Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 397
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 36: 717-753, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29490164

ABSTRACT

Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.


Subject(s)
Antigen Presentation/immunology , Antigens/immunology , Cross-Priming/immunology , Immunomodulation , Animals , Biological Transport , Dendritic Cells/immunology , Dendritic Cells/metabolism , Endocytosis/immunology , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Epitopes/immunology , Epitopes/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Intracellular Space/metabolism , Phagocytosis/immunology , Proteolysis , Receptors, Cell Surface/metabolism
2.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34081922

ABSTRACT

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Subject(s)
Cross-Priming/immunology , Gelsolin/metabolism , Immunity , Lectins, C-Type/metabolism , Neoplasms/immunology , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cross-Priming/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Gelsolin/chemistry , Gelsolin/deficiency , Gene Expression Regulation, Neoplastic/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity/drug effects , Mice, Inbred C57BL , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Protein Binding/drug effects , Survival Analysis
3.
Immunity ; 56(7): 1613-1630.e5, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37392735

ABSTRACT

Infiltration of regulatory T (Treg) cells, an immunosuppressive population of CD4+ T cells, into solid cancers represents a barrier to cancer immunotherapy. Chemokine receptors are critical for Treg cell recruitment and cell-cell interactions in inflamed tissues, including cancer, and thus are an ideal therapeutic target. Here, we show in multiple cancer models that CXCR3+ Treg cells were increased in tumors compared with lymphoid tissues, exhibited an activated phenotype, and interacted preferentially with CXCL9-producing BATF3+ dendritic cells (DCs). Genetic ablation of CXCR3 in Treg cells disrupted DC1-Treg cell interactions and concomitantly increased DC-CD8+ T cell interactions. Mechanistically, CXCR3 ablation in Treg cells increased tumor antigen-specific cross-presentation by DC1s, increasing CD8+ T cell priming and reactivation in tumors. This ultimately impaired tumor progression, especially in combination with anti-PD-1 checkpoint blockade immunotherapy. Overall, CXCR3 is shown to be a critical chemokine receptor for Treg cell accumulation and immune suppression in tumors.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Immunotherapy , Dendritic Cells/metabolism , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism
4.
Immunity ; 55(2): 308-323.e9, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34800368

ABSTRACT

Tumor-infiltrating dendritic cells (DCs) assume varied functional states that impact anti-tumor immunity. To delineate the DC states associated with productive anti-tumor T cell immunity, we compared spontaneously regressing and progressing tumors. Tumor-reactive CD8+ T cell responses in Batf3-/- mice lacking type 1 DCs (DC1s) were lost in progressor tumors but preserved in regressor tumors. Transcriptional profiling of intra-tumoral DCs within regressor tumors revealed an activation state of CD11b+ conventional DCs (DC2s) characterized by expression of interferon (IFN)-stimulated genes (ISGs) (ISG+ DCs). ISG+ DC-activated CD8+ T cells ex vivo comparably to DC1. Unlike cross-presenting DC1, ISG+ DCs acquired and presented intact tumor-derived peptide-major histocompatibility complex class I (MHC class I) complexes. Constitutive type I IFN production by regressor tumors drove the ISG+ DC state, and activation of MHC class I-dressed ISG+ DCs by exogenous IFN-ß rescued anti-tumor immunity against progressor tumors in Batf3-/- mice. The ISG+ DC gene signature is detectable in human tumors. Engaging this functional DC state may present an approach for the treatment of human disease.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Histocompatibility Antigens Class I/immunology , Interferon Type I/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Animals , Antigens, Neoplasm/immunology , CD11b Antigen/immunology , Cross-Priming , Dendritic Cells/drug effects , Interferon-beta/administration & dosage , Interferon-beta/pharmacology , Mice , Neoplasms/immunology , Receptors, Interferon/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology
5.
Semin Immunol ; 71: 101848, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035643

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in shaping adaptive immunity. DCs have a unique ability to sample their environment, capture and process exogenous antigens into peptides that are then loaded onto major histocompatibility complex class I molecules for presentation to CD8+ T cells. This process, called cross-presentation, is essential for initiating and regulating CD8+ T cell responses against tumors and intracellular pathogens. In this review, we will discuss the role of DCs in cancer immunity, the molecular mechanisms underlying antigen cross-presentation by DCs, the immunosuppressive factors that limit the efficiency of this process in cancer, and approaches to overcome DC dysfunction and therapeutically promote antitumoral immunity.


