Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.896
Filter
Add more filters

Publication year range
1.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677515

ABSTRACT

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Subject(s)
Arginine/chemistry , Molecular Chaperones/chemistry , RNA-Binding Protein FUS/chemistry , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cations , DNA Methylation , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/metabolism , Humans , Microscopy, Atomic Force , Microscopy, Fluorescence , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Protein Structure, Secondary , RNA-Binding Protein FUS/metabolism , Tyrosine/chemistry , Xenopus laevis
2.
Cell ; 174(3): 688-699.e16, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29961577

ABSTRACT

Proteins such as FUS phase separate to form liquid-like condensates that can harden into less dynamic structures. However, how these properties emerge from the collective interactions of many amino acids remains largely unknown. Here, we use extensive mutagenesis to identify a sequence-encoded molecular grammar underlying the driving forces of phase separation of proteins in the FUS family and test aspects of this grammar in cells. Phase separation is primarily governed by multivalent interactions among tyrosine residues from prion-like domains and arginine residues from RNA-binding domains, which are modulated by negatively charged residues. Glycine residues enhance the fluidity, whereas glutamine and serine residues promote hardening. We develop a model to show that the measured saturation concentrations of phase separation are inversely proportional to the product of the numbers of arginine and tyrosine residues. These results suggest it is possible to predict phase-separation properties based on amino acid sequences.


Subject(s)
RNA-Binding Protein FUS/genetics , RNA-Binding Proteins/physiology , Amino Acid Sequence , Amino Acids/chemistry , Animals , Arginine/chemistry , Computer Simulation , HeLa Cells , Humans , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/physiology , Phase Transition , Prion Proteins/chemistry , Prion Proteins/genetics , Prions/genetics , Prions/physiology , Protein Domains , RNA-Binding Protein FUS/physiology , RNA-Binding Proteins/isolation & purification , Sf9 Cells , Tyrosine/chemistry
3.
Cell ; 173(7): 1636-1649.e16, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29754813

ABSTRACT

Hydrogen gas-evolving membrane-bound hydrogenase (MBH) and quinone-reducing complex I are homologous respiratory complexes with a common ancestor, but a structural basis for their evolutionary relationship is lacking. Here, we report the cryo-EM structure of a 14-subunit MBH from the hyperthermophile Pyrococcus furiosus. MBH contains a membrane-anchored hydrogenase module that is highly similar structurally to the quinone-binding Q-module of complex I while its membrane-embedded ion-translocation module can be divided into a H+- and a Na+-translocating unit. The H+-translocating unit is rotated 180° in-membrane with respect to its counterpart in complex I, leading to distinctive architectures for the two respiratory systems despite their largely conserved proton-pumping mechanisms. The Na+-translocating unit, absent in complex I, resembles that found in the Mrp H+/Na+ antiporter and enables hydrogen gas evolution by MBH to establish a Na+ gradient for ATP synthesis near 100°C. MBH also provides insights into Mrp structure and evolution of MBH-based respiratory enzymes.


Subject(s)
Archaeal Proteins/metabolism , Hydrogenase/metabolism , Pyrococcus furiosus/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Cell Membrane/chemistry , Cell Membrane/metabolism , Cryoelectron Microscopy , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Evolution, Molecular , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Mutagenesis , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Sodium/chemistry , Sodium/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism
4.
Annu Rev Biochem ; 86: 845-872, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28301742

ABSTRACT

Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and


Subject(s)
Optogenetics/methods , Plant Proteins/chemistry , Retinoids/chemistry , Rhodopsins, Microbial/chemistry , Sensory Rhodopsins/chemistry , Chlorophyta/classification , Chlorophyta/genetics , Chlorophyta/metabolism , Evolution, Molecular , Gene Expression , Light , Light Signal Transduction , Membrane Potentials/physiology , Models, Molecular , Photochemical Processes , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Retinoids/metabolism , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism , Sensory Rhodopsins/genetics , Sensory Rhodopsins/metabolism
5.
Mol Cell ; 84(18): 3530-3544.e6, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39232582

ABSTRACT

Channelrhodopsins are microbial light-gated ion channels that can control the firing of neurons in response to light. Among several cation channelrhodopsins identified in Guillardia theta (GtCCRs), GtCCR4 has higher light sensitivity than typical channelrhodopsins. Furthermore, GtCCR4 shows superior properties as an optogenetic tool, such as minimal desensitization. Our structural analyses of GtCCR2 and GtCCR4 revealed that GtCCR4 has an outwardly bent transmembrane helix, resembling the conformation of activated G-protein-coupled receptors. Spectroscopic and electrophysiological comparisons suggested that this helix bend in GtCCR4 omits channel recovery time and contributes to high light sensitivity. An electrophysiological comparison of GtCCR4 and the well-characterized optogenetic tool ChRmine demonstrated that GtCCR4 has superior current continuity and action-potential spike generation with less invasiveness in neurons. We also identified highly active mutants of GtCCR4. These results shed light on the diverse structures and dynamics of microbial rhodopsins and demonstrate the strong optogenetic potential of GtCCR4.


Subject(s)
Bacteriorhodopsins , Neurons , Optogenetics , Animals , Humans , Action Potentials , Bacteriorhodopsins/metabolism , Bacteriorhodopsins/genetics , Bacteriorhodopsins/chemistry , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Channelrhodopsins/chemistry , Cryptophyta/genetics , Cryptophyta/metabolism , HEK293 Cells , Ion Channel Gating/radiation effects , Light , Mutation , Neurons/metabolism , Neurons/radiation effects , Optogenetics/methods , Structure-Activity Relationship
6.
Physiol Rev ; 104(3): 1147-1204, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38329422

ABSTRACT

The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.


Subject(s)
Homeostasis , Humans , Animals , Homeostasis/physiology , Solute Carrier Family 12, Member 3/metabolism , Water-Electrolyte Balance/physiology , Sodium/metabolism , Kidney/metabolism
7.
Physiol Rev ; 102(2): 993-1024, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34486394

ABSTRACT

Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers organic cation transporter 2 (OCT2) and organic anion transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation from different perspectives: phylogenetic, ontogenetic, and cell dynamic. Our aim is to identify possible molecular targets both to help prevent or compensate for the loss of transport activity in patients with kidney disease and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.


Subject(s)
Kidney/metabolism , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Cation Transporter 2/metabolism , Animals , Humans , Kidney Diseases/metabolism , Phylogeny
8.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294408

ABSTRACT

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Subject(s)
Acetylcholine/immunology , Bacterial Proteins/pharmacology , Cilia/immunology , Mucociliary Clearance/immunology , Pulmonary Disease, Chronic Obstructive/immunology , TRPM Cation Channels/immunology , Trachea/immunology , Acetylcholine/metabolism , Animals , Bacterial Proteins/immunology , Biological Transport , Cilia/drug effects , Cilia/metabolism , Female , Formates/metabolism , Gene Expression , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Optogenetics/methods , Paracrine Communication/immunology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/immunology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics , Taste Buds/immunology , Taste Buds/metabolism , Trachea/drug effects , Trachea/pathology , Virulence
9.
Annu Rev Pharmacol Toxicol ; 64: 1-26, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37788491

ABSTRACT

I am deeply honored to be invited to write this scientific autobiography. As a physician-scientist, pediatrician, molecular biologist, and geneticist, I have authored/coauthored more than 600 publications in the fields of clinical medicine, biochemistry, biophysics, pharmacology, drug metabolism, toxicology, molecular biology, cancer, standardized gene nomenclature, developmental toxicology and teratogenesis, mouse genetics, human genetics, and evolutionary genomics. Looking back, I think my career can be divided into four distinct research areas, which I summarize mostly chronologically in this article: (a) discovery and characterization of the AHR/CYP1 axis, (b) pharmacogenomics and genetic prediction of response to drugs and other environmental toxicants, (c) standardized drug-metabolizing gene nomenclature based on evolutionary divergence, and (d) discovery and characterization of the SLC39A8 gene encoding the ZIP8 metal cation influx transporter. Collectively, all four topics embrace gene-environment interactions, hence the title of my autobiography.


Subject(s)
Genomics , Physicians , Humans , Animals , Mice , Membrane Transport Proteins , Pharmacogenetics
10.
Proc Natl Acad Sci U S A ; 121(8): e2317796121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346201

ABSTRACT

Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm+) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm+ can induce the Zn2+ flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn2+ and direct the lateral diffusion, thus effectively avoiding the local Zn2+ accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm-2 over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g-1 and maintain a capacity of up to 12 mAh.

11.
EMBO J ; 41(23): e110169, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36239040

ABSTRACT

The sodium-potassium-chloride transporter NKCC1 of the SLC12 family performs Na+ -dependent Cl- - and K+ -ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the central nervous system. Here, we present a 2.6 Å resolution cryo-electron microscopy structure of human NKCC1 in the substrate-loaded (Na+ , K+ , and 2 Cl- ) and occluded, inward-facing state that has also been observed for the SLC6-type transporters MhsT and LeuT. Cl- binding at the Cl1 site together with the nearby K+ ion provides a crucial bridge between the LeuT-fold scaffold and bundle domains. Cl- -ion binding at the Cl2 site seems to undertake a structural role similar to conserved glutamate of SLC6 transporters and may allow for Cl- -sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations, we describe a putative Na+ release pathway along transmembrane helix 5 coupled to the Cl2 site. The results provide insight into the structure-function relationship of NKCC1 with broader implications for other SLC12 family members.


Subject(s)
Potassium , Sodium , Solute Carrier Family 12, Member 2 , Humans , Cryoelectron Microscopy , Potassium/metabolism , Sodium/metabolism , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/chemistry
12.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37421948

ABSTRACT

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Subject(s)
Brain Diseases , Intellectual Disability , Humans , Brain Diseases/genetics , Ion Channels/genetics , Brain , Intellectual Disability/genetics , Phenotype
13.
Mol Cell Proteomics ; 23(9): 100820, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39069075

ABSTRACT

We have developed a one-step isolation method for protein N-terminal peptides from LysargiNase digests by pipette tip-based strong cation exchange (SCX) chromatography. This CHAMP-N (CHromatographic AMplification of Protein N-terminal peptides) method using disposable and parallel-processable SCX tips instead of conventional HPLC SCX columns facilitates simple, sensitive, reproducible, and high-throughput N-terminomic profiling without sacrificing the high identification numbers and selectivity achieved by the HPLC-based method. By applying the CHAMP-N method to HEK293T cells, we identified novel cleavage sites for signal and transit peptides and non-canonical translation initiation sites. Finally, for proteome-wide terminomics, we present a simple and comprehensive N- and C-terminomics platform employing three different tip-based approaches, including CHAMP-N, in which protease digestion and one-step isolation by tip LC are commonly used to achieve complementary terminome coverages.

14.
Proc Natl Acad Sci U S A ; 120(34): e2304735120, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37590411

ABSTRACT

Synthetic amorphous silica is a common food additive and a popular cosmetic ingredient. Mesoporous silica particles are also widely studied for their potential use in drug delivery and imaging applications because of their unique properties, such as tunable pore sizes, large surfaces areas, and assumed biocompatibility. Such a nanomaterial, when consisting of pure silicon dioxide, is generally considered to be chemically inert, but in this study, we showed that oxidation yields for different compounds were facilitated by simply incubating aqueous solutions with pure silica particles. Three thiol-containing molecules, L-cysteine, glutathione, and D-penicillamine, were studied separately, and it was found that more than 95% of oxidation happened after incubating any of these compounds with mesoporous silica particles in the dark for a day at room temperature. Oxidation increased over incubation time, and more oxidation was found for particles having larger surface areas. For nonporous silica particles at submicron ranges, yields of oxidation were different based on the structures of molecules, correlating with steric hindrance while accessing surfaces. We propose that the silyloxy radical (SiO•) on silica surfaces is what facilitates oxidation. Density functional theory calculations were conducted for total energy changes for reactions between different aqueous species and silicon dioxide surfaces. These calculations identified two most plausible pathways of the lowest energy to generate SiO• radicals from water radical cations H2O•+ and hydroxyl radicals •OH, previously known to exist at water interfaces.

15.
Proc Natl Acad Sci U S A ; 120(8): e2218997120, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36787357

ABSTRACT

Electronic structure calculations indicate that the Sr2FeSbO6 double perovskite has a flat-band set just above the Fermi level that includes contributions from ordinary subbands with weak kinetic electron hopping plus a flat subband that can be attributed to the lattice geometry and orbital interference. To place the Fermi energy in that flat band, electron-doped samples with formulas Sr2-xLaxFeSbO6 (0 ≤ x ≤ 0.3) were synthesized, and their magnetism and ambient temperature crystal structures were determined by high-resolution synchrotron X-ray powder diffraction. All materials appear to display an antiferromagnetic-like maximum in the magnetic susceptibility, but the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on electron doping. Which of the three subbands or combinations is responsible for the behavior has not been determined.

16.
Proc Natl Acad Sci U S A ; 120(13): e2217084120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943876

ABSTRACT

More than half of all extant metazoan species on earth are insects. The evolutionary success of insects is linked with their ability to osmoregulate, suggesting that they have evolved unique physiological mechanisms to maintain water balance. In beetles (Coleoptera)-the largest group of insects-a specialized rectal ("cryptonephridial") complex has evolved that recovers water from the rectum destined for excretion and recycles it back to the body. However, the molecular mechanisms underpinning the remarkable water-conserving functions of this system are unknown. Here, we introduce a transcriptomic resource, BeetleAtlas.org, for the exceptionally desiccation-tolerant red flour beetle Tribolium castaneum, and demonstrate its utility by identifying a cation/H+ antiporter (NHA1) that is enriched and functionally significant in the Tribolium rectal complex. NHA1 localizes exclusively to a specialized cell type, the leptophragmata, in the distal region of the Malpighian tubules associated with the rectal complex. Computational modeling and electrophysiological characterization in Xenopus oocytes show that NHA1 acts as an electroneutral K+/H+ antiporter. Furthermore, genetic silencing of Nha1 dramatically increases excretory water loss and reduces organismal survival during desiccation stress, implying that NHA1 activity is essential for maintaining systemic water balance. Finally, we show that Tiptop, a conserved transcription factor, regulates NHA1 expression in leptophragmata and controls leptophragmata maturation, illuminating the developmental mechanism that establishes the functions of this cell. Together, our work provides insights into the molecular architecture underpinning the function of one of the most powerful water-conserving mechanisms in nature, the beetle rectal complex.


Subject(s)
Tribolium , Animals , Tribolium/genetics , Tribolium/metabolism , Protons , Antiporters/metabolism , Rectum/metabolism , Water/metabolism
17.
Proc Natl Acad Sci U S A ; 120(16): e2213512120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036994

ABSTRACT

Some tropical sea cucumbers of the family Holothuriidae can efficiently repel or even fatally ensnare predators by sacrificially ejecting a bioadhesive matrix termed the Cuvierian organ (CO), so named by the French zoologist Georges Cuvier who first described it in 1831. Still, the precise mechanisms for how adhesiveness genetically arose in CO and how sea cucumbers perceive and transduce danger signals for CO expulsion during defense have remained unclear. Here, we report the first high-quality, chromosome-level genome assembly of Holothuria leucospilota, an ecologically significant sea cucumber with prototypical CO. The H. leucospilota genome reveals characteristic long-repeat signatures in CO-specific outer-layer proteins, analogous to fibrous proteins of disparate species origins, including spider spidroin and silkworm fibroin. Intriguingly, several CO-specific proteins occur with amyloid-like patterns featuring extensive intramolecular cross-ß structures readily stainable by amyloid indicator dyes. Distinct proteins within the CO connective tissue and outer surface cooperate to give the expelled matrix its apparent tenacity and adhesiveness, respectively. Genomic evidence offers further hints that H. leucospilota directly transduces predator-induced mechanical pressure onto the CO surface through mediation by transient receptor potential channels, which culminates in acetylcholine-triggered CO expulsion in part or in entirety. Evolutionarily, innovative events in two distinct regions of the H. leucospilota genome have apparently spurred CO's differentiation from the respiratory tree to a lethal defensive organ against predators.


Subject(s)
Holothuria , Sea Cucumbers , Animals , Holothuria/genetics , Holothuria/chemistry , Holothuria/metabolism , Amyloidogenic Proteins/metabolism , Adhesiveness
18.
J Biol Chem ; : 107835, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39342994

ABSTRACT

Organic cation transporters (OCTs) can transport structurally highly diverse substrates. The molecular basis of this extensive polyspecificity has been further elucidated by cryogenic electron microscopy. Apparently, in addition to negatively charged amino acids, aromatic residues may contribute to substrate binding and substrate selectivity. In this study, we provide a comprehensive characterization of phenylalanine 244 in OCT1 function. We analyzed the uptake of 144 OCT1 substrates for the phenylalanine 244 to alanine substitution compared to wild-type OCT1. This substitution had highly substrate-specific effects ranging from transport reduced to 10% of wild-type activity up to 8-fold increased transport rates. Four percent of substrates showed strongly increased uptake (> 200% of wild type) whereas 39% showed strongly reduced transport (< 50% of wild type). Particularly with larger, more hydrophobic, and more aromatic substrates, the Phe244Ala substitution resulted in higher transport rates and lower inhibition of the transporter. In contrast, substrates with a lower molecular weight and less aromatic rings showed generally decreased uptake rates. A comparison of our data to available transport kinetic data demonstrates that generally, high-affinity low-capacity substrates show increased uptake by the Phe244Ala substitution whereas low-affinity high-capacity substrates are characterized by reduced transport rates. Altogether, our study provides the first comprehensive characterization of the functional role of an aromatic amino acid within the substrate translocation pathway of OCT1. The pleiotropic function further highlights that Phenylalanine 244 interacts in a highly specific manner with OCT1 substrates and inhibitors.

19.
J Biol Chem ; 300(7): 107427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823641

ABSTRACT

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelBSt catalyzed the symport of galactosides with Na+, Li+, or H+ but prefers the coupling with Na+. Previously, we determined the structures of the inward- and outward-facing conformation of MelBSt and the molecular recognition for galactoside and Na+. However, the molecular mechanisms for H+- and Na+-coupled symport remain poorly understood. In this study, we solved two x-ray crystal structures of MelBSt, the cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published. We determined the energetic contributions of three major Na+-binding residues for the selection of Na+ and H+ by free energy simulations. Transport assays showed that the D55C mutant converted MelBSt to a solely H+-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelBSt. Unexpectedly, the H+-coupled melibiose transport exhibited poor activities at greater bulky ΔpH and better activities at reversal ΔpH, supporting the novel theory of transmembrane-electrostatically localized protons and the associated membrane potential as the primary driving force for the H+-coupled symport mediated by MelBSt. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket of MelBSt.


Subject(s)
Sodium , Symporters , Symporters/chemistry , Symporters/metabolism , Symporters/genetics , Binding Sites , Crystallography, X-Ray , Sodium/metabolism , Sodium/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Salmonella typhimurium/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/chemistry , Melibiose/metabolism , Melibiose/chemistry , Cations/metabolism , Cations/chemistry , Protein Conformation
20.
J Biol Chem ; 300(9): 107629, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098524

ABSTRACT

Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL