Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Alcohol Alcohol ; 59(5)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39127890

ABSTRACT

AIMS: Widespread brain metabolite abnormalities in those with alcohol use disorder (AUD) were reported in numerous studies, but the effects of the pro-atherogenic conditions of hypertension, type 2 diabetes mellitus, hepatitis C seropositivity, and hyperlipidemia on metabolite levels were not considered. These conditions were associated with brain metabolite abnormalities in those without AUD. We predicted treatment-seeking individuals with AUD and pro-atherogenic conditions (Atherogenic+) demonstrate lower regional metabolite markers of neuronal viability [N-acetylaspartate (NAA)] and cell membrane turnover/synthesis [choline-containing compounds (Cho)], compared with those with AUD without pro-atherogenic conditions (Atherogenic-) and healthy controls (CON). METHODS: Atherogenic+ (n = 59) and Atherogenic- (n = 51) and CON (n = 49) completed a 1.5 T proton magnetic resonance spectroscopic imaging study. Groups were compared on NAA, Cho, total creatine, and myoinositol in cortical gray matter (GM), white matter (WM), and select subcortical regions. RESULTS: Atherogenic+ had lower frontal GM and temporal WM NAA than CON. Atherogenic+ showed lower parietal GM, frontal, parietal and occipital WM and lenticular nuclei NAA level than Atherogenic- and CON. Atherogenic- showed lower frontal GM and WM NAA than CON. Atherogenic+ had lower Cho level than CON in the frontal GM, parietal WM, and thalamus. Atherogenic+ showed lower frontal WM and cerebellar vermis Cho than Atherogenic- and CON. CONCLUSIONS: Findings suggest proatherogenic conditions in those with AUD were associated with increased compromise of neuronal integrity and cell membrane turnover/synthesis. The greater metabolite abnormalities observed in Atherogenic+ may relate to increased oxidative stress-related compromise of neuronal and glial cell structure and/or impaired arterial vasoreactivity/lumen viability.


Subject(s)
Alcoholism , Atherosclerosis , Brain , Humans , Male , Female , Middle Aged , Alcoholism/metabolism , Alcoholism/pathology , Brain/metabolism , Brain/diagnostic imaging , Adult , Atherosclerosis/metabolism , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Diabetes Mellitus, Type 2/metabolism , Choline/metabolism , Hypertension/metabolism , Hyperlipidemias/metabolism , Inositol/metabolism , Magnetic Resonance Spectroscopy , Creatine/metabolism
2.
BMC Psychiatry ; 23(1): 734, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37817131

ABSTRACT

BACKGROUND: The main aim of the present study is to determine the role of metabolites observed using proton magnetic resonance spectroscopy (1H-MRS) in obsessive-compulsive disorder (OCD). As the literature describing biochemical changes in OCD yields conflicting results, we focused on accurate metabolite quantification of total N-acetyl aspartate (tNAA), total creatine (tCr), total choline-containing compounds (tCh), and myo-inositol (mI) in the anterior cingulate cortex (ACC) to capture the small metabolic changes between OCD patients and controls and between OCD patients with and without medication. METHODS: In total 46 patients with OCD and 46 healthy controls (HC) matched for age and sex were included in the study. The severity of symptoms in the OCD was evaluated on the day of magnetic resonance imaging (MRI) using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). Subjects underwent 1H-MRS from the pregenual ACC (pgACC) region to calculate concentrations of tNAA, tCr, tCho, and mI. Twenty-eight OCD and 28 HC subjects were included in the statistical analysis. We compared differences between groups for all selected metabolites and in OCD patients we analyzed the relationship between metabolite levels and symptom severity, medication status, age, and the duration of illness. RESULTS: Significant decreases in tCr (U = 253.00, p = 0.022) and mI (U = 197.00, p = 0.001) in the pgACC were observed in the OCD group. No statistically significant differences were found in tNAA and tCho levels; however, tCho revealed a trend towards lower concentrations in OCD patients (U = 278.00, p = 0.062). Metabolic concentrations showed no significant correlations with the age and duration of illness. The correlation statistics found a significant negative correlation between tCr levels and YBOCS compulsions subscale (cor = -0.380, p = 0.046). tCho and YBOCS compulsions subscale showed a trend towards a negative correlation (cor = -0.351, p = 0.067). Analysis of subgroups with or without medication showed no differences. CONCLUSIONS: Patients with OCD present metabolic disruption in the pgACC. The decrease in tCr shows an important relationship with OCD symptomatology. tCr as a marker of cerebral bioenergetics may also be considered as a biomarker of the severity of compulsions. The study failed to prove that metabolic changes correlate with the medication status or the duration of illness. It seems that a disruption in the balance between these metabolites and their transmission may play a role in the pathophysiology of OCD.


Subject(s)
Glutamine , Obsessive-Compulsive Disorder , Humans , Proton Magnetic Resonance Spectroscopy/methods , Glutamine/metabolism , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Obsessive-Compulsive Disorder/diagnosis , Magnetic Resonance Imaging , Inositol/metabolism , Inositol/therapeutic use , Aspartic Acid/metabolism , Aspartic Acid/therapeutic use , Creatine/metabolism , Creatine/therapeutic use , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/therapeutic use
3.
MAGMA ; 28(5): 503-10, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25976607

ABSTRACT

OBJECTIVE: It has previously been reported that even social alcohol consumption affects the magnetic resonance spectroscopy (MRS) signals of choline-containing compounds (tCho). The purpose of this study was to investigate whether the consumption of alcohol affects the concentrations of the metabolites tCho, N-acetylaspartate, creatine, or myo-inositol and/or their T 2 relaxation times. MATERIALS AND METHODS: (1)H MR spectra were obtained at 3 T from a frontal white matter voxel of 25 healthy subjects with social alcohol consumption (between 0 and 25.9 g/day). Absolute brain metabolite concentrations and T 2 relaxation times of metabolites were examined via MRS measurements at different echo times. Metabolite concentrations and their T 2 relaxation times were correlated with subjects' alcohol consumption, controlling for age. RESULTS: We observed positive correlations of absolute tCho and phosphocreatine and creatine (tCr) concentrations with alcohol consumption but no correlation between any metabolite T 2 relaxation time and alcohol consumption. CONCLUSIONS: This study shows that even social alcohol consumption affects the concentrations of tCho and tCr in cerebral white matter. Future studies assessing brain tCho and tCr levels should control for the confounding factor alcohol consumption.


Subject(s)
Alcohol Drinking/metabolism , Brain/metabolism , Choline/metabolism , Creatine/metabolism , Ethanol/administration & dosage , Proton Magnetic Resonance Spectroscopy/methods , Administration, Oral , Adult , Brain/drug effects , Dose-Response Relationship, Drug , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity , Young Adult
4.
Mass Spectrom (Tokyo) ; 13(1): A0151, 2024.
Article in English | MEDLINE | ID: mdl-39161737

ABSTRACT

Choline-containing compounds are essential nutrients for human activity, as they are involved in many biological processes, including cell membrane organization, methyl group donation, neurotransmission, signal transduction, lipid transport, and metabolism. These compounds are normally obtained from food. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) is a fermented food product derived from rice and rice ingredients. FBRA exhibits a multitude of functional properties with respect to the health sciences. This study has a particular focus on choline-containing compounds. We first developed a simultaneous liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis method for seven choline-containing compounds. The method was subsequently applied to FBRA and its ingredients. Hydrophilic interaction chromatography (HILIC) and selected reaction monitoring were employed for the simultaneous analysis of seven choline-containing compounds. MS ion source conditions were optimized in positive ion mode, and the product ions derived from the choline group were obtained through MS/MS optimization. Under optimized HILIC conditions, the peaks exhibited good shape without peak tailing. Calibration curves demonstrated high linearity across a 300- to 10,000-fold concentration range. The application of the method to FBRA and other ingredients revealed significant differences between food with and without fermentation. In particular, betaine and α-glycerophosphocholine were found to be highest in FBRA and brown rice malt, respectively. The results indicated that the fermentation processing of rice ingredients results in alterations to the choline-containing compounds present in foods. The developed HILIC/MS/MS method proved to be a valuable tool for elucidating the composition of choline-containing compounds in foods.

5.
Alcohol Clin Exp Res ; 37(10): 1643-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23800328

ABSTRACT

BACKGROUND: The development and maintenance of alcohol use disorders (AUD) have been hypothesized to be associated with an imbalance of glutamate (GLU) homeostasis. White matter (WM) loss, especially in anterior brain regions, has been reported in alcohol dependence, which may involve disturbances in both myelin and axonal integrity. Frontal lobe dysfunction plays an important role in addiction, because it is suggested to be associated with the loss of control over substance use. This study investigated magnetic resonance spectroscopy (MRS)-detectable Glu levels in frontal WM of non-treatment-seeking heavy drinkers and its associations with AUD symptoms. METHODS: Single-voxel MR spectra optimized for Glu assessment (TE 80 ms) were acquired at 3T from a frontal WM voxel in a group of heavy drinking, non-treatment-seeking subjects in comparison with a group of subjects with only light alcohol consumption. RESULTS: The results corroborate previous findings of increased total choline in heavy drinking subjects. A negative association of Glu levels with severity of alcohol dependence and especially loss of control over time and amount of alcohol intake was observed. CONCLUSIONS: In contrast to the rather unspecific rise in choline-containing compounds, low Glu in frontal WM may be specific for the shift from nondependent heavy drinking to dependence and does not reflect a simple effect of the amount of alcohol consumption alone.


Subject(s)
Alcohol Drinking/metabolism , Alcoholism/metabolism , Frontal Lobe/metabolism , Glutamic Acid/metabolism , Nerve Fibers, Myelinated/metabolism , Severity of Illness Index , Adult , Alcohol Drinking/psychology , Alcoholism/diagnosis , Alcoholism/psychology , Biomarkers/metabolism , Diagnostic and Statistical Manual of Mental Disorders , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged
6.
Clin Nutr ; 42(9): 1647-1656, 2023 09.
Article in English | MEDLINE | ID: mdl-37515842

ABSTRACT

BACKGROUND: Human breast milk is the primary source of choline and choline-containing compounds for infants at early stages of life. Choline data across lactation in Chinese human milk were limited. OBJECTIVE: This study aimed to quantify the five choline compounds in Chinese human breast milk and explore associated factors. METHODS: A total of 540 lactating mothers from the MUAI (Maternal Nutrition and Infant Investigation) study were included. The content of water-soluble choline (free choline, phosphocholine, glycerophosphocholine) and lipid-soluble choline (phosphatidylcholine, sphingomyelin) in 892 human milk samples collected from 0 to 400 days postpartum were examined, and associated factors were explored. RESULTS: Choline concentrations in human milk varied from postpartum day 0-400 (92.06 ± 65.22 to 171.01 ± 47.84 mg/L). Water-soluble choline was the major component (88.6%-93.8%) in human milk and ranged from 793.03 (659.22) to 1544.43 (443.32) µmol/L. Its trajectory followed that of total choline, increasing from colostrum to transitional milk and then declining in mature milk. In contrast, lipid-soluble choline accounted for 6.2%-11.4% over lactation and had an opposite trajectory. Choline composition varied by delivery mode and parity history. CONCLUSION: The concentrations of individual choline and choline-containing compounds during lactation in Chinese human breast milk were described for the first time. Our results address gaps in extant Chinese human milk choline data and support tailored dietary reference intakes for Chinese lactating women and infants. Our data describes the level and profile of choline from 0 to 400 days postpartum in Chinese human breast milk. This is the most updated data on choline and also the first report of water-soluble choline as the predominant type in Chinese human milk. Our results compensate for the deficiencies in data on choline in Chinese human milk. CLINICAL TRIAL REGISTRATION: Clinical Trial Registry number: ChiCTR1800015387. Web link to study on registry: https://www.chictr.org.cn/index.aspx.


Subject(s)
Choline , Milk, Human , Female , Humans , Infant , Pregnancy , Glycerylphosphorylcholine/analysis , Lactation , Milk, Human/chemistry , Water
7.
Brain Stimul ; 13(4): 943-952, 2020.
Article in English | MEDLINE | ID: mdl-32380445

ABSTRACT

BACKGROUND: Intermittent theta-burst stimulation (iTBS), a novel repetitive transcranial magnetic stimulation (rTMS) technique, appears to have antidepressant effects when applied over left dorsolateral prefrontal cortex (DLPFC). However, its underlying neurobiological mechanisms are unclear. Proton magnetic resonance spectroscopy (1H-MRS) provides in vivo measurements of cerebral metabolites altered in major depressive disorder (MDD) like N-acetyl-aspartate (NAA) and choline-containing compounds (Cho). We used MRS to analyse effects of iTBS on the associations between the shifts in the NAA and Cho levels during therapy and MDD improvement. METHODS: In-patients with unipolar MDD (N = 57), in addition to treatment as usual, were randomized to receive 20 iTBS or sham stimulations applied over left DLPFC over four weeks. Single-voxel 1H-MRS of the anterior cingulate cortex (ACC) was performed at baseline and follow-up. Increments of concentrations, as well as MDD improvement, were defined as endpoints. We tested a moderated mediation model of effects using the PROCESS macro (an observed variable ordinary least squares and logistic regression path analysis modeling tool) for SPSS. RESULTS: Improvement of depressive symptoms was significantly associated with decrease of Cho/NAA ratio, mediated by NAA. iTBS had a significant moderating effect enhancing the relationship between NAA change and depression improvement. CONCLUSIONS: Our findings suggest a potential neurochemical pathway and mechanisms of antidepressant action of iTBS, which may moderate the improvement of metabolic markers of neuronal viability. iTBS might increase neuroplasticity, thus facilitating normalization of neuronal circuit function.


Subject(s)
Aspartic Acid/analogs & derivatives , Depressive Disorder, Major/physiopathology , Theta Rhythm , Transcranial Magnetic Stimulation/methods , Adult , Aspartic Acid/metabolism , Choline/metabolism , Depressive Disorder, Major/therapy , Female , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Humans , Male , Middle Aged , Models, Neurological , Neurons/metabolism , Neurons/physiology , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology
8.
Schizophr Res ; 175(1-3): 4-11, 2016 08.
Article in English | MEDLINE | ID: mdl-27161760

ABSTRACT

OBJECTIVE: Young adults with early phase schizophrenia often report a past or current pattern of illicit substance use and/or alcohol misuse. Still, little is known about the cumulative and separate effects of each stressor on white matter tissue, at this vulnerable period of brain development. METHODS: Participants involved 24 healthy controls with a past or current history of sustained illicit drug use and/or alcohol misuse (users), 23 healthy controls without such history (normative data), and 27 users with early phase schizophrenia. (1)H-MRS data were acquired from a large frontal volume encompassing 95% of white matter, using a 4Tesla scanner (LASER sequence, TR/TE 3200/46ms). RESULTS: Reduced levels of choline-containing compounds (Cho) were specific to the effect of illness (Cohen's d=0.68), with 22% of the variance in Cho levels accounted for by duration of illness. Reduced levels of myoInositol (d=1.10) and creatine plus phosphocreatine (d=1.07) were specific to the effects of illness plus substance use. Effect of substance use on its own was revealed by reductions in levels of glutamate plus glutamine (d=0.83) in control users relative to normative data. CONCLUSIONS: The specific effect of illness on white matter might indicate a decreased synthesis of membrane phospholipids or alternatively, reduced membrane cellular density. In terms of limitations, this study did not include patients without a lifetime history of substance use (non-users), and the specific effect of each substance used could not be studied separately.


Subject(s)
Frontal Lobe/metabolism , Schizophrenia/metabolism , Substance-Related Disorders/metabolism , White Matter/metabolism , Adult , Female , Frontal Lobe/diagnostic imaging , Humans , Male , Multivariate Analysis , Phospholipids/metabolism , Proton Magnetic Resonance Spectroscopy , Psychiatric Status Rating Scales , Schizophrenia/diagnostic imaging , Substance-Related Disorders/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
9.
Psychiatry Res Neuroimaging ; 250: 42-9, 2016 Apr 30.
Article in English | MEDLINE | ID: mdl-27035062

ABSTRACT

Magnetic resonance spectroscopy (MRS) studies in alcohol use disorder (AUD) typically report lower levels of N-acetylaspartate (NAA) and choline-containing compounds (Cho) in several brain regions. Metabolite levels, however, are labile and can be affected by several competing factors, some related to drinking variables.. This in vivo MRS study included 20 recently sober (19.6±12.6 days) individuals with AUD and 15 controls. MRS was performed in single voxels placed in frontal white matter and thalamic regions using Constant-Time Point Resolved Spectroscopy (CT-PRESS) for absolute quantification of NAA, Cho, total creatine (tCr), and glutamate (Glu). A trend toward a thalamic NAA deficit in the total AUD group compared with controls was attributable to the subgroup of alcoholics who relapsed 3 or so months after scanning. In the total AUD group, frontal and thalamic NAA and Cho levels were lower with more recent drinking; frontal and thalamic Cho levels were also lower in AUD individuals with past stimulant abuse. Thalamic Cho levels were higher in binge-drinking AUD individuals and in those with longer length of alcohol dependence. MRS-visible metabolite peaks appear to be modulated by variables related to drinking behaviors, suggesting a sensitivity of MRS in tracking and predicting the dynamic course of alcoholism.


Subject(s)
Alcohol Abstinence , Alcoholism/metabolism , Aspartic Acid/analogs & derivatives , Brain/metabolism , Adult , Alcohol Drinking/metabolism , Alcoholism/diagnosis , Aspartic Acid/metabolism , Choline/metabolism , Chronic Disease , Creatine/metabolism , Female , Glutamic Acid/metabolism , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Recurrence
10.
J Child Neurol ; 29(2): 283-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24056155

ABSTRACT

A boy with Pelizaeus-Merzbacher disease underwent repeated evaluations by 3-Tesla (1)H-magnetic resonance spectroscopy (MRS). The patient showed overlap of the PLP1. Individuals selected as normal controls for (1)H-magnetic resonance spectroscopy consisted of healthy age-matched children. For (1)H-magnetic resonance spectroscopy, the center of a voxel was positioned in the right parietal lobe. (1)H-magnetic resonance spectroscopy was performed when the patient was 2, 6, 14, and 25 months old. γ-Aminobutyric acid concentration in early childhood was increased compared with that in normal controls. However, the γ-aminobutyric acid concentration in the Pelizaeus-Merzbacher disease patient was normalized at 14 and 25 months. No remarkable changes were observed in choline-containing compounds concentration at any time. These results suggest that the changes in metabolite concentrations during growth can reflect the pathological condition of Pelizaeus-Merzbacher disease. Furthermore, the lack of change in the choline-containing compounds concentration can be useful for differentiating Pelizaeus-Merzbacher disease from other white matter disorders.


Subject(s)
Parietal Lobe/growth & development , Parietal Lobe/metabolism , Pelizaeus-Merzbacher Disease/metabolism , Aging , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Case-Control Studies , Child, Preschool , Creatine/metabolism , Glutamic Acid/metabolism , Humans , Infant , Inositol/metabolism , Magnetic Resonance Spectroscopy , Male , gamma-Aminobutyric Acid/metabolism
11.
Neural Regen Res ; 8(34): 3225-32, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-25206643

ABSTRACT

In our previous studies, we showed that frontal lobe and brainstem functions were abnormal in on-line game addicts. In this study, 14 students with Internet addiction disorder and 14 matched healthy controls underwent proton-magnetic resonance spectroscopy to measure cerebral function. Results demonstrated that the ratio of N-acetylaspartate to creatine decreased, but the ratio of cho-line-containing compounds to creatine increased in the bilateral frontal lobe white matter in people with Internet addiction disorder. However, these ratios were mostly unaltered in the brainstem, suggesting that frontal lobe function decreases in people with Internet addiction disorder.

12.
Food Chem ; 141(3): 3167-76, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23871074

ABSTRACT

High Resolution Magic Angle Spinning (HR-MAS) is an NMR technique that can be applied to semi-solid samples. Flavedo, albedo, pulp, seeds, and oil gland content of lemon and citron were studied through HR-MAS NMR spectroscopy, which was used directly on intact tissue specimens without any physicochemical manipulation. HR-MAS NMR proved to be a very suitable technique for detecting terpenes, sugars, organic acids, aminoacids and osmolites. It is valuable in observing changes in sugars, principal organic acids (mainly citric and malic) and ethanol contents of pulp specimens and this strongly point to its use to follow fruit ripening, or commercial assessment of fruit maturity. HR-MAS NMR was also used to derive the molar percentage of fatty acid components of lipids in seeds, which can change depending on the Citrus species and varieties. Finally, this technique was employed to elucidate the metabolic profile of mold flavedo.


Subject(s)
Citrus/chemistry , Magnetic Resonance Spectroscopy/methods , Acids/analysis , Amino Acids/analysis , Carbohydrates/analysis , Fruit/chemistry , Magnetic Resonance Spectroscopy/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL