ABSTRACT
Neurons extend neurites with an increased synthesis of phosphatidylcholine (PC) that is not only a membrane component but also a functional regulator with specific fatty acid composition. To analyze the local synthesis of the PC molecular species within neurons, we combined a compartmentalized culture system with matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). We observed that a newly synthesized PC, which contains exogenously administered palmitic acid-d3, is accumulated at the cell bodies and the tips of the distal neurites. The local accumulation within distal neurites is formed by distinct metabolic activity from cell bodies, suggesting that the local extracellular composition of free fatty acid can be a key to regulate specific functions of each PC molecular species. We expect our simple method to be a starting point for more sophisticated in vitro analytical methods for unveiling detailed lipid metabolisms within neurons.
Subject(s)
Cell Separation/instrumentation , Hippocampus/metabolism , Lab-On-A-Chip Devices , Molecular Imaging/instrumentation , Neurons/metabolism , Phosphatidylcholines/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Animals , Bioreactors , Cell Culture Techniques/instrumentation , Cell Separation/methods , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Hippocampus/cytology , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Molecular Imaging/methods , Neurons/cytology , Rats , Rats, Wistar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methodsABSTRACT
We report here the development of a compartmentalized culture device that allows the spatial separation of the somatodendrites and axons of central nervous system (CNS) neurons. The device consists of two compartments separated by a septum constructed by attaching a porous polycarbonate track etch (PCTE) filter on top of a microchannel-filled polydimethylsiloxane (PDMS) membrane. The surface and microchannels of the septum are coated and filled, respectively, with materials that support neuron growth and neurite migration. When rat hippocampal neurons are cultured in the top compartment, axons are the only processes that can migrate through the septum to the bottom compartment. The axons in the bottom compartment can be studied directly in real-time or through immunofluorescence staining after fixation. Axons containing â¼3 µg protein can be isolated from each device for biochemical analyses. In addition, the septum also impedes the movement of small molecules between the top and bottom compartments. This feature allows the somatodendrites and axons of neurons, which occupy the top and bottom compartments of the device, respectively, to be manipulated independently. The potential applications of the device as a tool in diverse studies concerning neuronal axons and in screening reagents that regulate axonal functions have also been discussed.
Subject(s)
Axons/metabolism , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Neurons/cytology , Animals , Axons/drug effects , Cells, Cultured , Dendrites/drug effects , Dendrites/physiology , Dimethylpolysiloxanes/chemistry , Embryo, Mammalian/cytology , Glutamic Acid/toxicity , Microfluidic Analytical Techniques/instrumentation , Microscopy, Fluorescence , Microtubules/physiology , Neurons/metabolism , Paclitaxel/pharmacology , RatsABSTRACT
Introduction: Damage to the corneal nerves can result in discomfort and chronic pain, profoundly impacting the quality of life of patients. Development of novel in vitro method is crucial to better understand corneal nerve regeneration and to find new treatments for the patients. Existing in vitro models often overlook the physiology of primary sensory neurons, for which the soma is separated from the nerve endings. Methods: To overcome this limitation, our novel model combines a compartmentalized microfluidic culture of trigeminal ganglion neurons from adult mice with live-imaging and automated 3D image analysis offering robust way to assess axonal regrowth after axotomy. Results: Physical axotomy performed by a two-second aspiration led to a reproducible 70% axonal loss and altered the phenotype of the neurons, increasing the number of substance P-positive neurons 72 h post-axotomy. To validate our new model, we investigated axonal regeneration after exposure to pharmacological compounds. We selected various targets known to enhance or inhibit axonal regrowth and analyzed their basal expression in trigeminal ganglion cells by scRNAseq. NGF/GDNF, insulin, and Dooku-1 (Piezo1 antagonist) enhanced regrowth by 81, 74 and 157%, respectively, while Yoda-1 (Piezo1 agonist) had no effect. Furthermore, SARM1-IN-2 (Sarm1 inhibitor) inhibited axonal regrowth, leading to only 6% regrowth after 72 h of exposure (versus 34% regrowth without any compound). Discussion: Combining compartmentalized trigeminal neuronal culture with advanced imaging and analysis allowed a thorough evaluation of the extent of the axotomy and subsequent axonal regrowth. This innovative approach holds great promise for advancing our understanding of corneal nerve injuries and regeneration and ultimately improving the quality of life for patients suffering from sensory abnormalities, and related conditions.
ABSTRACT
Part of the lacrimal functional unit, the cornea protects the ocular surface from numerous environmental aggressions and xenobiotics. Toxicological evaluation of compounds remains a challenge due to complex interactions between corneal nerve endings and epithelial cells. To this day, models do not integrate the physiological specificity of corneal nerve endings and are insufficient for the detection of low toxic effects essential to anticipate Toxicity-Induced Dry Eye (TIDE). Using high-content imaging tool, we here characterize toxicity-induced cellular alterations using primary cultures of mouse trigeminal sensory neurons and corneal epithelial cells in a compartmentalized microfluidic chip. We validate this model through the analysis of benzalkonium chloride (BAC) toxicity, a well-known preservative in eyedrops, after a single (6h) or repeated (twice a day for 15 min over 5 days) topical 5.10-4% BAC applications on the corneal epithelial cells and nerve terminals. In combination with high-content image analysis, this advanced microfluidic protocol reveal specific and tiny changes in the epithelial cells and axonal network as well as in trigeminal cells, not directly exposed to BAC, with ATF3/6 stress markers and phospho-p44/42 cell activation marker. Altogether, this corneal neuroepithelial chip enables the evaluation of toxic effects of ocular xenobiotics, distinguishing the impact on corneal sensory innervation and epithelial cells. The combination of compartmentalized co-culture/high-content imaging/multiparameter analysis opens the way for the systematic analysis of toxicants but also neuroprotective compounds.
Subject(s)
Dry Eye Syndromes , Microfluidics , Animals , Mice , Cornea , Benzalkonium Compounds/toxicity , Preservatives, Pharmaceutical/toxicity , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/diagnosisABSTRACT
Activity-dependent myelination modulates neuron conduction velocity and as such it is essential for a correct wiring of a whole nervous system. Increasing myelination through inducing neuron activity has been proposed as a treatment strategy for demyelination diseases. Yet, the mechanisms and the effects of activity-dependent myelination remain elusive-new tools are needed. In this chapter, we describe a novel compartmentalized device integrated with an optogenetic stimulator for studying activity-dependent myelination in vitro. The platform can be modified to include multiple cell types, stimulation modes, and experimental readouts to answer a specific research question. This versatility combined with a precise control over spatial extent of the stimulation and the stimulation pattern make the proposed platform a valuable tool for molecular myelination studies.
Subject(s)
Axons/metabolism , Myelin Sheath/physiology , Optogenetics , Animals , Cell Separation , Cells, Cultured , Female , Gene Expression , Genes, Reporter , Mice , Microfluidics/instrumentation , Microfluidics/methods , Neural Stem Cells/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Optogenetics/methods , Posterior Horn Cells/metabolism , PregnancyABSTRACT
Subcellular localization and translation of messenger RNAs are essential for the regulation of neuronal development and synaptic function. As post-transcriptional regulators, microRNAs (miRNAs) have been emerging as central players in the development and maturation of the nervous system. Recent discoveries reveal the critical functions of miRNAs in the axon of neurons via multiple pathways of molecular regulation. Here, we introduce methods for isolating axonal miRNAs and review recent findings on the localization and function as well as regulatory mechanism of axonal miRNAs during axon development.
Subject(s)
Axons/metabolism , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Animals , Humans , MicroRNAs/isolation & purification , Models, Biological , RNA Transport/geneticsABSTRACT
Neurocircuits in the human brain govern complex behavior and involve connections from many different neuronal subtypes from different brain regions. Recent advances in stem cell biology have enabled the derivation of patient-specific human neuronal cells of various subtypes for the study of neuronal function and disease pathology. Nevertheless, one persistent challenge using these human-derived neurons is the ability to reconstruct models of human brain circuitry. To overcome this obstacle, we have developed a compartmentalized microfluidic device, which allows for spatial separation of cell bodies of different human-derived neuronal subtypes (excitatory, inhibitory and dopaminergic) but is permissive to the spreading of projecting processes. Induced neurons (iNs) cultured in the device expressed pan-neuronal markers and subtype specific markers. Morphologically, we demonstrate defined synaptic contacts between selected neuronal subtypes by synapsin staining. Functionally, we show that excitatory neuronal stimulation evoked excitatory postsynaptic current responses in the neurons cultured in a separate chamber.
ABSTRACT
It has been recently known that not only the presence of inhibitory molecules associated with myelin but also the reduced growth capability of the axons limit mature central nervous system (CNS) axonal regeneration after injury. Conventional axon growth studies are typically conducted using multi-well cell culture plates that are very challenging to investigate localized effects of drugs and limited to low throughput. Unfortunately, there is currently no other in vitro tools that allow investigating localized axonal responses to biomolecules in high-throughput for screening potential drugs that might promote axonal growth. We have developed a compartmentalized neuron culture platform enabling localized biomolecular treatments in parallel to axons that are physically and fluidically isolated from their neuronal somata. The 24 axon compartments in the developed platform are designed to perform four sets of six different localized biomolecular treatments simultaneously on a single device. In addition, the novel microfluidic configuration allows culture medium of 24 axon compartments to be replenished altogether by a single aspiration process, making high-throughput drug screening a reality.
ABSTRACT
Growth capability of neurons is an essential factor in axon regeneration. To better understand how microenvironments influence axon growth, methods that allow spatial control of cellular microenvironments and easy quantification of axon growth are critically needed. Here, we present a microchip capable of physically guiding the growth directions of axons while providing physical and fluidic isolation from neuronal somata/dendrites that enables localized biomolecular treatments and linear axon growth. The microchip allows axons to grow in straight lines inside the axon compartments even after the isolation; therefore, significantly facilitating the axon length quantification process. We further developed an image processing algorithm that automatically quantifies axon growth. The effect of localized extracellular matrix components and brain-derived neurotropic factor treatments on axon growth was investigated. Results show that biomolecules may have substantially different effects on axon growth depending on where they act. For example, while chondroitin sulfate proteoglycan causes axon retraction when added to the axons, it promotes axon growth when applied to the somata. The newly developed microchip overcomes limitations of conventional axon growth research methods that lack localized control of biomolecular environments and are often performed at a significantly lower cell density for only a short period of time due to difficulty in monitoring of axonal growth. This microchip may serve as a powerful tool for investigating factors that promote axon growth and regeneration.