controlled manner and led to compromised, unsynchronized contractions. Here, we show, for the first time, that incorporation of a trace amount (i.e., ∼0.004% w/v) of electrically conductive silicon nanowires (e-SiNWs) in otherwise scaffold-free cardiac spheroids can form an electrically conductive network, leading to synchronized and significantly enhanced contraction (i.e., >55% increase in average contraction amplitude), resulting in significantly more advanced cellular structural and contractile maturation.


Subject(s)
Cell Differentiation/drug effects , Heart/growth & development , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Humans , In Vitro Techniques , Nanowires/administration & dosage , Silicon/administration & dosage , Tissue Engineering/methods , Tissue Scaffolds/chemistry
8.
Biofabrication ; 16(3)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776895

ABSTRACT

Silk fibroin (SF) is a natural protein extracted fromBombyx morisilkworm thread. From its common use in the textile industry, it emerged as a biomaterial with promising biochemical and mechanical properties for applications in the field of tissue engineering and regenerative medicine. In this study, we evaluate for the first time the effects of SF on cardiac bioink formulations containing cardiac spheroids (CSs). First, we evaluate if the SF addition plays a role in the structural and elastic properties of hydrogels containing alginate (Alg) and gelatin (Gel). Then, we test the printability and durability of bioprinted SF-containing hydrogels. Finally, we evaluate whether the addition of SF controls cell viability and function of CSs in Alg-Gel hydrogels. Our findings show that the addition of 1% (w/v) SF to Alg-Gel hydrogels makes them more elastic without affecting cell viability. However, fractional shortening (FS%) of CSs in SF-Alg-Gel hydrogels increases without affecting their contraction frequency, suggesting an improvement in contractile function in the 3D cultures. Altogether, our findings support a promising pathway to bioengineer bioinks containing SF for cardiac applications, with the ability to control mechanical and cellular features in cardiac bioinks.


Subject(s)
Alginates , Elasticity , Fibroins , Gelatin , Hydrogels , Myocytes, Cardiac , Alginates/chemistry , Alginates/pharmacology , Fibroins/chemistry , Fibroins/pharmacology , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Bioprinting , Cell Survival/drug effects , Tissue Engineering , Ink , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Rats , Myocardial Contraction/drug effects
9.
Biofabrication ; 17(1)2024 Oct 24.
Article in English | MEDLINE | ID: mdl-39357534

ABSTRACT

Microalgae have emerged as promising photosynthetic microorganisms for biofabricating advanced tissue constructs, with improved oxygenation and reduced reactive oxygen species (ROS) production. However, their use in the engineering of human tissues has been limited due to their intrinsic growth requirements, which are not compatible with human cells. In this study, we first formulated alginate-gelatin (AlgGel) hydrogels with increasing densities ofChlorella vulgaris. Then, we characterised their mechanical properties and pore size. Finally, we evaluated their effects on cardiac spheroid (CS) pathophysiological response under control and ischemia/reperfusion (I/R) conditions. Our results showed that the addition ofChlorelladid not affect AlgGel mechanical properties, while the mean pore size significantly decreased by 35% in the presence of the 107cells ml-1microalgae density. Under normoxic conditions, the addition of 107Chlorellacells ml-1significantly reduced CS viability starting from 14 d in. No changes in pore size nor CS viability were measured for hydrogels containing 105and 106Chlorellacells ml-1. In our I/R model, allChlorella-enriched hydrogels reduced cardiac cell sensitivity to hypoxic conditions with a corresponding reduction in ROS production, as well as protected against I/R-induced reduction in cell viability. Altogether, our results support a promising use ofChlorella-enriched Alg-Gel hydrogels for cardiovascular tissue engineering.


Subject(s)
Alginates , Hydrogels , Reactive Oxygen Species , Spheroids, Cellular , Hydrogels/chemistry , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/pathology , Animals , Alginates/chemistry , Alginates/pharmacology , Chlorella/chemistry , Chlorella/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/cytology , Gelatin/chemistry , Cell Survival/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocardium/pathology , Myocardium/cytology , Humans , Rats , Tissue Engineering
10.
J Mech Behav Biomed Mater ; 155: 106571, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744118

ABSTRACT

Cardiac fibrosis refers to the abnormal accumulation of extracellular matrix within the cardiac muscle, leading to increased stiffness and impaired heart function. From a rheological standpoint, knowledge about myocardial behavior is still lacking, partially due to a lack of appropriate techniques to investigate the rheology of in vitro cardiac tissue models. 3D multicellular cardiac spheroids are powerful and versatile platforms for modeling healthy and fibrotic cardiac tissue in vitro and studying how their mechanical properties are modulated. In this study, cardiac spheroids were created by co-culturing neonatal rat ventricular cardiomyocytes and fibroblasts in definite ratios using the hanging-drop method. The rheological characterization of such models was performed by Atomic Force Microscopy-based stress-relaxation measurements on the whole spheroid. After strain application, a viscoelastic bi-exponential relaxation was observed, characterized by a fast relaxation time (τ1) followed by a slower one (τ2). In particular, spheroids with higher fibroblasts density showed reduction for both relaxation times comparing to control, with a more pronounced decrement of τ1 with respect to τ2. Such response was found compatible with the increased production of extracellular matrix within these spheroids, which recapitulates the main feature of the fibrosis pathophysiology. These results demonstrate how the rheological characteristics of cardiac tissue vary as a function of cellular composition and extracellular matrix, confirming the suitability of such system as an in vitro preclinical model of cardiac fibrosis.


Subject(s)
Fibrosis , Myocytes, Cardiac , Rheology , Spheroids, Cellular , Animals , Spheroids, Cellular/cytology , Spheroids, Cellular/pathology , Rats , Myocytes, Cardiac/cytology , Fibroblasts/cytology , Myocardium/cytology , Myocardium/pathology , Myocardium/metabolism , Rats, Wistar , Models, Biological
11.
Biomedicines ; 12(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39061986

ABSTRACT

A three-dimensional (3D) cell culture can more precisely mimic tissues architecture and functionality, being a promising alternative model to study disease pathophysiology and drug screening. Chagas disease (CD) is a neglected parasitosis that affects 7 million people worldwide. Trypanosoma cruzi's (T. cruzi) mechanisms of invasion/persistence continue to be elucidated. Benznidazole (BZ) and Nifurtimox (NF) are trypanocidal drugs with few effects on the clinical manifestations of the chronic disease. Chronic Chagas cardiomyopathy (CCC) is the main manifestation of CD due to its frequency and severity. The development of fibrosis and hypertrophy in cardiac tissue can lead to heart failure and sudden death. Thus, there is an urgent need for novel therapeutic options. Our group has more than fifteen years of expertise using 3D primary cardiac cell cultures, being the first to reproduce fibrosis and hypertrophy induced by T. cruzi infection in vitro. These primary cardiac spheroids exhibit morphological and functional characteristics that are similar to heart tissue, making them an interesting model for studying CD cardiac fibrosis. Here, we aim to demonstrate that our primary cardiac spheroids are great preclinical models which can be used to develop new insights into CD cardiac fibrosis, presenting advances already achieved in the field, including disease modeling and drug screening.

12.
Curr Protoc ; 3(5): e767, 2023 May.
Article in English | MEDLINE | ID: mdl-37154466

ABSTRACT

Cardiac spheroids derived from human induced pluripotent stem cells (hiPSC-cardiac spheroids) represent a powerful three-dimensional (3D) model for examining cardiac physiology and for drug toxicity screening. Recent advances with self-organizing, multicellular cardiac organoids highlight the capability of directed stem cell differentiation approaches to recapitulate the composition of the human heart in vitro. Using hiPSC-derived cardiomyocytes (hiPSC-CMs), hiPSC-derived endothelial cells (hiPSC-ECs), and hiPSC-derived cardiac fibroblasts (hiPSC-CFs) is advantageous for enabling tri-cellular crosstalk within a multilineage system and for generating patient-specific models. Chemically defined medium containing factors needed to simultaneously maintain hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs is used to produce the spheroid system. In this article, we present protocols to illustrate the methods for conducting small-molecule-mediated differentiations of hiPSCs into cardiomyocytes, endothelial cells, and cardiac fibroblasts, as well as to assemble the fully integrated cardiac spheroids. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Maintenance and expansion of hiPSCs Basic Protocol 2: Differentiation of hiPSCs into cardiomyocytes Basic Protocol 3: Differentiation of hiPSCs into vascular endothelial cells Basic Protocol 4: Differentiation of hiPSCs into cardiac fibroblasts Basic Protocol 5: Production of hiPSC-derived cardiac spheroids.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Endothelial Cells , Myocytes, Cardiac , Cell Differentiation/physiology
13.
Cells ; 12(13)2023 07 05.
Article in English | MEDLINE | ID: mdl-37443827

ABSTRACT

BACKGROUND: Three-dimensional cell culture systems hold great promise for bridging the gap between in vitro cell-based model systems and small animal models to study tissue biology and disease. Among 3D cell culture systems, stem-cell-derived spheroids have attracted significant interest as a strategy to better mimic in vivo conditions. Cardiac stem cell/progenitor (CSC)-derived spheroids (CSs) provide a relevant platform for cardiac regeneration. METHODS: We compared three different cell culture scaffold-free systems, (i) ultra-low attachment plates, (ii) hanging drops (both requiring a 2D/3D switch), and (iii) agarose micro-molds (entirely 3D), for CSC-derived CS formation and their cardiomyocyte commitment in vitro. RESULTS: The switch from a 2D to a 3D culture microenvironment per se guides cell plasticity and myogenic differentiation within CS and is necessary for robust cardiomyocyte differentiation. On the contrary, 2D monolayer CSC cultures show a significant reduced cardiomyocyte differentiation potential compared to 3D CS culture. Forced aggregation into spheroids using hanging drop improves CS myogenic differentiation when compared to ultra-low attachment plates. Performing CS formation and myogenic differentiation exclusively in 3D culture using agarose micro-molds maximizes the cardiomyocyte yield. CONCLUSIONS: A 3D culture system instructs CS myogenic differentiation, thus representing a valid model that can be used to study adult cardiac regenerative biology.


Subject(s)
Hematopoietic Stem Cells , Myocytes, Cardiac , Animals , Sepharose , Cell Differentiation
14.
Biomed Pharmacother ; 162: 114642, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37027988

ABSTRACT

BACKGROUND: Heart failure (HF) is a cardiovascular disease with high morbidity and mortality. Guanxinning injection (GXNI) is clinically used for the treatment of coronary heart disease, but its therapeutic efficacy and potential mechanism for HF are poorly understood. This study aimed to evaluate the therapeutic potential of GXNI on HF, with a special focus on its role in myocardial remodeling. METHODS: 3D cardiac organoids and transverse aortic constriction (TAC) mouse models were established and utilized. Heart function and pathology were evaluated by echocardiography, hemodynamic examination, tail-cuff blood pressure and histopathology. Key targets and pathways regulated by GXNI in HF mouse heart were revealed via RNA-seq and network pharmacology analysis, and were verified by RT-PCR, Western blot, immunohistochemistry and immunofluorescence. RESULTS: GXNI significantly inhibited cardiac hypertrophy and cells death. It protected mitochondrial function in cardiac hypertrophic organoids and markedly improved cardiac function in HF mice. Analysis of GXNI-regulated genes in HF mouse hearts revealed that IL-17A signaling in fibroblasts and the corresponding p38/c-Fos/Mmp1 pathway prominently mediated cardiac. Altered expressions of c-Fos, p38 and Mmp1 by GXNI in heart tissues and in cardiac organoids were validated by RT-PCR, WB, IHC, and IF. H&E and Masson staining confirmed that GXNI substantially ameliorated myocardial hypertrophy and fibrosis in HF mice and in 3D organoids. CONCLUSION: GXNI inhibited cardiac fibrosis and hypertrophy mainly via down-regulating p38/c-Fos/Mmp1 pathway, thereby ameliorating cardiac remodeling in HF mice. Findings in this study provide a new strategy for the clinical application of GXNI in the treatment of heart failure.


Subject(s)
Heart Failure , Ventricular Remodeling , Mice , Animals , Matrix Metalloproteinase 1 , Cardiomegaly , Disease Models, Animal , Fibrosis , Mice, Inbred C57BL
15.
Cells ; 12(20)2023 10 11.
Article in English | MEDLINE | ID: mdl-37887280

ABSTRACT

Mesothelial cells have been shown to have remarkable plasticity towards mesenchymal cell types during development and in disease situations. Here, we have characterized the potential of mesothelial cells to undergo changes toward perivascular cells using an in vitro angiogenesis assay. We demonstrate that GFP-labeled mesothelial cells (GFP-MCs) aligned closely and specifically with endothelial networks formed when human dermal microvascular endothelial cells (HDMECs) were cultured in the presence of VEGF-A165 on normal human dermal fibroblasts (NHDFs) for a 7-day period. The co-culture with GFP-MCs had a positive effect on branch point formation indicating that the cells supported endothelial tube formation. We interrogated the molecular response of the GFP-MCs to the angiogenic co-culture by qRT-PCR and found that the pericyte marker Ng2 was upregulated when the cells were co-cultured with HDMECs on NHDFs, indicating a change towards a perivascular phenotype. When GFP-MCs were cultured on the NHDF feeder layer, they upregulated the epithelial-mesenchymal transition marker Zeb1 and lost their circularity while increasing their size, indicating a change to a more migratory cell type. We analyzed the pericyte-like behavior of the GFP-MCs in a 3D cardiac microtissue (spheroid) with cardiomyocytes, cardiac fibroblasts and cardiac endothelial cells where the mesothelial cells showed alignment with the endothelial cells. These results indicate that mesothelial cells have the potential to adopt a perivascular phenotype and associate with endothelial cells to potentially support angiogenesis.


Subject(s)
Mesenchymal Stem Cells , Pericytes , Humans , Endothelial Cells/metabolism , Epithelial Cells , Coculture Techniques
16.
Cell Rep Methods ; 3(12): 100666, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38113855

ABSTRACT

Three-dimensional (3D) cultures are known to more closely mimic in vivo conditions compared with 2D cultures. Cardiac spheroids (CSs) and organoids (COs) are useful for 3D tissue engineering and are advantageous for their simplicity and mass production for regenerative therapy and drug discovery. Herein, we describe a large-scale method for producing homogeneous human induced pluripotent stem cell (hiPSC)-derived CSs (hiPSC-CSs) and COs without scaffolds using a porous 3D microwell substratum with a suction system. Our method has many advantages, such as increased efficiency and improved functionality, homogeneity, and sphericity of hiPSC-CSs. Moreover, we have developed a substratum on a clinically relevant large scale for regenerative therapy and have succeeded in producing approximately 40,000 hiPSC-CSs with high sphericity at once. Furthermore, we efficiently produced a fused CO model consisting of hiPSC-derived atrial and ventricular cardiomyocytes localized on opposite sides of one organoid. This method will facilitate progress toward hiPSC-based clinical applications.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Organoids , Tissue Engineering , Myocytes, Cardiac , Heart Atria
17.
Biofabrication ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-34983029

ABSTRACT

Current preclinicalin vitroandin vivomodels of cardiac injury typical of myocardial infarction (MI, or heart attack) and drug induced cardiotoxicity mimic only a few aspects of these complex scenarios. This leads to a poor translation of findings from the bench to the bedside. In this study, we biofabricated for the first time advancedin vitromodels of MI and doxorubicin (DOX) induced injury by exposing cardiac spheroids (CSs) to pathophysiological changes in oxygen (O2) levels or DOX treatment. Then, contractile function and cell death was analyzed in CSs in control verses I/R and DOX CSs. For a deeper dig into cell death analysis, 3D rendering analyses and mRNA level changes of cardiac damage-related genes were compared in control verses I/R and DOX CSs. Overall,in vitroCSs recapitulated major features typical of thein vivoMI and drug induced cardiac damages, such as adapting intracellular alterations to O2concentration changes and incubation with cardiotoxic drug, mimicking the contraction frequency and fractional shortening and changes in mRNA expression levels for genes regulating sarcomere structure, calcium transport, cell cycle, cardiac remodelling and signal transduction. Taken together, our study supports the use of I/R and DOX CSs as advancedin vitromodels to study MI and DOX-induced cardiac damge by recapitulating their complexin vivoscenario.


Subject(s)
Myocardial Infarction , Myocardium , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Heart , Humans , Myocardium/metabolism , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Front Cardiovasc Med ; 9: 913156, 2022.
Article in English | MEDLINE | ID: mdl-35795376

ABSTRACT

Myocardial infarction (MI, or heart attack) is a leading cause of death worldwide. Myocardial ischaemia reperfusion (I/R) injury typical of MI events is also associated with the development of cardiac fibrosis and heart failure in patients. Fibulin-3 is an extracellular matrix component that plays a role in regulating MI response in the heart. In this study, we generated and compared in vitro cardiac spheroids (CSs) from wild type (WT) and fibulin-3 knockout (Fib-3 KO) mice. These were then exposed to pathophysiological changes in oxygen (O2) concentrations to mimic an MI event. We finally measured changes in contractile function, cell death, and mRNA expression levels of cardiovascular disease genes between WT and Fib-3 KO CSs. Our results demonstrated that there are significant differences in growth kinetics and endothelial network formation between WT and Fib-3 KO CSs, however, they respond similarly to changes in O2 concentrations. Fib-3 deficiency resulted in an increase in viability of cells and improvement in contraction frequency and fractional shortening compared to WT I/R CSs. Gene expression analyses demonstrated that Fib-3 deficiency inhibits I/R injury and cardiac fibrosis and promotes angiogenesis in CSs. Altogether, our findings suggest that Fib-3 deficiency makes CSs resistant to I/R injury and associated cardiac fibrosis and helps to improve the vascular network in CSs.

19.
Biol Sex Differ ; 12(1): 31, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879252

ABSTRACT

BACKGROUND: Preeclampsia is a dangerous cardiovascular disorder of pregnancy that leads to an increased risk of future cardiovascular and metabolic disorders. Much of the pathogenesis and mechanisms involved in cardiac health in preeclampsia are unknown. A novel anti-angiogenic protein, FKBPL, is emerging as having a potential role in both preeclampsia and cardiovascular disease (CVD). Therefore, in this study we aimed to characterise cardiac health and FKBPL regulation in the rat reduced uterine perfusion pressure (RUPP) and a 3D cardiac spheroid model of preeclampsia. METHODS: The RUPP model was induced in pregnant rats and histological analysis performed on the heart, kidney, liver and placenta (n ≥ 6). Picrosirius red staining was performed to quantify collagen I and III deposition in rat hearts, placentae and livers as an indicator of fibrosis. RT-qPCR was used to determine changes in Fkbpl, Icam1, Vcam1, Flt1 and Vegfa mRNA in hearts and/or placentae and ELISA to evaluate cardiac brain natriuretic peptide (BNP45) and FKBPL secretion. Immunofluorescent staining was also conducted to analyse the expression of cardiac FKBPL. Cardiac spheroids were generated using human cardiac fibroblasts and human coronary artery endothelial cells and treated with patient plasma from normotensive controls, early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE); n = 3. FKBPL and CD31 expression was quantified by immunofluorescent labelling. RESULTS: The RUPP procedure induced significant increases in blood pressure (p < 0.001), collagen deposition (p < 0.001) and cardiac BNP45 (p < 0.05). It also induced a significant increase in cardiac FKBPL mRNA (p < 0.05) and protein  expression  (p < 0.01). RUPP placentae also exhibited increased collagen deposition and decreased Flt1 mRNA expression (p < 0.05). RUPP kidneys revealed an increase in average glomerular size (p < 0.05). Cardiac spheroids showed a significant increase in FKBPL expression when treated with LOPE plasma (p < 0.05) and a trend towards increased FKBPL expression following treatment with EOPE plasma (p = 0.06). CONCLUSIONS: The rat RUPP model induced cardiac, renal and placental features reflective of preeclampsia. FKBPL was increased in the hearts of RUPP rats and cardiac spheroids treated with plasma from women with preeclampsia, perhaps reflective of restricted angiogenesis and inflammation in this disorder. Elucidation of these novel FKBPL mechanisms in cardiac health in preeclampsia could be key in preventing future CVD.


Subject(s)
Pre-Eclampsia , Animals , Collagen , Endothelial Cells , Female , Humans , Perfusion , Placenta , Pregnancy , Pregnancy Complications, Cardiovascular , RNA, Messenger , Rats , Rats, Sprague-Dawley , Sex Characteristics , Tacrolimus Binding Proteins
20.
JACC Basic Transl Sci ; 6(3): 239-254, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33778211

ABSTRACT

The severe shortage of donor hearts hampered the cardiac transplantation to patients with advanced heart failure. Therefore, cardiac regenerative therapies are eagerly awaited as a substitution. Human induced pluripotent stem cells (hiPSCs) are realistic cell source for regenerative cardiomyocytes. The hiPSC-derived cardiomyocytes are highly expected to help the recovery of heart. Avoidance of teratoma formation and large-scale culture of cardiomyocytes are definitely necessary for clinical setting. The combination of pure cardiac spheroids and gelatin hydrogel succeeded to recover reduced ejection fraction. The feasible transplantation strategy including transplantation device for regenerative cardiomyocytes are established in this study.

SELECTION OF CITATIONS
SEARCH DETAIL