Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Publication year range
1.
Immunity ; 54(9): 2057-2071.e6, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34363749

ABSTRACT

Hypertension affects one-third of the world's population, leading to cardiac dysfunction that is modulated by resident and recruited immune cells. Cardiomyocyte growth and increased cardiac mass are essential to withstand hypertensive stress; however, whether immune cells are involved in this compensatory cardioprotective process is unclear. In normotensive animals, single-cell transcriptomics of fate-mapped self-renewing cardiac resident macrophages (RMs) revealed transcriptionally diverse cell states with a core repertoire of reparative gene programs, including high expression of insulin-like growth factor-1 (Igf1). Hypertension drove selective in situ proliferation and transcriptional activation of some cardiac RM states, directly correlating with increased cardiomyocyte growth. During hypertension, inducible ablation of RMs or selective deletion of RM-derived Igf1 prevented adaptive cardiomyocyte growth, and cardiac mass failed to increase, which led to cardiac dysfunction. Single-cell transcriptomics identified a conserved IGF1-expressing macrophage subpopulation in human cardiomyopathy. Here we defined the absolute requirement of RM-produced IGF-1 in cardiac adaptation to hypertension.


Subject(s)
Adaptation, Physiological/physiology , Hypertension/metabolism , Insulin-Like Growth Factor I/metabolism , Macrophages/metabolism , Ventricular Remodeling/physiology , Animals , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/pathology , Humans , Hypertension/complications , Hypertension/immunology , Infant , Male , Mice , Middle Aged , Myocardium/immunology , Myocardium/metabolism , Myocardium/pathology
2.
EMBO Rep ; 24(5): e56689, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37009825

ABSTRACT

The growth factor Neuregulin-1 (NRG-1) regulates myocardial growth and is currently under clinical investigation as a treatment for heart failure. Here, we demonstrate in several in vitro and in vivo models that STAT5b mediates NRG-1/EBBB4-stimulated cardiomyocyte growth. Genetic and chemical disruption of the NRG-1/ERBB4 pathway reduces STAT5b activation and transcription of STAT5b target genes Igf1, Myc, and Cdkn1a in murine cardiomyocytes. Loss of Stat5b also ablates NRG-1-induced cardiomyocyte hypertrophy. Dynamin-2 is shown to control the cell surface localization of ERBB4 and chemical inhibition of Dynamin-2 downregulates STAT5b activation and cardiomyocyte hypertrophy. In zebrafish embryos, Stat5 is activated during NRG-1-induced hyperplastic myocardial growth, and chemical inhibition of the Nrg-1/Erbb4 pathway or Dynamin-2 leads to loss of myocardial growth and Stat5 activation. Moreover, CRISPR/Cas9-mediated knockdown of stat5b results in reduced myocardial growth and cardiac function. Finally, the NRG-1/ERBB4/STAT5b signaling pathway is differentially regulated at mRNA and protein levels in the myocardium of patients with pathological cardiac hypertrophy as compared to control human subjects, consistent with a role of the NRG-1/ERBB4/STAT5b pathway in myocardial growth.


Subject(s)
Dynamin II , Neuregulin-1 , Mice , Humans , Animals , Dynamin II/metabolism , Neuregulin-1/genetics , Neuregulin-1/metabolism , Neuregulin-1/pharmacology , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Zebrafish/metabolism , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism , Hypertrophy
3.
Cell Commun Signal ; 22(1): 438, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261825

