Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 978
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; 20(36): e2309656, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38686693

ABSTRACT

Bi/CeO2 (BC-x) photocatalysts are successfully prepared by solvothermal loading Bi nanoparticles and Bi-doped CeO2 derived by Ce-MOF (Ce-BTC). Formaldehyde gas (HCHO) and tetracycline hydrochloride (HTC) are used to evaluate the photocatalytic activity of the synthesized Bi/CeO2. For BC-1000 photocatalyst, the degradation of HTC by 420 nm < λ < 780 nm light reaches 91.89% for 90 min, and HCHO by 350 nm < λ < 780 nm light reaches 94.66% for 120 min. The photocatalytic cycle experiments prove that BC-1000 has good cyclic stability and repeatability. The results of photoluminescence spectra, fluorescence lifetime, photocurrent response, and electrochemical impedance spectroscopy showed that the SPR (Surface Plasmon Resonance) effect of Bi nanoparticles acted as a bridge and promoted electron transfer and enhanced the response-ability of Bi/CeO2 to visible light. Bi-doping produced more oxygen vacancies to provide adsorption sites for adsorbing oxygen and generated more ·O2 - thus promoting photocatalytic reactions. The mechanism of photocatalytic degradation is analyzed in detail utilizing active free radical capture experiments and electron paramagnetic resonance (EPR) characterization. The experimental results indicate that ·O2 - and h+ active free radicals significantly promote the degradation of pollutants.

2.
Small ; : e2403517, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045902

ABSTRACT

The cyclization of 3-hydroxy alkynes and the carboxylation of terminal alkynes both with CO2 are two attractive strategies to simultaneously reduce CO2 emission and produce value-added chemicals. Herein, the differential activation of alkynes over atomically precise Ag nanoclusters (NCs) supported on Metal-organic framework-derived highly-open mesoporous CeO2 (HM-CeO2) by reserving or removing their surface captopril ligands is reported. The ligand-capped Ag NCs possess electron-rich Ag atoms as efficient π-activation catalytic sites in cyclization reactions, while the naked Ag NCs possess partial positive-charged Ag atoms as perfect σ-activation catalytic sites in carboxylation reactions. Impressively, via coupling with HM-CeO2 featuring abundant basic sites and quick mass transfer, the ligand-capped Ag NCs afford 97.9% yield of 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one for the cyclization of 2-methyl-3-butyn-2-ol with CO2, which is 4.5 times that of the naked Ag NCs (21.7%), while the naked Ag NCs achieve 98.5% yield of n-butyl 2-alkynoate for the carboxylation of phenylacetylene with CO2, which is 15.6 times that of ligand-capped Ag NCs (6.3%). Density functional theory calculations reveal the ligand-capped Ag NCs can effectively activate alkynyl carbonate ions for the intramolecular ring closing in cyclization reaction, while the naked Ag NCs are highly affiliative in stabilizing terminal alkynyl anions for the insertion of CO2 in carboxylation reaction.

3.
Small ; 20(30): e2310808, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38386193

ABSTRACT

Developing catalysts with suitable adsorption energy for oxygen-containing intermediates and elucidating their internal structure-performance relationships are essential for the commercialization of Li-O2 batteries (LOBs), especially under high current densities. Herein, NiCo2O4-CeO2 heterostructure with a spontaneous built-in electric field (BIEF) is designed and utilized as a cathode catalyst for LOBs at high current density. The driving mechanism of electron pumping/accumulation at heterointerface is studied via experiments and density functional theory (DFT) calculations, elucidating the growth mechanism of discharge products. The results show that BIEF induced by work function difference optimizes the affinity for LiO2 and promotes the formation of nano-flocculent Li2O2, thus improving LOBs performance at high current density. Specifically, NiCo2O4-CeO2 cathode exhibits a large discharge capacity (9546 mAh g-1 at 4000 mA g-1) and high stability (>430 cycles at 4000 mA g-1), which are better than the majority of previously reported metal-based catalysts. This work provides a new method for tuning the nucleation and decomposition of Li2O2 and inspires the design of ideal catalysts for LOBs to operate at high current density.

4.
Small ; : e2404608, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177179

ABSTRACT

Elaborated structural modulation of Pt-based artificial nanozymes can efficiently improve their catalytic activity and expand their applications in clinical diagnosis and biochemical sensing. Herein, a highly efficient dual-site peroxidase mimic composed of highly dispersed Pt and Mo atoms is reported. The obtained Mo-Pt/CeO2 exhibits exceptional peroxidase-like catalytic activity, with a Vmax as high as 34.16 × 10-8 m s-1, which is 37.5 times higher than that of the single-site counterpart. Mechanism studies suggest that the Mo atoms can not only serve as adsorption and activation sites for the H2O2 substrate but also regulate the charge density of Pt centers to promote the generation ability of •OH. As a result, the synergistic effect between the dual active sites significantly improves the catalytic efficiency. Significantly, the application of the Mo-Pt/CeO2 catalyst's excellent peroxidase-like activity is extended to various biochemical detection applications, including the trace detection of glucose and cysteine, as well as the assessment of antioxidants' antioxidant capacity. This work reveals the great potential of rational design dual-site active centers for constructing high-performance artificial nanozymes.

5.
Small ; 20(34): e2402108, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38586916

ABSTRACT

Lithium metal is a highly promising anode for next-generation high-energy-density rechargeable batteries. Nevertheless, its practical application faces challenges due to the uncontrolled lithium dendrites growth and infinite volumetric expansion during repetitive cycling. Herein, a composite lithium anode is designed by mechanically rolling and pressing a cerium oxide-coated carbon textile with lithium foil (Li@CeO2/CT). The in situ generated cerium dioxide (CeO2) and cerium trioxide (Ce2O3) form a heterojunction with a reduced lithium-ion migration barrier, facilitating the rapid lithium ions migration. Additionally, both CeO2 and Ce2O3 exhibit higher adsorbed energy with lithium, enabling faster and more distributed interfacial transport of lithium ions. Furthermore, the high specific surface area of 3D skeleton can effectively reduce local current density, and alleviate the lithium volumetric changes upon plating/stripping. Benefiting from this unique structure, the highly compact and uniform lithium deposition is constructed, allowing the Li@CeO2/CT symmetric cells to maintain a stable cycling for over 500 cycles at an exceptional high current density of 100 mA cm-2. When paired with LiNi0.91Co0.06Mn0.03O2 (NCM91) cathode, the cell achieves 74.3% capacity retention after 800 cycles at 1 C, and a remarkable capacity retention of 81.1% after 500 cycles even at a high rate of 4  C.

6.
Small ; 20(35): e2402726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38651509

ABSTRACT

Heterogeneous catalysts have attracted extensive attention among various emerging catalysts for their exceptional oxygen evolution reaction (OER) capabilities, outperforming their single-component counterparts. Nonetheless, the synthesis of heterogeneous materials with predictable, precise, and facile control remains a formidable challenge. Herein, a novel strategy involving the decoration of catalysts with CeO2 is introduced to concurrently engineer heterogeneous interfaces and adjust phase composition, thereby enhancing OER performance. Theoretical calculations suggest that the presence of ceria reduces the free energy barrier for the conversion of nitrides into metals. Supporting this, the experimental findings reveal that the incorporation of rare earth oxides enables the controlled phase transition from nitride into metal, with the proportion adjustable by varying the amount of added rare earth. Thanks to the role of CeO2 decoration in promoting the reaction kinetics and fostering the formation of the genuine active phase, the optimized Ni3FeN/Ni3Fe/CeO2-5% nanoparticles heterostructure catalyst exhibits outstanding OER activity, achieving an overpotential of just 249 mV at 10 mA cm-2. This approach offers fresh perspectives for the conception of highly efficient heterogeneous OER catalysts, contributing a strategic avenue for advanced catalytic design in the field of energy conversion.

7.
Small ; : e2406487, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258378

ABSTRACT

Constructing heterojunction photocatalysts with optimized architecture and components is an effective strategy for enhancing CO2 photoreduction by promoting photogenerated carrier separation, visible light absorption, and CO2 adsorption. Herein, defect-rich photocatalysts (Ni2P@Ce-BDC-CeO2 HOOs) with S-scheme heterojunction and hollowed-out octahedral architecture are prepared by decomposing Ce-BDC octahedrons embedded with Ni2P nanoparticles and subsequent lactic acid etching for CO2 photoreduction. The hollowed-out octahedral architecture with multistage pores (micropores, mesopores, and macropores) and oxygen vacancy defects are simultaneously produced during the preparation process. The S-scheme heterojunction boosts the quick transfer and separation of photoinduced charges. The formed hollowed-out multi-stage pore structure is favorable for the adsorption and diffusion of CO2 molecules and gaseous products. As expected, the optimized photocatalyst exhibits excellent performance, producing CO with a yield of 61.6 µmol h-1 g-1, which is four times higher than that of the original Ce-BDC octahedrons. The X-ray photoelectron spectroscopy, scanning Kelvin probe, and electron spin resonance spectroscopy characterizations confirm the S-schematic charge-transfer route. The key intermediate species during the CO2 photoreduction process are detected by in situ Fourier transform infrared spectroscopy to support the proposed mechanism for CO2 photoreduction. This work presents a synthetic strategy for excellent catalysts with potential prospects in photocatalytic applications.

8.
Small ; 20(2): e2305566, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661354

ABSTRACT

Regulating the built-in electric field (BEF) in the heterojunction is is a great challenge in developing high-efficiency photocatalysts. Herein, by tailoring the content of oxygen vacancies in the constituent reduction semiconductor (mesoporous CeO2-x ), a precise Fermi level (EF ) regulation of CeO2-x is realized, yielding an amplified EF gap and intensified BEF in the Cs3 Bi2 Br9 perovskite quantum dots/CeO2-x S-scheme heterojunction. Such an enhanced BEF offers a strong driving force for directional electron transfer, boosting charge separation in the S-scheme heterojunction. As a result, the optimized Cs3 Bi2 Br9 /CeO2-x heterojunction delivers a remarkable CO2 conversion efficiency, with an impressive CO production rate of 80.26 µmol g-1  h-1 and a high selectivity of 97.6%. The S-scheme charge transfer mode is corroborated comprehensively by density functional theory (DFT) calculations, in situ X-ray photoelectron spectroscopy (XPS), and photo-irradiated Kelvin probe force microscopy (KPFM). Moreover, diffuse reflectance infrared Fourier transform spectra (DRIFTS) and theoretical calculations are conducted cooperatively to reveal the CO2 photoreduction pathway.

9.
Small ; 20(38): e2400357, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38778724

ABSTRACT

The Fenton reaction, induced by the H2O2 formed during the oxygen reduction reaction (ORR) process leads to significant dissolution of Fe, resulting in unsatisfactory stability of the iron-nitrogen-doped carbon catalysts (Fe-NC). In this study, a strategy is proposed to improve the ORR catalytic activity while eliminating the effect of H2O2 by introducing CeO2 nanoparticles. Transmission electron microscopy and subsequent characterizations reveal that CeO2 nanoparticles are uniformly distributed on the carbon substrate, with atomically dispersed Fe single-atom catalysts (SACs) adjacent to them. CeO2@Fe-NC achieves a half-wave potential of 0.89 V and a limiting current density of 6.2 mA cm-2, which significantly outperforms Fe-NC and commercial Pt/C. CeO2@Fe-NC also shows a half-wave potential loss of only 1% after 10 000 CV cycles, which is better than that of Fe-NC (7%). Further, H2O2 elimination experiments show that the introduction of CeO2 significantly accelerate the decomposition of H2O2. In situ Raman spectroscopy results suggest that CeO2@Fe-NC significantly facilitates the formation of ORR intermediates compared with Fe-NC. The Zn-air batteries utilizing CeO2@Fe-NC cathodes exhibit satisfactory peak power density and open-circuit voltage. Furthermore, theoretical calculations show that the introduction of CeO2 enhances the ORR activity of Fe-NC SAC. This study provides insights for optimizing SAC-based electrocatalysts with high activity and stability.

10.
Small ; 20(34): e2401032, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38618652

ABSTRACT

CeO2, particularly in the shape of rod, has recently gained considerable attention for its ability to mimic peroxidase (POD) and haloperoxidase (HPO). However, this multi-enzyme activities unavoidably compete for H2O2 affecting its performance in relevant applications. The lack of consensus on facet distribution in rod-shaped CeO2 further complicates the establishment of structure-activity correlations, presenting challenges for progress in the field. In this study, the HPO-like activity of rod-shaped CeO2 is successfully enhanced while maintaining its POD-like activity through a facile post-calcination method. By studying the spatial distribution of these two activities and their exclusive H2O2 activation pathways on CeO2 surfaces, this study finds that the increased HPO-like activity originated from the newly exposed (111) surface at the tip of the shortened rods after calcination, while the unchanged POD-like activity is attributed to the retained (110) surface in their lateral area. These findings not only address facet distribution discrepancies commonly reported in the literature for rod-shaped CeO2 but also offer a simple approach to enhance its antibacterial performance. This work is expected to provide atomic insights into catalytic correlations and guide the design of nanozymes with improved activity and reaction specificity.


Subject(s)
Cerium , Hydrogen Peroxide , Cerium/chemistry , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/chemistry , Peroxidase/metabolism , Peroxidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL