Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 617
Filter
Add more filters

Publication year range
1.
Plant J ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39323012

ABSTRACT

Cold stress restricts the metabolic and physiological activities of plants, thereby affecting their growth and development. Although broad-complex, tramtrack, and bric-à-brac (BTB) proteins are essential for diverse biological processes and stress responses, the mechanisms underlying BTB-mediated cold responses remain not fully understood. Here, we characterize the function of the cold-induced SlBTB19 protein in tomato (Solanum lycopersicum). Overexpression of SlBTB19 resulted in increased plant sensitivity to cold stress, whereas SlBTB19 knockout mutants exhibited a cold-tolerance phenotype. Further analyses, including protein-protein interaction studies and cell-free degradation assays, revealed that SlBTB19 interacts with and destabilizes the transcription factor SlWRKY2. Using virus-induced gene silencing (VIGS) to silence SlWRKY2 in both wild-type and slbtb19 mutants, we provided genetic evidence that SlWRKY2 acts downstream of SlBTB19 in regulating cold tolerance. Importantly, we demonstrated that SlWRKY2 positively regulates cold tolerance in a CRT/DRE binding factor (CBF)-dependent manner. Under cold stress, SlWRKY2 binds to the W-box in the CBF1 and CBF3 promoters, directly activating their expression. In summary, our findings identify a SlBTB19-SlWRKY2 module that negatively regulates the CBF-dependent cold tolerance pathway in tomato.

2.
Plant J ; 119(2): 998-1013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761113

ABSTRACT

The pollen viability directly affects the pollination process and the ultimate grain yield of rice. Here, we identified that the MORN motif-containing proteins, OsMORN1 and OsMORN2, had a crucial role in maintaining pollen fertility. Compared with the wild type (WT), the pollen viability of the osmorn1 and osmorn2 mutants was reduced, and pollen germination was abnormal, resulting in significantly lower spikelet fertility, seed-setting rate, and grain yield per plant. Further investigation revealed that OsMORN1 was localized to the Golgi apparatus and lipid droplets. Lipids associated with pollen viability underwent alterations in osmorn mutants, such as the diacylglyceride (18:3_18:3) was 5.1-fold higher and digalactosyldiacylglycerol (18:2_18:2) was 5.2-fold lower in osmorn1, while the triacylglycerol (TG) (16:0_18:2_18:3) was 8.3-fold higher and TG (16:0_18:1_18:3) was 8.5-fold lower in osmorn2 than those in WT. Furthermore, the OsMORN1/2 was found to be associated with rice cold tolerance, as osmorn1 and osmorn2 mutants were more sensitive to chilling stress than WT. The mutants displayed increased hydrogen peroxide accumulation, reduced antioxidant enzyme activities, elevated malondialdehyde content, and a significantly decreased seedling survival rate. Lipidomics analysis revealed distinct alterations in lipids under low temperature, highlighting significant changes in TG (18:2_18:3_18:3) and TG (18:4_18:2_18:2) in osmorn1, TG (16:0_18:2_18:2) and PI (17:2_18:3) in osmorn2 compared to the WT. Therefore, it suggested that OsMORN1 and OsMORN2 regulate both pollen viability and cold tolerance through maintaining lipid homeostasis.


Subject(s)
Oryza , Plant Proteins , Pollen , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Pollen/genetics , Pollen/physiology , Pollen/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Germination/physiology , Gene Expression Regulation, Plant , Cold Temperature , Mutation , Lipid Droplets/metabolism
3.
Plant J ; 114(6): 1301-1318, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36932862

ABSTRACT

Cold stress is a major factor limiting the production and geographical distribution of rice (Oryza sativa) varieties. However, the molecular mechanisms underlying cold tolerance remain to be elucidated. Here, we report that ornithine δ-aminotransferase (OsOAT) contributes to cold tolerance during the vegetative and reproductive development of rice. osoat mutant was identified as a temperature-sensitive male sterile mutant with deformed floral organs and seedlings sensitive to cold stress. Comparative transcriptome analysis showed that OsOAT mutation and cold treatment of the wild-type plant led to similar changes in the global gene expression profiles in anthers. OsOAT genes in indica rice Huanghuazhan (HHZ) and japonica rice Wuyungeng (WYG) are different in gene structure and response to cold. OsOAT is cold-inducible in WYG but cold-irresponsive in HHZ. Further studies showed that indica varieties carry both WYG-type and HHZ-type OsOAT, whereas japonica varieties mostly carry WYG-type OsOAT. Cultivars carrying HHZ-type OsOAT are mainly distributed in low-latitude regions, whereas varieties carrying WYG-type OsOAT are distributed in both low- and high-latitude regions. Moreover, indica varieties carrying WYG-type OsOAT generally have higher seed-setting rates than those carrying HHZ-type OsOAT under cold stress at reproductive stage, highlighting the favorable selection for WYG-type OsOAT during domestication and breeding to cope with low temperatures.


Subject(s)
Oryza , Oryza/metabolism , Plant Breeding , Plant Development , Transaminases/metabolism , Fertility/genetics , Ornithine/metabolism , Cold Temperature
4.
Plant J ; 115(1): 236-252, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37006197

ABSTRACT

Cold is one of the main abiotic stresses in temperate fruit crops, affecting the yield and fruit quality of apple in China and European countries. The plant receptor-like kinase FERONIA is widely reported to be involved in abiotic stresses. However, its function in apple cold resistance remains unknown. Modification of cell wall components and accumulation of soluble sugars and amino acids are important strategies by which plants cope with cold. In this study, expression of the apple FERONIA receptor-like kinase gene MdMRLK2 was rapidly induced by cold. Apple plants overexpressing MdMRLK2 (35S:MdMRLK2) showed enhanced cold resistance relative to the wild type. Under cold conditions, 35S:MdMRLK2 apple plants had higher amounts of water insoluble pectin, lignin, cellulose, and hemicellulose, which may have resulted from reduced activities of polygalacturonase, pectinate lyase, pectinesterase, and cellulase. More soluble sugars and free amino acids and less photosystem damage were also observed in 35S:MdMRLK2 apple plants. Intriguingly, MdMRLK2 interacted with the transcription factor MdMYBPA1 and promoted its binding to MdANS and MdUFGT promoters, leading to more anthocyanin biosynthesis, particularly under cold conditions. These findings complemented the function of apple FERONIA MdMRLK2 responding to cold resistance.


Subject(s)
Malus , Malus/metabolism , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Plants, Genetically Modified/metabolism , China , Gene Expression Regulation, Plant , Cold Temperature
5.
BMC Genomics ; 25(1): 22, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166591

ABSTRACT

BACKGROUND: Gelsemium elegans is a traditional Chinese medicinal plant and temperature is one of the key factors affecting its growth. RAV (related to ABI3/VP1) transcription factor plays multiple roles in higher plants, including the regulation of plant growth, development, and stress response. However, RAV transcription factor in G. elegans has not been reported. RESULTS: In this study, three novel GeRAV genes (GeRAV1-GeRAV3) were identified from the transcriptome of G. elegans under low temperature stress. Phylogenetic analysis showed that GeRAV1-GeRAV3 proteins were clustered into groups II, IV, and V, respectively. RNA-sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) analyses indicated that the expression of GeRAV1 and GeRAV2 was increased in response to cold stress. Furthermore, the GeRAV1 gene was successfully cloned from G. elegans leaf. It encoded a hydrophilic, unstable, and non-secretory protein that contained both AP2 and B3 domains. The amino acid sequence of GeRAV1 protein shared a high similarity of 81.97% with Camptotheca acuminata CaRAV. Subcellular localization and transcriptional self-activation experiments demonstrated that GeRAV1 was a nucleoprotein without self-activating activity. The GeRAV1 gene was constitutively expressed in the leaves, stems, and roots of the G. elegans, with the highest expression levels in roots. In addition, the expression of the GeRAV1 gene was rapidly up-regulated under abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) stresses, suggesting that it may be involved in hormonal signaling pathways. Moreover, GeRAV1 conferred improved cold and sodium chloride tolerance in Escherichia coli Rosetta cells. CONCLUSIONS: These findings provided a foundation for further understanding on the function and regulatory mechanism of the GeRAV1 gene in response to low-temperature stress in G. elegans.


Subject(s)
Gelsemium , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Gelsemium/metabolism , Stress, Physiological/genetics , Phylogeny , Gene Expression Regulation, Plant , Cold-Shock Response , Plant Proteins/metabolism
6.
Am J Hum Genet ; 108(3): 446-457, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33600773

ABSTRACT

The protein α-actinin-3 expressed in fast-twitch skeletal muscle fiber is absent in 1.5 billion people worldwide due to homozygosity for a nonsense polymorphism in ACTN3 (R577X). The prevalence of the 577X allele increased as modern humans moved to colder climates, suggesting a link between α-actinin-3 deficiency and improved cold tolerance. Here, we show that humans lacking α-actinin-3 (XX) are superior in maintaining core body temperature during cold-water immersion due to changes in skeletal muscle thermogenesis. Muscles of XX individuals displayed a shift toward more slow-twitch isoforms of myosin heavy chain (MyHC) and sarcoplasmic reticulum (SR) proteins, accompanied by altered neuronal muscle activation resulting in increased tone rather than overt shivering. Experiments on Actn3 knockout mice showed no alterations in brown adipose tissue (BAT) properties that could explain the improved cold tolerance in XX individuals. Thus, this study provides a mechanism for the positive selection of the ACTN3 X-allele in cold climates and supports a key thermogenic role of skeletal muscle during cold exposure in humans.


Subject(s)
Actinin/genetics , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Animals , Body Temperature/genetics , Codon, Nonsense/genetics , Evolution, Molecular , Humans , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Selection, Genetic/genetics
7.
BMC Plant Biol ; 24(1): 698, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044176

ABSTRACT

Cold stress can impact plant biology at both the molecular and morphological levels. We cultivated two different types of tobacco seedlings using distinct seeding methods, observing significant differences in their cold tolerance at 4 °C. After 12 h cold stress, shallow water seeding cultivation treatment demonstrates a relatively good growth state with slight wilting of the leaves. Tobacco grown using the float system exhibited short, thick roots, while those cultivated through shallow water seeding had elongated roots with more tips and forks. After cold stress, the shallow water seeding cultivation treatment demonstrated higher antioxidant enzyme activity, and lower malondialdehyde (MDA) content.Transcriptome analysis was performed on the leaves of these tobacco seedlings at three stages of cold treatment (before cold stress, after cold stress, and after 3 days of recovery). Upon analyzing the raw data, we found that the shallow water seeding cultivation treatment was associated with significant functional enrichment of nicotinamide adenine dinucleotide (NAD) biosynthesis and NAD metabolism before cold stress, enrichment of functions related to the maintenance of cellular structure after cold stress, and substantial functional enrichment related to photosynthesis during the recovery period. Weighted gene co-expression network analysis (WGCNA) was conducted, identifying several hub genes that may contribute to the differences in cold tolerance between the two tobacco seedlings. Hub genes related to energy conversion were predominantly identified in shallow water seeding cultivation treatment during our analysis, surpassing findings in other areas. These include the AS gene, which controls the synthesis of NAD precursors, the PED1 gene, closely associated with fatty acid ß-oxidation, and the RROP1 gene, related to ATP production.Overall, our study provides a valuable theoretical basis for exploring improved methods of cultivating tobacco seedlings. Through transcriptome sequencing technology, we have elucidated the differences in gene expression in different tobacco seedlings at three time points, identifying key genes affecting cold tolerance in tobacco and providing possibilities for future gene editing.


Subject(s)
Nicotiana , Seedlings , Water , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/growth & development , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Water/metabolism , Cold-Shock Response/genetics , Cold-Shock Response/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Cold Temperature
8.
BMC Plant Biol ; 24(1): 713, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060959

ABSTRACT

Rice (Oryza sativa L.) is an essential food for half of the global population and is vital in maintaining global food security. Climate change, increasing population and recent incident of COVID pandemic has generated financial burden and threaten the global food security. Due to theses factors rice cultivation also has to face significant challenges. frequent weather changes pose a considerable challenge to agricultural planning, which was previously relaying on consistent seasonal variations. In this context, rice cultivation is particularly sensitive to cold, where its development and productivity inhibited by low temperatures (< 18 °C). Developing rice varietes with low temprature tolerence and good yield potential is one of the major goals of current breeding efforts of plant scientists. For this purpose, short duration and early rice varieties are most favorable to avoid cold stress and yield more in less number of days. this study was designed to investigate the effect of low temperatures on different rice varieties. the study was designed to identify low temprature tolerent genotypes with early and regular cultivation. For this, thirty-four genotypes were evaluated in two gorwing seasons (2018-2019) with four different sowing times. Statistically sowing time showed significant interaction between all yield contributing parameters. The data indicate that exposure to low temperatures during the reproductive phase prolongs the maturation period of the crop, also length of the panicle and the fertility of the spikelets drops, resulting in a significant decrease in the production of sensitive varieties. Some varieties are more sensitive to cold stress compared to others. In the Egyptian context, Giza176, Sakha104, and Sakha107 are recommended for early cultivation, while the genotypes Giza 179, Sakha101, Sakha104, and GZ 9730-1-1-1-1 are indicated for the normal cultivation period. The Sakha104 variety is particularly notable, as it is recommended for both purposes. In addition, the data obtained in this study provide valuable information for selecting rice varieties suitable for double cropping in the North Delta of Egypt. This study also contributes to the existing literature, providing insights into the resilience of rice cultivation in the face of climate change.


Subject(s)
Cold-Shock Response , Genotype , Oryza , Oryza/genetics , Oryza/growth & development , Cold-Shock Response/genetics , Cold Temperature , Time Factors , Seasons
9.
BMC Plant Biol ; 24(1): 342, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671368

ABSTRACT

BACKGROUND: The gibberellic acid (GA) inhibitor, uniconazole, is a plant growth regulator commonly used in banana cultivation to promote dwarfing but also enhances the cold resistance in plants. However, the mechanism of this induced cold resistance remains unclear. RESULTS: We confirmed that uniconazole induced cold tolerance in bananas and that the activities of Superoxide dismutase and Peroxidase were increased in the uniconazole-treated bananas under cold stress when compared with the control groups. The transcriptome and metabolome of bananas treated with or without uniconazole were analyzed at different time points under cold stress. Compared to the control group, differentially expressed genes (DEGs) between adjacent time points in each uniconazole-treated group were enriched in plant-pathogen interactions, MAPK signaling pathway, and plant hormone signal transduction, which were closely related to stimulus-functional responses. Furthermore, the differentially abundant metabolites (DAMs) between adjacent time points were enriched in flavone and flavonol biosynthesis and linoleic acid metabolism pathways in the uniconazole-treated group than those in the control group. Temporal analysis of DEGs and DAMs in uniconazole-treated and control groups during cold stress showed that the different expression patterns in the two groups were enriched in the linoleic acid metabolism pathway. In addition to strengthening the antioxidant system and complex hormonal changes caused by GA inhibition, an enhanced linoleic acid metabolism can protect cell membrane stability, which may also be an important part of the cold resistance mechanism of uniconazole treatment in banana plants. CONCLUSIONS: This study provides information for understanding the mechanisms underlying inducible cold resistance in banana, which will benefit the production of this economically important crop.


Subject(s)
Gene Expression Regulation, Plant , Metabolome , Musa , Transcriptome , Triazoles , Musa/genetics , Musa/drug effects , Musa/physiology , Musa/metabolism , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Triazoles/pharmacology , Plant Growth Regulators/metabolism , Cold-Shock Response/genetics , Cold-Shock Response/drug effects , Cold Temperature , Gene Expression Profiling , Gibberellins/metabolism
10.
BMC Plant Biol ; 24(1): 649, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977989

ABSTRACT

BACKGROUND: The cold tolerance of rice is closely related to its production and geographic distribution. The identification of cold tolerance-related genes is of important significance for developing cold-tolerant rice. Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) is well-adapted to the cold climate of northernmost-latitude habitats ever found in the world, and is one of the most valuable rice germplasms for cold tolerance improvement. RESULTS: Transcriptome analysis revealed genes differentially expressed between Xieqingzao B (XB; a cold sensitive variety) and 19H19 (derived from an interspecific cross between DXWR and XB) in the room temperature (RT), low temperature (LT), and recovery treatments. The results demonstrated that chloroplast genes might be involved in the regulation of cold tolerance in rice. A high-resolution SNP genetic map was constructed using 120 BC5F2 lines derived from a cross between 19H19 and XB based on the genotyping-by-sequencing (GBS) technique. Two quantitative trait loci (QTLs) for cold tolerance at the early seedling stage (CTS), qCTS12 and qCTS8, were detected. Moreover, a total of 112 candidate genes associated with cold tolerance were identified based on bulked segregant analysis sequencing (BSA-seq). These candidate genes were divided into eight functional categories, and the expression trend of candidate genes related to 'oxidation-reduction process' and 'response to stress' differed between XB and 19H19 in the RT, LT and recovery treatments. Among these candidate genes, the expression level of LOC_Os12g18729 in 19H19 (related to 'response to stress') decreased in the LT treatment but restored and enhanced during the recovery treatment whereas the expression level of LOC_Os12g18729 in XB declined during recovery treatment. Additionally, XB contained a 42-bp deletion in the third exon of LOC_Os12g18729, and the genotype of BC5F2 individuals with a survival percentage (SP) lower than 15% was consistent with that of XB. Weighted gene coexpression network analysis (WGCNA) and modular regulatory network learning with per gene information (MERLIN) algorithm revealed a gene interaction/coexpression network regulating cold tolerance in rice. In the network, differentially expressed genes (DEGs) related to 'oxidation-reduction process', 'response to stress' and 'protein phosphorylation' interacted with LOC_Os12g18729. Moreover, the knockout mutant of LOC_Os12g18729 decreased cold tolerance in early rice seedling stage signifcantly compared with that of wild type. CONCLUSIONS: In general, study of the genetic basis of cold tolerance of rice is important for the development of cold-tolerant rice varieties. In the present study, QTL mapping, BSA-seq and RNA-seq were integrated to identify two CTS QTLs qCTS8 and qCTS12. Furthermore, qRT-PCR, genotype sequencing and knockout analysis indicated that LOC_Os12g18729 could be the candidate gene of qCTS12. These results are expected to further exploration of the genetic mechanism of CTS in rice and improve cold tolerance of cultivated rice by introducing the cold tolerant genes from DXWR through marker-assisted selection.


Subject(s)
Cold Temperature , Oryza , Quantitative Trait Loci , Seedlings , Oryza/genetics , Oryza/physiology , Quantitative Trait Loci/genetics , Seedlings/genetics , Seedlings/physiology , Seedlings/growth & development , Genes, Plant , RNA-Seq , Chromosome Mapping , Gene Expression Profiling , Gene Expression Regulation, Plant , Cold-Shock Response/genetics
11.
Plant Biotechnol J ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856080

ABSTRACT

Transcriptional regulation mechanisms underlying chilling injury (CI) development have been widely investigated in model plants and cold-sensitive fruits, such as banana (Musa acuminata). However, unlike the well-known NAC and WRKY transcription factors (TFs), the function and deciphering mechanism of heat shock factors (HSFs) involving in cold response are still fragmented. Here, we showed that hot water treatment (HWT) alleviated CI in harvested banana fruits accomplishing with reduced reactive oxygen species (ROS) accumulation and increased antioxidant enzyme activities. A cold-inducible but HWT-inhibited HSF, MaHsf24, was identified. Using DNA affinity purification sequencing (DAP-seq) combined with RNA-seq analyses, we found three heat shock protein (HSP) genes (MaHSP23.6, MaHSP70-1.1 and MaHSP70-1.2) and three antioxidant enzyme genes (MaAPX1, MaMDAR4 and MaGSTZ1) were the potential targets of MaHsf24. Subsequent electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and dual-luciferase reporter (DLR) analyses demonstrated that MaHsf24 repressed the transcription of these six targets via directly binding to their promoters. Moreover, stably overexpressing MaHsf24 in tomatoes increased cold sensitivity by suppressing the expressions of HSPs and antioxidant enzyme genes, while HWT could recover cold tolerance, maintaining higher levels of HSPs and antioxidant enzyme genes, and activities of antioxidant enzymes. In contrast, transiently silencing MaHsf24 by virus-induced gene silencing (VIGS) in banana peels conferred cold resistance with the upregulation of MaHSPs and antioxidant enzyme genes. Collectively, our findings support the negative role of MaHsf24 in cold tolerance, and unravel a novel regulatory network controlling bananas CI occurrence, concerning MaHsf24-exerted inhibition of MaHSPs and antioxidant enzyme genes.

12.
New Phytol ; 244(3): 798-810, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39155726

ABSTRACT

Arabidopsis PSEUDORESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 abundance is unknown. We used mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions at low temperatures. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR1 (CBF1) and COLD-REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. HOS15 mediates PRR7 turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoters of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated degradation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways that lead to increased freezing tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Freezing , Gene Expression Regulation, Plant , Mutation , Transcription Factors , Ubiquitination , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mutation/genetics , Promoter Regions, Genetic/genetics , Adaptation, Physiological/genetics , Protein Binding , Proteolysis , Repressor Proteins
13.
Plant Cell Environ ; 47(4): 1334-1347, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38221812

ABSTRACT

Cold stress is a major meteorological threat to crop growth and yield. Abscisic acid (ABA) plays important roles in plant cold tolerance by activating the expression of cold-responsive genes; however, the underlying transcriptional regulatory module remains unknown. Here, we demonstrated that the cold- and ABA-responsive transcription factor ETHYLENE RESPONSE FACTOR 15 (ERF15) positively regulates ABA-mediated cold tolerance in tomato. Exogenous ABA treatment significantly enhanced cold tolerance in wild-type tomato plants but failed to rescue erf15 mutants from cold stress. Transcriptome analysis showed that ERF15 was associated with the expression of cold-responsive transcription factors such as CBF1 and WRKY6. Further RT-qPCR assays confirmed that the ABA-induced increased in CBF1 and WRKY6 transcripts was suppressed in erf15 mutants when the plants were subjected to cold treatment. Moreover, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays demonstrated that ERF15 activated the transcription of CBF1 and WRKY6 by binding their promoters. Silencing CBF1 or WRKY6 significantly decreased cold tolerance. Overall, our study identified the role of ERF15 in conferring ABA-mediated cold tolerance in tomato plants by activating CBF1 and WRKY6 expression. This study not only broadens our knowledge of the mechanism of ABA-mediated cold tolerance in plants but also highlights ERF15 as an ideal target gene for cold-tolerant crop breeding.


Subject(s)
Abscisic Acid , Solanum lycopersicum , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Solanum lycopersicum/genetics , Gene Expression Regulation, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Ethylenes , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature , Plants, Genetically Modified/metabolism
14.
Plant Cell Environ ; 47(5): 1834-1851, 2024 May.
Article in English | MEDLINE | ID: mdl-38318779

ABSTRACT

Cold stress severely restricts plant development, causing significant agricultural losses. We found a critical transcription factor network in Medicago ruthenica was involved in plant adaptation to low-temperature. APETALA2/ethylene responsive factor (AP2/ERF) transcription factor MrERF039 was transcriptionally induced by cold stress in M. ruthenica. Overexpression of MrERF039 significantly increased the glucose and maltose content, thereby improving the tolerance of M. ruthenica. MrERF039 could bind to the DRE cis-acting element in the MrCAS15A promoter. Additionally, the methyl group of the 14th amino acid in MrERF039 was required for binding. Transcriptome analysis showed that MrERF039 acted as a sugar molecular switch, regulating numerous sugar transporters and sugar metabolism-related genes. In addition, we found that MrERF039 could directly regulate ß-amylase gene, UDP glycosyltransferase gene, and C2H2 zinc finger protein gene expression. In conclusion, these findings suggest that high expression of MrERF039 can significantly improve the cold tolerance of M. ruthenica root tissues during cold acclimation. Our results provide a new theoretical basis and candidate genes for breeding new legume forage varieties with high resistance.


Subject(s)
Arabidopsis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Sugars/metabolism , Medicago , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Cold Temperature
15.
Transgenic Res ; 33(4): 219-227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38913300

ABSTRACT

Plant WRKY transcription factors are responsible for biotic and abiotic stresses and play an important role in enhancing their adaptability. The AtWRKY33 is a gene that functions in response to abiotic stresses such as low temperature, drought, salinity, etc. In this study, a recombinant vector YG8198-ZmWRKY53 carrying the ZmWRKY53, an interspecific homolog of the dicotyledonous AtWRKY33, was transferred to rice plants by Agrobacterium mediated transformation. The ectopic expression of the ZmWRKY53 in transgenic rice plants conferred cold tolerance with a higher accumulation of free proline and water-soluble sugars, an increase in chlorophyll content, a decrease in electrolyte leakage rate and MDA levels compared to control plants. This result suggests that ZmWRKY53 may confer cold tolerance in rice.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Plants, Genetically Modified , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Proline/metabolism , Proline/genetics , Chlorophyll/metabolism , Chlorophyll/genetics
16.
J Exp Biol ; 227(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38426549

ABSTRACT

The effects of climate change are often body size dependent. One contributing factor could be size-dependent thermal tolerance (SDTT), the propensity for heat and cold tolerance to vary with body size among species and among individuals within species. SDTT is hypothesized to be caused by size differences in the temperature dependence of underlying physiological processes that operate at the cellular and organ/system level (physiological SDTT). However, temperature-dependent physiology need not change with body size for SDTT to be observed. SDTT can also arise because of physical differences that affect the relative body temperature dynamics of large and small organisms (physical SDTT). In this Commentary, I outline how physical SDTT occurs, its mechanistic differences from physiological SDTT, and how physical and physiological SDTT make different predictions about organismal responses to thermal variation. I then describe how physical SDTT can influence the outcome of thermal tolerance experiments, present an experimental framework for disentangling physical and physiological SDTT, and provide examples of tests for physiological SDTT that control for physical effects using data from Anolis lizards. Finally, I discuss how physical SDTT can affect organisms in natural environments and influence their vulnerability to anthropogenic warming. Differentiating between physiological and physical SDTT is important because it has implications for how we design and interpret thermal tolerance experiments and our fundamental understanding of thermal ecology and thermal adaptation.


Subject(s)
Acclimatization , Lizards , Humans , Animals , Temperature , Cold Temperature , Hot Temperature , Climate Change , Body Size , Lizards/physiology , Adaptation, Physiological
17.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38682690

ABSTRACT

Insect performance is linked to environmental temperature, and surviving through winter represents a key challenge for temperate, alpine and polar species. To overwinter, insects have adapted a range of strategies to become truly cold hardy. However, although the mechanisms underlying the ability to avoid or tolerate freezing have been well studied, little attention has been given to the challenge of maintaining ion homeostasis at frigid temperatures in these species, despite this limiting cold tolerance for insects susceptible to mild chilling. Here, we investigated how prolonged exposure to temperatures just above the supercooling point affects ion balance in freeze-avoidant mountain pine beetle (Dendroctonus ponderosae) larvae in autumn, mid-winter and spring, and related it to organismal recovery times and survival. Hemolymph ion balance was gradually disrupted during the first day of exposure, characterized by hyperkalemia and hyponatremia, after which a plateau was reached and maintained for the rest of the 7-day experiment. The degree of ionoregulatory collapse correlated strongly with recovery times, which followed a similar asymptotical progression. Mortality increased slightly during extensive cold exposures, where hemolymph K+ concentration was highest, and a sigmoidal relationship was found between survival and hyperkalemia. Thus, the cold tolerance of the freeze-avoiding larvae of D. ponderosae appears limited by the ability to prevent ionoregulatory collapse in a manner similar to that of chill-susceptible insects, albeit at much lower temperatures. Based on these results, we propose that a prerequisite for the evolution of insect freeze avoidance may be a convergent or ancestral ability to maintain ion homeostasis during extreme cold stress.


Subject(s)
Cold Temperature , Coleoptera , Freezing , Hemolymph , Larva , Animals , Hemolymph/chemistry , Coleoptera/physiology , Larva/physiology , Larva/growth & development , Acclimatization , Seasons , Potassium/metabolism
18.
Ann Bot ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066503

ABSTRACT

BACKGROUND AND AIMS: As winter and spring temperatures continue to increase, the timing of flowering and leaf out is advancing in many seasonally cold regions. This advancement could put plants that flower early in the spring at risk of decreased reproduction in years when there are late freeze events. Unfortunately, relatively little is known about floral freezing tolerance in forest communities. In this study, we examined the impact of freezing temperatures on the flowers of woody plants in a region where there is rapid winter warming in North America. METHODS: We subjected the flowers of twenty-five woody species to a hard (-5ºC) and a light freeze (0ºC). We assessed tissue damage using electrolyte leakage. In a subset of species, we also examined the impact of a hard freeze on pollen tube growth. To determine if the vulnerability of flowers to freezing damage relates to flowering time and to examine the responsiveness of flowering time to spring temperature, we recorded the date of first flower for our study species for three years. KEY RESULTS AND CONCLUSIONS: Across species, we found that floral freezing tolerance was strongly tied to flowering time with the highest freezing tolerance occurring in plants that bloomed earlier in the year. We hypothesize that these early blooming species are unlikely to be impacted by a false spring. Instead, the most vulnerable species to a false spring should be those that bloom later in the season. The flowering time in these species is also more sensitive to temperature, putting them at a great risk of experiencing a false spring. Ultimately, floral damage in one year will not have a large impact on species fitness, but if false springs become more frequent, there could be long-term impacts on reproduction of vulnerable species.

19.
Mol Breed ; 44(8): 50, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39070774

ABSTRACT

Cold stress is one of the main abiotic stresses that affects rice growth and production worldwide. Dissection of the genetic basis is important for genetic improvement of cold tolerance in rice. In this study, a new source of cold-tolerant accession from the Yunnan plateau, Lijiangxiaoheigu, was used as the donor parent and crossed with a cold-sensitive cultivar, Deyou17, to develop recombinant inbred lines (RILs) for quantitative trait locus (QTL) analysis for cold tolerance at the early seedling and booting stages in rice. In total, three QTLs for cold tolerance at the early seedling stage on chromosomes 2 and 7, and four QTLs at the booting stage on chromosomes 1, 3, 5, and 7, were identified. Haplotype and linear regression analyses showed that QTL pyramiding based on the additive effect of these favorable loci has good potential for cold tolerance breeding. Effect assessment in the RIL and BC3F3 populations demonstrated that qCTB1 had a stable effect on cold tolerance at the booting stage in the genetic segregation populations. Under different cold stress conditions, qCTB1 was fine-mapped to a 341-kb interval between markers M3 and M4. Through the combination of parental sequence comparison, candidate gene-based association analysis, and tissue and cold-induced expression analyses, eight important candidate genes for qCTB1 were identified. This study will provide genetic resources for molecular breeding and gene cloning to improve cold tolerance in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01488-3.

20.
Mol Breed ; 44(6): 43, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836186

ABSTRACT

Actinidia arguta (A. arguta, kiwiberry) is a perennial deciduous vine with a strong overwintering ability. We hypothesized that trehalose metabolism, which plays a pivotal role in the stress tolerance of plants, may be involved in the cold acclimatization of A. arguta. Transcriptome analysis showed that the expression of AaTPPA, which encodes a trehalose-6-phosphate phosphatase (TPP), was upregulated in response to low temperatures. AaTPPA expression levels were much higher in lateral buds, roots, and stem cambia than in leaves in autumn. In AaTPPA-overexpressing (OE) Arabidopsis thaliana (A. thaliana), trehalose levels were 8-11 times higher than that of the wild type (WT) and showed different phenotypic characteristics from WT and OtsB (Escherichia coli TPP) overexpressing lines. AaTPPA-OE A. thaliana exhibited significantly higher freezing tolerance than WT and OtsB-OE lines. Transient overexpression of AaTPPA in A. arguta leaves increased the scavenging ability of reactive oxygen species (ROS) and the soluble sugar and proline contents. AaERF64, an ethylene-responsive transcription factor, was induced by ethylene treatment and bound to the GCC-box of the AaTPPA promoter to activate its expression. AaTPPA expression was also induced by abscisic acid. In summary, the temperature decrease in autumn is likely to induce AaERF64 expression through an ethylene-dependent pathway, which consequently upregulates AaTPPA expression, leading to the accumulation of osmotic protectants such as soluble sugars and proline in the overwintering tissues of A. arguta. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01475-8.

SELECTION OF CITATIONS
SEARCH DETAIL