ABSTRACT

Pathological cardiac hypertrophy is the primary cause of heart failure, yet its underlying mechanisms remain incompletely understood. Transmembrane protein 100 (TMEM100) plays a role in various disorders, such as nervous system disease, pain and tumorigenesis, but its function in pathological cardiac hypertrophy is still unknown. In this study, we observed that TMEM100 is upregulated in cardiac hypertrophy. Functional investigations have shown that adeno-associated virus 9 (AAV9) mediated-TMEM100 overexpression mice attenuates transverse aortic constriction (TAC)-induced cardiac hypertrophy, including cardiomyocyte enlargement, cardiac fibrosis, and impaired heart structure and function. We subsequently demonstrated that adenoviral TMEM100 (AdTMEM100) mitigates phenylephrine (PE)-induced cardiomyocyte hypertrophy and downregulates the expression of cardiac hypertrophic markers in vitro, whereas TMEM100 knockdown exacerbates cardiomyocyte hypertrophy. The RNA sequences of the AdTMEM100 group and control group revealed that TMEM100 was involved in oxidative stress and the MAPK signaling pathway after PE stimulation. Mechanistically, we revealed that the transmembrane domain of TMEM100 (amino acids 53-75 and 85-107) directly interacts with the C-terminal region of TAK1 (amino acids 1-300) and inhibits the phosphorylation of TAK1 and its downstream molecules JNK and p38. TAK1-binding-defective TMEM100 failed to inhibit the activation of the TAK1-JNK/p38 pathway. Finally, the application of a TAK1 inhibitor (iTAK1) revealed that TAK1 is necessary for TMEM100-mediated cardiac hypertrophy. In summary, TMEM100 protects against pathological cardiac hypertrophy through the TAK1-JNK/p38 pathway and may serve as a promising target for the treatment of cardiac hypertrophy.


Subject(s)
Cardiomegaly , MAP Kinase Kinase Kinases , Membrane Proteins , Myocytes, Cardiac , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Mice , Mice, Inbred C57BL , Male , Disease Progression , Humans , Phenylephrine/pharmacology , MAP Kinase Signaling System , Oxidative Stress
4.
Article in English | MEDLINE | ID: mdl-39118568

ABSTRACT

Aberrant gene expression in cardiomyocyte has been revealed to be the fundamental essence of pathological cardiac hypertrophy. However, the detailed mechanisms are not fully understood. The underlying regulators of gene expression involved in cardiac hypertrophy remain to be further identified. Here, we report that the RNA-binding protein RNA-binding motif protein 4 (RBM4) functions as an endogenic protector that is able to fight against cardiomyocyte hypertrophy in vitro. Under pro-hypertrophic stimulation of angiotensin II (Ang II), the protein level of RBM4 in cardiomyocyte and myocardium is elevated. Knockdown of RBM4 can further aggravate cardiomyocyte hypertrophy, while over-expression of RBM4 represses cardiomyocyte hypertrophy. Mechanistically, RBM4 is localized in the nucleus and down-regulates the expression of polypyrimidine tract-binding protein 1 (PTBP1), which has been shown to aggravate cardiomyocyte hypertrophy. In addition, we suggest that the up-regulation of RBM4 in cardiomyocyte hypertrophy is caused by N6-methyladenosine (m6A). Ang II induces m6A methylation of RBM4 mRNA, which further enhances the YTH domain-containing family protein 1 (YTHDF1)-mediated translation of RBM4. Thus, our results reveal a novel pathway consisting of m6A, RBM4 and PTBP1, which is involved in cardiomyocyte hypertrophy.

5.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397020

ABSTRACT

Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy.


Subject(s)
Anserine , Cardiomyopathies , Heart Failure , Myocytes, Cardiac , p300-CBP Transcription Factors , Animals , Humans , Male , Mice , Acetylation , Anserine/pharmacology , Cardiomegaly/genetics , Cardiomyopathies/metabolism , Enzyme Inhibitors/pharmacology , Heart Failure/metabolism , Histones/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phenylephrine/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors
6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38621879

ABSTRACT

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Subject(s)
Myocytes, Cardiac , Sodium-Potassium-Exchanging ATPase , Rats , Animals , Cells, Cultured , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Angiotensin II/adverse effects , Angiotensin II/metabolism , Natriuretic Peptide, Brain/metabolism , Hypertrophy/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/genetics
7.
Am J Physiol Heart Circ Physiol ; 325(4): H702-H719, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37539452

ABSTRACT

Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.


Subject(s)
Heart Diseases , Hypothyroidism , Pregnancy , Female , Mice , Animals , Myocytes, Cardiac/metabolism , Heart Diseases/pathology , Hypertrophy/metabolism , Hypertrophy/pathology , Hypothyroidism/complications , Hypothyroidism/metabolism , Hypothyroidism/pathology , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Cardiomegaly/metabolism
8.
Cardiovasc Diabetol ; 22(1): 168, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37415128

ABSTRACT

BACKGROUND: L-type Ca2+ channel CaV1.2 is essential for cardiomyocyte excitation, contraction and gene transcription in the heart, and abnormal functions of cardiac CaV1.2 channels are presented in diabetic cardiomyopathy. However, the underlying mechanisms are largely unclear. The functions of CaV1.2 channels are subtly modulated by splicing factor-mediated alternative splicing (AS), but whether and how CaV1.2 channels are alternatively spliced in diabetic heart remains unknown. METHODS: Diabetic rat models were established by using high-fat diet in combination with low dose streptozotocin. Cardiac function and morphology were assessed by echocardiography and HE staining, respectively. Isolated neonatal rat ventricular myocytes (NRVMs) were used as a cell-based model. Cardiac CaV1.2 channel functions were measured by whole-cell patch clamp, and intracellular Ca2+ concentration was monitored by using Fluo-4 AM. RESULTS: We find that diabetic rats develop diastolic dysfunction and cardiac hypertrophy accompanied by an increased CaV1.2 channel with alternative exon 9* (CaV1.2E9*), but unchanged that with alternative exon 8/8a or exon 33. The splicing factor Rbfox2 expression is also increased in diabetic heart, presumably because of dominate-negative (DN) isoform. Unexpectedly, high glucose cannot induce the aberrant expressions of CaV1.2 exon 9* and Rbfox2. But glycated serum (GS), the mimic of advanced glycation end-products (AGEs), upregulates CaV1.2E9* channels proportion and downregulates Rbfox2 expression in NRVMs. By whole-cell patch clamp, we find GS application hyperpolarizes the current-voltage curve and window currents of cardiac CaV1.2 channels. Moreover, GS treatment raises K+-triggered intracellular Ca2+ concentration ([Ca2+]i), enlarges cell surface area of NRVMs and induces hypertrophic genes transcription. Consistently, siRNA-mediated knockdown of Rbfox2 in NRVMs upregulates CaV1.2E9* channel, shifts CaV1.2 window currents to hyperpolarization, increases [Ca2+]i and induces cardiomyocyte hypertrophy. CONCLUSIONS: AGEs, not glucose, dysregulates Rbfox2 which thereby increases CaV1.2E9* channels and hyperpolarizes channel window currents. These make the channels open at greater negative potentials and lead to increased [Ca2+]i in cardiomyocytes, and finally induce cardiomyocyte hypertrophy in diabetes. Our work elucidates the underlying mechanisms for CaV1.2 channel regulation in diabetic heart, and targeting Rbfox2 to reset the aberrantly spliced CaV1.2 channel might be a promising therapeutic approach in diabetes-induced cardiac hypertrophy.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Rats , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Glycation End Products, Advanced/metabolism , Myocytes, Cardiac/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
9.
J Pharmacol Sci ; 152(2): 112-122, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37169475

ABSTRACT

Aging is associated with impairment of multiple organs, including skeletal muscle and heart. In this study, we investigated whether resveratrol, an activator of an NAD+-dependent protein deacetylase Sirtuin-1 (SIRT1), attenuates age-related sarcopenia and cardiomyocyte hypertrophy in mice. Treatment of mice with resveratrol (0.4 g/kg diet) from 28 weeks of age for 32 weeks prevented aging-associated shortening of rotarod riding time. In the tibialis anterior (TA) muscle, histogram analysis showed that the atrophic muscle was increased in 60-week-old (wo) mice compared with 20-wo mice, which was attenuated by resveratrol. In the heart, resveratrol attenuated an aging-associated increase in the cardiomyocyte diameter. Acetylated proteins were increased and autophagic activity was reduced in the TA muscle of 60-wo mice compared with those of 20-wo mice. Resveratrol treatment reduced levels of acetylated proteins and restored autophagic activity in the TA muscle. Aging-related reduction in myocardial autophagy was also suppressed by resveratrol. Skeletal muscle-specific SIRT1 knockout mice showed increases in acetylated proteins and atrophic muscle fibers and reduced autophagic activity in the TA muscle. These results suggest that activation of SIRT1 by treatment with resveratrol suppresses sarcopenia and cardiomyocyte hypertrophy by restoration of autophagy in mice.


Subject(s)
Sarcopenia , Stilbenes , Mice , Animals , Resveratrol/pharmacology , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sirtuin 1/metabolism , Muscle, Skeletal/metabolism , Aging , Myocytes, Cardiac/metabolism , Hypertrophy , Stilbenes/pharmacology , Stilbenes/therapeutic use
10.
BMC Cardiovasc Disord ; 23(1): 595, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38053021

ABSTRACT

BACKGROUND: Physiological and pathological cardiomyocyte hypertrophy are important pathophysiological processes of adult congenital heart disease-associated ventricular hypertrophy. Glutamic oxaloacetic transaminase (GOT) is a vital marker of myocardial injury. This study aimed to investigate the changes in GOT levels during physiological and pathological cardiomyocyte hypertrophy in rats. METHODS: RNA-seq analysis and colorimetric methods were used to evaluate the changes in GOT mRNA and activity, respectively. GOT2 protein expression was detected by western blotting and immunofluorescence. Hematoxylin-eosin and wheat germ agglutinin methods were used to observe changes in rat cardiomyocyte morphology. RESULTS: In juvenile rat hearts, GOT mRNA expression and activity, and GOT2 protein level increased with age-related physiological cardiomyocyte hypertrophy; however, GOT2 protein level was reduced in hypoxia-induced pathological cardiomyocyte hypertrophy. CONCLUSIONS: GOT2 may regulate physiological and pathological myocardial hypertrophy in rats. We speculated that the low GOT2 level contributed to the rapid occurrence of pathological cardiomyocyte hypertrophy, causing strong plasticity of right ventricular cardiomyocytes in the early postnatal period and heart failure in adulthood.


Subject(s)
Heart Defects, Congenital , Heart Failure , Animals , Rats , Cardiomegaly , Heart Defects, Congenital/metabolism , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics
11.
J Mol Cell Cardiol ; 162: 110-118, 2022 01.
Article in English | MEDLINE | ID: mdl-34555408

ABSTRACT

It is well known that lectin-like oxidized low-density lipoprotein (ox-LDL) and its receptor LOX-1, angiotensin II (AngII) and its type 1 receptor (AT1-R) play an important role in the development of cardiac hypertrophy. However, the molecular mechanism is not clear. In this study, we found that ox-LDL-induced cardiac hypertrophy was suppressed by inhibition of LOX-1 or AT1-R but not by AngII inhibition. These results suggest that the receptors LOX-1 and AT1-R, rather than AngII, play a key role in the role of ox-LDL. The same results were obtained in mice lacking endogenous AngII and their isolated cardiomyocytes. Ox-LDL but not AngII could induce the binding of LOX-1 and AT1-R; inhibition of LOX-1 or AT1-R but not AngII could abolish the binding of these two receptors. Overexpression of wild type LOX-1 with AT1-R enhanced ox-LDL-induced binding of two receptors and phosphorylation of ERKs, however, transfection of LOX-1 dominant negative mutant (lys266ala / lys267ala) or an AT1-R mutant (glu257ala) not only reduced the binding of two receptors but also inhibited the ERKs phosphorylation. Phosphorylation of ERKs induced by ox-LDL in LOX-1 and AT1-R-overexpression cells was abrogated by an inhibitor of Gq protein rather than Jak2, Rac1 or RhoA. Genetically, an AT1-R mutant lacking Gq protein coupling ability inhibited ox-LDL induced ERKs phosphorylation. Furthermore, through bimolecular fluorescence complementation analysis, we confirmed that ox-LDL rather than AngII stimulation induced the direct binding of LOX-1 and AT1-R. We conclude that direct binding of LOX-1 and AT1-R and the activation of downstream Gq protein are important mechanisms of ox-LDL-induced cardiomyocyte hypertrophy.


Subject(s)
Angiotensin II , Scavenger Receptors, Class E , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Cells, Cultured , Lipoproteins, LDL/metabolism , Mice , Myocytes, Cardiac/metabolism , Receptors, LDL/metabolism , Receptors, Oxidized LDL/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism
12.
J Cell Physiol ; 237(4): 2230-2248, 2022 04.
Article in English | MEDLINE | ID: mdl-35128666

ABSTRACT

Cardiac hypertrophy is a leading cause of cardiac morbidity and mortality worldwide. Apelin is the endogenous ligand for the G protein-coupled receptor, APJ. Previously, we have revealed that apelin-13 can induce cardiomyocyte hypertrophy by activating the autophagy pathway. However, the precise mechanism through which apelin-13 regulates reticulophagy to participate in cardiomyocyte hypertrophy remains unclear. Herein, we observed that apelin-13-induced cardiomyocyte hypertrophy by activating FAM134B-dependent reticulophagy via the Pannexin-1/P2X7 signal pathway. Furthermore, we found that apelin-13 stimulated the opening of Pannexin-1 hemichannel and increased extracellular ATP (eATP) levels, which activated the P2X7 purinergic receptor. Activation of the Pannexin-1/eATP/P2X7 axis subsequently led to FAM134B-dependent reticulophagy. Moreover, inhibition of the Pannexin-1/P2X7 axis and FAM134B-dependent reticulophagy reversed apelin-13-induced cardiomyocyte hypertrophy. Based on our present findings, apelin-13/APJ induces cardiomyocyte hypertrophy by activating the Pannexin-1/P2X7 axis and FAM134B-dependent reticulophagy.


Subject(s)
Intercellular Signaling Peptides and Proteins , Myocytes, Cardiac , Autophagy , Cardiomegaly/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Myocytes, Cardiac/metabolism
13.
Mol Cell Biochem ; 477(6): 1865-1872, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35334035

ABSTRACT

Diabetes mellitus (DM)-induced cardiac morbidities have been the leading cause of death among diabetic patients. Recently, sodium-glucose cotransporter-2 (SGLT-2) inhibitors including empagliflozin (EMPA), which have been approved for the treatment of DM, have gained attention for their cardioprotective effect. The mechanism by which SGLT-2 inhibitors exert their cardioprotective effect remains unclear. Recent studies have suggested that EMPA exerts its cardioprotective effect by inhibiting the Na+/H+ exchanger (NHE), a group of membrane proteins that regulate intracellular pH and cell volume. Increased activity and expression of NHE isoform 1 (NHE1), the predominant isoform expressed in the heart, leads to cardiac hypertrophy. p90 ribosomal s6 kinase (p90 RSK) has been demonstrated to stimulate NHE1 activity. In our study, H9c2 cardiomyoblasts were treated with angiotensin II (ANG) to activate NHE1 and generate a hypertrophic model. We aimed to understand whether EMPA reverses the ANG-induced hypertrophic response and to elucidate the molecular pathway contributing to the cardioprotective effect of EMPA. Our study demonstrated that ANG-induced hypertrophy of H9c2 cardiomyoblasts is accompanied with increased SGLT-1 and NHE1 protein expression, an effect which is prevented in the presence of EMPA. EMPA reduces ANG-induced hypertrophy through the inhibition of SGLT-1 and NHE1 expression.


Subject(s)
Angiotensin II , Myocytes, Cardiac , Angiotensin II/metabolism , Angiotensin II/pharmacology , Benzhydryl Compounds , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Glucosides/pharmacology , Humans , Myocytes, Cardiac/metabolism
14.
Cell Biol Int ; 46(2): 288-299, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34854520

ABSTRACT

MicroRNAs (miRNAs) regulate multiple biological processes and participate in various cardiovascular diseases. This study aims to investigate the role of miR-339-5p in cardiomyocyte hypertrophy and the involved mechanism. Neonatal rat cardiomyocytes (NRCMs) were cultured and stimulated with isoproterenol (ISO). The hypertrophic responses were monitored by measuring the cell surface area and expression of hypertrophic markers including ß-myosin heavy chain (ß-MHC) and atrial natriuretic factor (ANF). Bioinformatic prediction tools and dual-luciferase reporter assay were performed to identify the target gene of miR-339-5p. Quantitative real-time polymerase chain reaction and western blot analysis were used to determine the levels of miR-339-5p and its downstream effectors. Our data showed that miR-339-5p was upregulated during cardiomyocyte hypertrophy triggered by ISO. MiR-339-5p overexpression resulted in enlargement of cell size and increased the levels of hypertrophic markers. In contrast, inhibition of miR-339-5p significantly attenuated ISO-induced hypertrophic responses of NRCMs. Valosin-containing protein (VCP), a suppressor of cardiac hypertrophy via inhibiting mechanistic target of rapamycin (mTOR) signaling, was validated as a target of miR-339-5p. MiR-339-5p suppressed VCP protein expression, leading to elevated phosphorylation of mTOR and ribosomal protein S6 kinase (S6K). VCP depletion activated the mTOR/S6K cascade and could compromise the anti-hypertrophic effects of miR-339-5p inhibitor. Additionally, the hypertrophic responses caused by miR-339-5p was alleviated in the presence of mTOR inhibitor rapamycin. In conclusion, our research revealed that miR-339-5p promoted ISO-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling, suggesting a promising therapeutic intervention by interfering miR-339-5p.


Subject(s)
Biological Phenomena , MicroRNAs , Animals , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/metabolism , Isoproterenol/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Rats , TOR Serine-Threonine Kinases/metabolism , Valosin Containing Protein/metabolism
15.
J Mol Cell Cardiol ; 151: 46-55, 2021 02.
Article in English | MEDLINE | ID: mdl-33188779

ABSTRACT

Regulation of gene expression plays a fundamental role in cardiac stress-responses. Modification of coding transcripts by adenosine methylation (m6A) has recently emerged as a critical post-transcriptional mechanism underlying heart disease. Thousands of mammalian mRNAs are known to be m6A-modified, suggesting that remodeling of the m6A landscape may play an important role in cardiac pathophysiology. Here we found an increase in m6A content in human heart failure samples. We then adopted genome-wide analysis to define all m6A-regulated sites in human failing compared to non-failing hearts and identified targeted transcripts involved in histone modification as enriched in heart failure. Further, we compared all m6A sites regulated in human hearts with the ones occurring in isolated rat hypertrophic cardiomyocytes to define cardiomyocyte-specific m6A events conserved across species. Our results identified 38 shared transcripts targeted by m6A during stress conditions, and 11 events that are unique to unstressed cardiomyocytes. Of these, further evaluation of select mRNA and protein abundances demonstrates the potential impact of m6A on post-transcriptional regulation of gene expression in the heart.


Subject(s)
Adenosine/analogs & derivatives , Cardiomegaly/genetics , Myocardium/metabolism , Transcription, Genetic , Adenosine/metabolism , Animals , Animals, Newborn , Base Sequence , Biocatalysis , Heart Failure/genetics , Humans , Myocytes, Cardiac/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Stress, Physiological/genetics
16.
J Cell Physiol ; 236(4): 3059-3072, 2021 04.
Article in English | MEDLINE | ID: mdl-32964425

ABSTRACT

Clinical studies have shown a correlation between thyroid disorders and cardiac diseases. High levels of triiodothyronine (T3) induce cardiac hypertrophy, a risk factor for cardiac complications and heart failure. Previous results have demonstrated that angiotensin-(1-7) is able to block T3-induced cardiac hypertrophy; however, the molecular mechanisms involved in this event have not been fully elucidated. Here, we evidenced the contribution of FOXO3 signaling to angiotensin-(1-7) effects. Angiotensin-(1-7) treatment increased nuclear FOXO3 levels and reduced p-FOXO3 levels (inactive form) in isolated cardiomyocytes. Knockdown of FOXO3 by RNA silencing abrogated the antihypertrophic effect of angiotensin-(1-7). Increased expression of antioxidant enzymes superoxide dismutase 1 (SOD1 and catalase) and lower levels of reactive oxygen species and nuclear factor-κB (NF-κB) were observed after angiotensin-(1-7) treatment in vitro. Consistent with these results, transgenic rats overexpressing angiotensin-(1-7) displayed increased nuclear FOXO3 and SOD1 levels and reduced NF-κB levels in the heart. These results provide a new molecular mechanism responsible for the antihypertrophic effect of angiotensin-(1-7), which may contribute to future therapeutic targets.


Subject(s)
Angiotensin I/pharmacology , Catalase/metabolism , Forkhead Box Protein O3/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/metabolism , Peptide Fragments/pharmacology , Superoxide Dismutase-1/metabolism , Triiodothyronine/adverse effects , Up-Regulation , Animals , Antioxidants/metabolism , Down-Regulation/drug effects , Hypertrophy , Male , Models, Biological , Myocytes, Cardiac/drug effects , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Rats, Sprague-Dawley , Rats, Transgenic , Rats, Wistar , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/metabolism , Up-Regulation/drug effects
17.
Am J Physiol Heart Circ Physiol ; 320(3): H954-H968, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33416449

ABSTRACT

Exosomes are an important mechanism of cell-cell interaction in the cardiovascular system, both in maintaining homeostasis and in stress response. Interindividual differences that alter content in exosomes may play a role in cardiovascular disease pathology. To study the effect of interindividual cardiomyocyte (CM) variation, we characterized exosomal content in phenotypically diverse human induced pluripotent stem cell-derived CMs (hiPSC-CMs). Cell lines were generated from six participants in the HyperGEN cohort: three with left ventricular hypertrophy (LVH) and three with normal left ventricular mass (LVM). Sequence analysis of the intracellular and exosomal RNA populations showed distinct expression pattern differences between hiPSC-CM lines derived from individuals with LVH and those with normal LVM. Functional analysis of hiPSC-endothelial cells (hiPSC-ECs) treated with exosomes from both hiPSC-CM groups showed significant variation in response, including differences in tube formation, migration, and proliferation. Overall, treatment of hiPSC-ECs with exosomes resulted in significant expression changes associated with angiogenesis and endothelial cell vasculogenesis. However, the hiPSC-ECs treated with exosomes from the LVH-affected donors exhibited significantly increased proliferation but decreased tube formation and migration, suggesting angiogenic dysregulation.NEW & NOTEWORTHY The intracellular RNA and the miRNA content in exosomes are significantly different in hiPSC-CMs derived from LVH-affected individuals compared with those from unaffected individuals. Treatment of endothelial cells with these exosomes functionally affects cellular phenotypes in a donor-specific manner. These findings provide novel insight into underlying mechanisms of hypertrophic cell signaling between different cell types. With a growing interest in stem cells and exosomes for cardiovascular therapeutic use, this also provides information important for regenerative medicine.


Subject(s)
Cell Differentiation , Exosomes/metabolism , Hypertrophy, Left Ventricular/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Neovascularization, Physiologic , Tissue Donors , Adult , Aged , Case-Control Studies , Cell Movement , Cell Proliferation , Cell Separation , Cells, Cultured , Exosomes/genetics , Exosomes/ultrastructure , Female , Gene Expression Regulation , Humans , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Induced Pluripotent Stem Cells/ultrastructure , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Myocytes, Cardiac/ultrastructure , Neovascularization, Physiologic/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Transcriptome
18.
Can J Physiol Pharmacol ; 99(5): 512-521, 2021 May.
Article in English | MEDLINE | ID: mdl-33091308

ABSTRACT

We determined whether North American ginseng (Panax quinquefolius L.) mitigates the effect of angiotensin II on hypertrophy and heart failure. Angiotensin II (0.3 mg/kg) was administered to rats for 2 or 4 weeks in the presence or absence of ginseng pretreatment. The effect of ginseng (10 µg/mL) on angiotensin II (100 nM) - induced hypertrophy was also determined in neonatal rat ventricular myocytes. We also determined effects of ginseng on fatty acid and glucose oxidation by measuring gene and protein expression levels of key factors. Angiotensin II treatment for 2 and 4 weeks induced cardiac hypertrophy as evidenced by increased heart weights, as well as the upregulation of the hypertrophy-related fetal gene expression levels, with all effects being abolished by ginseng. Ginseng also reduced abnormalities in left ventricular function as well as the angiotensin II-induced increased blood pressure. In myocytes, ginseng abolished the hypertrophic response to angiotensin II as assessed by surface area and gene expression of molecular markers of hypertrophy. Ginseng modulated angiotensin II-induced abnormalities in gene expression and protein levels of CD36, CPT1M, Glut4, and PDK4 in vivo and in vitro. In conclusion, ginseng suppresses angiotensin II-induced cardiac hypertrophy and dysfunction which is related to normalization of fatty acid and glucose oxidation.


Subject(s)
Angiotensin II , Panax , Animals , Cardiomegaly , Heart Failure , Myocytes, Cardiac , Rats
19.
Ren Fail ; 43(1): 391-400, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33632070

ABSTRACT

BACKGROUND: Cardiomyocyte hypertrophy has been reported as one of the important mechanisms for cardiovascular disease (CVD) in patients with chronic kidney disease (CKD). MiroRNA-21(miR-21) was determined to play an important role in myocardial hypertrophy. However, the role of microvesicles (MVs) containing miR-21 in CKD-related cardiomyocyte hypertrophy remains largely unexplored. METHODS: Renal tubular epithelial cells were stimulated by transforming growth factor (TGF-ß1), and the conditioned medium was extracted by differential centrifugation. Renal tubular epithelial cells were labeled with Dil-C18 dye and the recipient cardiomyocytes were observed by fluorescence microscope. MiR-21 level in MVs was detected by qRT-PCR, and the length and diameter of cardiomyocytes were measured by microscope. BCA protein kit and ANP kit were used to detect the content of cell protein and the level of ANP. MiR-21 inhibitor was transfected into cardiomyocytes to observe the effect of miR-21 on myocardial hypertrophy. RESULTS: TGF-ß1 could induce donor renal tubular epithelial cells to produce MVs and delivered into cardiomyocytes, followed by the diameter, protein concentration and ANP content of cardiomyocytes significantly increased. Meanwhile, MiR-21 levels were markedly increased in MVs isolated from donor renal tubular epithelial cells and recipient cardiomyocytes. Pre-transfection of miR-21 inhibitors could inhibit MV-induced cardiomyocyte hypertrophy. CONCLUSION: Tubular cells could secrete miR-21 by MVs and deliver it into recipient cardiomyocytes to induce cardiomyocyte hypertrophy. It might shed a new light on the mechanism and treatment of CKD-related cardiac dysfunction.


Subject(s)
Epithelial Cells/metabolism , Kidney Tubules/cytology , MicroRNAs/metabolism , Myocytes, Cardiac/pathology , Transforming Growth Factor beta1/metabolism , Animals , Cell Line , Cells, Cultured , Hypertrophy , Kidney Tubules/metabolism , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Rats , Transfection
20.
Int J Mol Sci ; 22(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922643

ABSTRACT

ATPase inhibitory factor-1 (IF1) preserves cellular ATP under conditions of respiratory collapse, yet the function of IF1 under normal respiring conditions is unresolved. We tested the hypothesis that IF1 promotes mitochondrial dysfunction and pathological cardiomyocyte hypertrophy in the context of heart failure (HF). Methods and results: Cardiac expression of IF1 was increased in mice and in humans with HF, downstream of neurohumoral signaling pathways and in patterns that resembled the fetal-like gene program. Adenoviral expression of wild-type IF1 in primary cardiomyocytes resulted in pathological hypertrophy and metabolic remodeling as evidenced by enhanced mitochondrial oxidative stress, reduced mitochondrial respiratory capacity, and the augmentation of extramitochondrial glycolysis. Similar perturbations were observed with an IF1 mutant incapable of binding to ATP synthase (E55A mutation), an indication that these effects occurred independent of binding to ATP synthase. Instead, IF1 promoted mitochondrial fragmentation and compromised mitochondrial Ca2+ handling, which resulted in sarcoplasmic reticulum Ca2+ overloading. The effects of IF1 on Ca2+ handling were associated with the cytosolic activation of calcium-calmodulin kinase II (CaMKII) and inhibition of CaMKII or co-expression of catalytically dead CaMKIIδC was sufficient to prevent IF1 induced pathological hypertrophy. Conclusions: IF1 represents a novel member of the fetal-like gene program that contributes to mitochondrial dysfunction and pathological cardiac remodeling in HF. Furthermore, we present evidence for a novel, ATP-synthase-independent, role for IF1 in mitochondrial Ca2+ handling and mitochondrial-to-nuclear crosstalk involving CaMKII.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Cardiomegaly/pathology , Mitochondria/pathology , Myocardial Ischemia/pathology , Myocytes, Cardiac/pathology , Proteins/metabolism , Animals , Animals, Newborn , Apoptosis , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cardiomegaly/genetics , Cardiomegaly/metabolism , Humans , Mice , Mice, Transgenic , Mitochondria/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Proteins/genetics , Rats , Sarcoplasmic Reticulum/metabolism , Signal Transduction , ATPase Inhibitory Protein
SELECTION OF CITATIONS
SEARCH DETAIL