Subject(s)
Cross-Priming , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Antigen Presentation , Antigens , Neoplasms/therapy , Immunotherapy , Dendritic Cells
6.
Semin Immunol ; 66: 101729, 2023 03.
Article in English | MEDLINE | ID: mdl-36804685

ABSTRACT

Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.


Subject(s)
Antigen Presentation , Cross-Priming , Humans , Histocompatibility Antigens Class I , Dendritic Cells , Antigens , Histocompatibility Antigens , Major Histocompatibility Complex
7.
Semin Immunol ; 66: 101711, 2023 03.
Article in English | MEDLINE | ID: mdl-36645993

ABSTRACT

Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.


Subject(s)
Antigen-Presenting Cells , Cross-Priming , Humans , Antigen-Presenting Cells/metabolism , T-Lymphocytes, Cytotoxic , Antigens , Minor Histocompatibility Antigens , Biology , Dendritic Cells , Antigen Presentation , Histocompatibility Antigens Class I
8.
Semin Immunol ; 68: 101762, 2023 07.
Article in English | MEDLINE | ID: mdl-37167898

ABSTRACT

Dendritic cells (DCs) are a complex network of specialised antigen-presenting cells that are critical initiators of adaptive immunity. Targeting antigen directly to DCs in situ is a vaccination strategy that selectively delivers antigen to receptors expressed by DC subtypes. This approach exploits specific DC subset functions of antigen uptake and presentation. Here, we review DC-targeted vaccination strategies that are designed to elicit effective cross-presentation for CD8+ T cell immunity. In particular, we focus on approaches that exploit receptors highly expressed by mouse and human cDCs equipped with superior cross-presentation capacity. These receptors include DEC205, Clec9A and XCR1. Targeting DC receptors Clec12A, Clec4A4 and mannose receptor is also reviewed. Outcomes of DC-targeted vaccination in mouse models through to human clinical trials is discussed. This is a promising new vaccination approach capable of directly targeting the cross-presentation pathway for prevention and treatment of tumours and infectious diseases.


Subject(s)
Antigen Presentation , Cross-Priming , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Antigens , Vaccination , Dendritic Cells
9.
Semin Immunol ; 66: 101713, 2023 03.
Article in English | MEDLINE | ID: mdl-36706521

ABSTRACT

Dendritic cells (DCs) present internalized antigens to CD8 T cells through cross-presentation by major histocompatibility complex class I (MHC-I) molecules. While conventional cDC1 excel at cross-presentation, cDC2 can be licensed to cross-present during infection by signals from inflammatory receptors, most prominently Toll-like receptors (TLRs). At the core of the regulation of cross-presentation by TLRs is the control of subcellular MHC-I traffic. Within DCs, MHC-I are enriched within endosomal recycling compartments (ERC) and traffic to microbe-carrying phagosomes under the control of phagosome-compartmentalized TLR signals to favor CD8 T cell cross-priming to microbial antigens. Viral blockade of the transporter associated with antigen processing (TAP), known to inhibit the classic MHC-I presentation of cytoplasmic protein-derived peptides, depletes the ERC stores of MHC-I to simultaneously also block TLR-regulated cross-presentation. DCs counter this impairment in the two major pathways of MHC-I presentation to CD8 T cells by mobilizing noncanonical cross-presentation, which delivers MHC-I to phagosomes from a new location in the ER-Golgi intermediate compartment (ERGIC) where MHC-I abnormally accumulate upon TAP blockade. Noncanonical cross-presentation thus rescues MHC-I presentation and cross-primes TAP-independent CD8 T cells best-matched against target cells infected with immune evasive viruses. Because noncanonical cross-presentation relies on a phagosome delivery route of MHC-I that is not under TLR control, it risks potential cross-presentation of self-antigens during infection. Here I review these findings to illustrate how the subcellular route of MHC-I to phagosomes critically impacts the regulation of cross-presentation and the nature of the CD8 T cell response to infection and cancer. I highlight important and novel implications to CD8 T cell vaccines and immunotherapy.


Subject(s)
Dendritic Cells , Histocompatibility Antigens Class I , Humans , CD8-Positive T-Lymphocytes , Antigen Presentation , Phagosomes/metabolism , Antigens , Toll-Like Receptors , HLA Antigens/metabolism
10.
Semin Immunol ; 66: 101710, 2023 03.
Article in English | MEDLINE | ID: mdl-36640616

ABSTRACT

Dendritic cells are crucial for anti-tumor immune responses due to their ability to activate cytotoxic effector CD8+ T cells. Canonically, in anti-tumor immunity, dendritic cells activate CD8+ T cells in a process termed cross-presentation. Recent studies have demonstrated that another type of antigen presentation, MHC-dressing, also serves to activate CD8+ T cells against tumor cell-derived antigens. Understanding MHC-dressing's specific contributions to anti-tumor immunity can open up novel therapeutic avenues. In this review, we summarize the early studies that identified MHC-dressing as a relevant antigen presentation pathway before diving into a deeper discussion of the biology of MHC-dressing, focusing in particular on which dendritic cell subsets are most capable of performing MHC-dressing and how MHC-dressing compares to other forms of antigen presentation. We conclude by discussing the implications MHC-dressing has for anti-tumor immunity.


Subject(s)
Antigen Presentation , Antigens, Neoplasm , Dendritic Cells , Neoplasms , Humans , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes , Dendritic Cells/immunology , Dendritic Cells/metabolism , Histocompatibility Antigens Class I , Neoplasms/immunology
11.
Semin Immunol ; 67: 101764, 2023 05.
Article in English | MEDLINE | ID: mdl-37084655

ABSTRACT

The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.


Subject(s)
Antigen Presentation , Cross-Priming , Humans , CD8-Positive T-Lymphocytes , Dendritic Cells , Antigens
12.
Semin Immunol ; 66: 101726, 2023 03.
Article in English | MEDLINE | ID: mdl-36758378

ABSTRACT

Conventional dendritic cells type 1 (cDC1) are critical for inducing protective CD8+ T cell responses to tumour and viral antigens. In many instances, cDC1 access those antigens in the form of material internalised from dying tumour or virally-infected cells. How cDC1 extract dead cell-associated antigens and cross-present them in the form of peptides bound to MHC class I molecules to CD8+ T cells remains unclear. Here we review the biology of dendritic cell natural killer group receptor-1 (DNGR-1; also known as CLEC9A), a C-type lectin receptor highly expressed on cDC1 that plays a key role in this process. We highlight recent advances that support a function for DNGR-1 signalling in promoting inducible rupture of phagocytic or endocytic compartments containing dead cell debris, thereby making dead cell-associated antigens accessible to the endogenous MHC class I processing and presentation machinery of cDC1. We further review how DNGR-1 detects dead cells, as well as the functions of the receptor in anti-viral and anti-tumour immunity. Finally, we highlight how the study of DNGR-1 has opened new perspectives into cross-presentation, some of which may have applications in immunotherapy of cancer and vaccination against viral diseases.


Subject(s)
Cross-Priming , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Receptors, Immunologic , Antigens/metabolism , Dendritic Cells , Neoplasms/metabolism
13.
Proc Natl Acad Sci U S A ; 120(13): e2219956120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36940342

ABSTRACT

The events that initiate autoimmune diabetes in nonobese diabetic (NOD) mice remain poorly understood. CD4+ and CD8+ T cells are both required to develop disease, but their relative roles in initiating disease are unclear. To test whether CD4+ T cell infiltration into islets requires damage to ß cells induced by autoreactive CD8+ T cells, we inactivated Wdfy4 in nonobese diabetic (NOD) mice (NOD.Wdfy4-/--) using CRISPR/Cas9 targeting to eliminate cross-presentation by type 1 conventional dendritic cells (cDC1s). Similar to C57BL/6 Wdfy4-/- mice, cDC1 in NOD.Wdfy4-/- mice are unable to cross-present cell-associated antigens to prime CD8+ T cells, while cDC1 from heterozygous NOD.Wdfy4+/- mice cross-present normally. Further, NOD.Wdfy4-/- mice fail to develop diabetes while heterozygous NOD.Wdfy4+/- mice develop diabetes similarly to wild-type NOD mice. NOD.Wdfy4-/- mice remain capable of processing and presenting major histocompatibility complex class II (MHC-II)-restricted autoantigens and can activate ß cell-specific CD4+ T cells in lymph nodes. However, disease in these mice does not progress beyond peri-islet inflammation. These results indicate that the priming of autoreactive CD8+ T cells in NOD mice requires cross-presentation by cDC1. Further, autoreactive CD8+ T cells appear to be required not only to develop diabetes, but to recruit autoreactive CD4+ T cells into islets of NOD mice, perhaps in response to progressive ß cell damage.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Mice , Animals , Mice, Inbred NOD , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Histocompatibility Antigens Class II
14.
EMBO Rep ; 24(7): e56131, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37184882

ABSTRACT

In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Antigen Presentation , Cross-Priming , Antigens, Bacterial
15.
Semin Immunol ; 52: 101481, 2021 02.
Article in English | MEDLINE | ID: mdl-34023170

ABSTRACT

Dendritic cells (DC) are key sentinels of the host immune response with an important role in linking innate and adaptive immunity and maintaining tolerance. There is increasing recognition that DC are critical determinants of initiating and sustaining effective T-cell-mediated anti-tumor immune responses. Recent progress in immuno-oncology has led to the evolving insight that the presence and function of DC within the tumor microenvironment (TME) may dictate efficacy of cancer immunotherapies as well as conventional cancer therapies, including immune checkpoint blockade, radiotherapy and chemotherapy. As such, improved understanding of dendritic cell immunobiology specifically focusing on their role in T-cell priming, migration into tissues and TME, and the coordinated in vivo responses of functionally specialized DC subsets will facilitate a better mechanistic understanding of how tumor-immune surveillance can be leveraged to improve patient outcomes and to develop novel DC-targeted therapeutic approaches.


Subject(s)
Dendritic Cells , Neoplasms , Adaptive Immunity , Humans , Immunotherapy , Neoplasms/therapy , Tumor Microenvironment
16.
J Infect Dis ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320066

ABSTRACT

BACKGROUND: Previous studies have described that Ebola virus (EBOV) infection of human monocyte-derived dendritic cells (moDCs) inhibits dendritic cell (DC) maturation, resulting in poor T-cell activation. However, it is unknown how other DC subsets distinct from moDCs respond to EBOV infection. METHODS: To better understand how DCs initiate T-cell activation during EBOV infection, we assessed the response of conventional mouse DCs (cDCs) to EBOV infection utilizing a recombinant EBOV expressing the model antigen ovalbumin. RESULTS: In contrast to moDCs, mouse cDC2s and cDC1s were poorly infected with EBOV but were highly activated. DCs were able to prime CD8 T cells via cross-presentation of antigens obtained from cell debris of EBOV-infected cells. EBOV infection further enhanced DC cross-presentation. CONCLUSIONS: Our findings indicate that EBOV infection of cDCs results in activation rather than inhibition, leading to high levels of T-cell activation. With that we propose a mechanistic explanation for the excess T-cell activation observed in human Ebola virus disease.

17.
Am J Transplant ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992496

ABSTRACT

In the extensive literature characterizing lymphocyte contributions to transplant-related pathologies including allograft rejection and graft-versus-host disease, T cell-focused investigation has outpaced investigation of B cells. Most B cell-related reports describe regulatory and antibody-producing functions, with less focus on the potential role of antigen-presenting capacity. Using in vitro human mixed lymphocyte reactions (MLRs) to model allostimulation, we analyzed responder B cells using transcriptional analysis, flow cytometry, and microscopy. We observed emergence of an activated responder B cell subpopulation phenotypically similar to that described in individuals with graft-versus-host disease or allograft rejection. This population had markedly increased expression of FcRL5 (Fc receptor like 5) and molecules associated with human leukocyte antigen class I antigen presentation. Consistent with this phenotype, these cells demonstrated increased internalization of irradiated cell debris and dextran macromolecules. The proportion of this subpopulation within MLR responders also correlated with emergence of activated, cytotoxic CD8+ T cells. B cells of similar profile were quite infrequent in unstimulated blood from healthy individuals but readily identifiable in disaggregated human splenocytes and increased in both cases upon allostimulation. Further characterization of the emergence and function of this subpopulation could potentially contribute to identification of novel biomarkers and targeted therapeutics relevant to curbing transplant-related pathology.

18.
EMBO J ; 39(2): e102020, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31821587

ABSTRACT

For CD8 T lymphocytes to mount responses to cancer and virally-infected cells, dendritic cells must capture antigens present in tissues and display them as peptides bound to MHC-I molecules. This is most often accomplished through a pathway called antigen cross-presentation (XPT). Here, we report that the vesicular trafficking protein Rab39a is needed for optimal cross-presentation by dendritic cells in vitro and cross-priming of CD8 T cells in vivo. Without Rab39a, MHC-I presentation of intraphagosomal peptides is inhibited, indicating that Rab39a converts phagosomes into peptide-loading compartments. In this process, Rab39a promotes the delivery of MHC-I molecules from the endoplasmic reticulum (ER) to phagosomes, and increases the levels of peptide-empty MHC-I conformers that can be loaded with peptide in this compartment. Rab39a also increases the levels of Sec22b and NOX2, previously recognized to participate in cross-presentation, on phagosomes, thereby filling in a missing link into how phagosomes mature into cross-presenting vesicles.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Endoplasmic Reticulum/immunology , Histocompatibility Antigens Class I/immunology , Phagosomes/physiology , rab GTP-Binding Proteins/physiology , Animals , Endoplasmic Reticulum/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis , Protein Transport
19.
Article in English | MEDLINE | ID: mdl-38507703

ABSTRACT

WD repeat- and FYVE domain-containing protein 4 (WDFY4), coded by a gene on 10q11.23, is a member of the BEACH (Beige and Chediak-Higashi) domain-containing family. Genome-wide association studies identified WDFY4 variants as a risk factor for SLE in Asian and European populations. WDFY4 variants are also associated with RA and primary biliary cholangitis, in different ancestry populations. The WDFY4 protein plays an essential role in the cross-presentation of classic dendritic cells, reactive oxygen species-induced apoptosis of CD8+ T cells, and non-canonical autophagic activity in B cells. A novel variant rs7919656 was identified in Japanese clinically amyopathic dermatomyositis patients, with a highly expressed truncated isoform augmenting the melanoma differentiation-associated gene 5 (MDA5) signalling pathway. The same variant was later found to be significantly associated with RP-ILD in Chinese MDA5+DM patients. Here, we briefly review the association of WDFY4 with autoimmune diseases and its known function in immune response.

20.
Immunity ; 43(6): 1087-100, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26682983

ABSTRACT

The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.


Subject(s)
Antigen Presentation/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Toll-Like Receptor 4/immunology , Animals , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Female , Flow Cytometry , Lysosomes/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phagosomes/immunology , RNA, Small Interfering , Transfection , rab GTP-Binding Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL