Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Acta Pharmacol Sin ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914676

ABSTRACT

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.

2.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203271

ABSTRACT

The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine. Psilocybin and ketamine increased the release of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of naive rats as demonstrated using microdialysis. Both drugs influenced glutamate and GABA release in the nucleus accumbens, hippocampus and amygdala and increased ACh levels in the hippocampus. The changes in D2, 5-HT1A and 5-HT2A receptor density in the nucleus accumbens and hippocampus were observed as a long-lasting effect. A marked anxiolytic effect of psilocybin in the acute phase and 24 h post-treatment was shown in the open field test. These data provide the neurobiological background for psilocybin's effect on stress, anxiety and structural changes in the limbic system and translate into the antidepressant effect of psilocybin in depressed patients.


Subject(s)
Ketamine , Psilocybin , Humans , Animals , Rats , Psilocybin/pharmacology , Ketamine/pharmacology , Limbic System , Glutamic Acid , Antidepressive Agents/pharmacology
3.
Dev Psychobiol ; 64(4): e22259, 2022 05.
Article in English | MEDLINE | ID: mdl-35452538

ABSTRACT

Chronic early life stress (ECS) induced by limited bedding and nesting (LBN) material in rodents is a naturalistic stress model that mimics many of the behavioral and neural consequences of child abuse and neglect; however, the effect of ECS on adult impulsivity has never been studied. The aim of our work was to determine the effects of ECS on cognitive impulsivity and its relation to D2 immunoreactivity in the nucleus accumbens (NAc) and prefrontal cortex (PFC) of adult male rats. Sprague-Dawley rats were exposed to LBN from postnatal day 2 to 9. We evaluated dams' maternal behavior and offspring corticosterone levels. The rats' impulsive cognitive behavior was evaluated by a delay-discounting task (transitional bridge) on P70, and we evaluated D2 receptors by immunostaining. Our results indicated that ECS affected maternal behavior in the dams and increased pups' corticosterone levels at P9, but not in adults. ECS rats showed lower frequencies of choosing the delayed reinforcer and shorter latencies to cross on the delay-discounting task. In addition, ECS rats showed increased D2 immunoreactivity in the NAc when compared with controls. Our data suggest that ECS can cause impulsive behaviors in adult rats characterized by less convenient choices, likely related to an increase in D2 receptors in the NAc. These findings could contribute to our understanding of the effects of child abuse and neglect on impulsive behavior.


Subject(s)
Nucleus Accumbens , Stress, Psychological , Animals , Cognition , Corticosterone/pharmacology , Female , Impulsive Behavior , Male , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism
4.
J Neurosci Res ; 99(3): 947-965, 2021 03.
Article in English | MEDLINE | ID: mdl-33271630

ABSTRACT

Cognitive decline in Parkinson's disease (PD) is a common sequela of the disorder that has a large impact on patient well-being. Its physiological etiology, however, remains elusive. Our study used graph theory analysis to investigate the large-scale topological patterns of the extrastriatal dopamine D2 receptor network. We used positron emission tomography with [11 C]FLB-457 to measure the binding potential of cortical dopamine D2 receptors in two networks: the meso-cortical dopamine network and the meso-limbic dopamine network. We also investigated the application of partial volume effect correction (PVEC) in conjunction with graph theory analysis. Three groups were investigated in this study divided according to their cognitive status as measured by the Montreal Cognitive Assessment score, with a score ≤25 considered cognitively impaired: (a) healthy controls (n = 13, 11 female), (b) cognitively unimpaired PD patients (PD-CU, n = 13, 5 female), and (c) PD patients with mild cognitive impairment (PD-MCI, n = 17, 4 female). In the meso-cortical network, we observed increased small-worldness, normalized clustering, and local efficiency in the PD-CU group compared to the PD-MCI group, as well as a hub shift in the PD-MCI group. Compensatory reorganization of the meso-cortical dopamine D2 receptor network may be responsible for some of the cognitive preservation observed in PD-CU. These results were found without PVEC applied and PVEC proved detrimental to the graph theory analysis. Overall, our findings demonstrate how graph theory analysis can be used to detect subtle changes in the brain that would otherwise be missed by regional comparisons of receptor density.


Subject(s)
Brain/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Parkinson Disease/physiopathology , Receptors, Dopamine D2/physiology , Aged , Brain Mapping , Dopamine , Female , Humans , Male , Middle Aged , Nerve Net , Neuropsychological Tests , Positron-Emission Tomography , Receptors, Dopamine D2/metabolism
5.
Exp Brain Res ; 239(6): 1963-1974, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33885919

ABSTRACT

Dopamine seems to mediate fear conditioning through its action on D2 receptors in the mesolimbic pathway. Systemic and local injections of dopaminergic agents showed that D2 receptors are preferentially involved in the expression, rather than in the acquisition, of conditioned fear. To further examine this issue, we evaluated the effects of systemic administration of the dopamine D2-like receptor antagonists sulpiride and haloperidol on the expression and extinction of contextual and cued conditioned fear in rats. Rats were trained to a context-CS or a light-CS using footshocks as unconditioned stimuli. After 24 h, rats received injections of sulpiride or haloperidol and were exposed to the context-CS or light-CS for evaluation of freezing expression (test session). After another 24 h, rats were re-exposed to the context-CS or light-CS, to evaluate the extinction recall (retest session). Motor performance was assessed with the open-field and catalepsy tests. Sulpiride, but not haloperidol, significantly reduced the expression of contextual and cued conditioned fear without affecting extinction recall. In contrast, haloperidol, but not sulpiride, had cataleptic and motor-impairing effects. The results reinforce the importance of D2 receptors in fear conditioning and suggest that dopaminergic mechanisms mediated by D2 receptors are mainly involved in the expression rather than in the extinction of conditioned freezing.


Subject(s)
Conditioning, Classical , Extinction, Psychological , Fear , Receptors, Dopamine D2 , Animals , Dopamine Agents , Rats , Rats, Wistar
6.
Cereb Cortex ; 30(3): 989-1000, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31504282

ABSTRACT

Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n = 175, 64-68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [11C]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U-shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.


Subject(s)
Dopamine/physiology , Memory, Episodic , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Receptors, Dopamine D2/physiology , Aged , Brain Mapping , Catechol O-Methyltransferase/genetics , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography
7.
J Neurosci ; 39(38): 7513-7528, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31363062

ABSTRACT

The regulation of the striatum by the GPCR signaling through neuromodulators is essential for its physiology and physiopathology, so it is necessary to know all the compounds of these pathways. In this study, we identified a new important partner of the dopaminergic pathway: GPRIN3 (a member of the GPRIN family). GPRIN3 is highly expressed in the striatum but with undefined function. Cell sorting of medium spiny neurons (MSNs) in indirect MSNs and direct MSNs indicated the presence of the GPRIN3 gene in both populations with a preferential expression in indirect MSNs. This led us to generate GPRIN3 KO mice by CRISPR/Cas9 and test male animals to access possible alterations in morphological, electrophysiological, and behavioral parameters following its absence. 3D reconstruction analysis of MSNs revealed increased neuronal arborization in GPRIN3 KO and modified passive and active electrophysiological properties. These cellular alterations were coupled with increased motivation and cocaine-induced hyperlocomotion. Additionally, using a specific indirect MSN knockdown, we showed a preferential role for GPRIN3 in indirect MSNs related to the D2R signaling. Together, these results show that GPRIN3 is a mediator of D2R function in the striatum playing a major role in striatal physiology.SIGNIFICANCE STATEMENT The striatum is the main input of the basal ganglia processing information from different brain regions through the combined actions of direct pathway neurons and indirect pathway neurons. Both neuronal populations are defined by the expression of dopamine D1R or D2R GPCRs, respectively. How these neurons signal to the respective G-protein is still debatable. Here we identified GPRIN3 as a putative selective controller of D2R function in the striatum playing a critical role in striatal-associated behaviors and cellular functions. This study represents the identification of a new target to tackle striatal dysfunction associated with the D2R, such as schizophrenia, Parkinson's disease, and drug addiction.


Subject(s)
Corpus Striatum/physiology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, Dopamine D2/metabolism , Animals , Male , Mice , Mice, Knockout , Signal Transduction/physiology
8.
Int J Mol Sci ; 21(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041188

ABSTRACT

Dystonia pathophysiology has been partly linked to downregulation and dysfunction ofdopamine D2 receptors in striatum. We aimed to investigate the possible morpho-structuralcorrelates of D2 receptor downregulation in the striatum of a DYT1 Tor1a mouse model. Adultcontrol Tor1a+/+ and mutant Tor1a+/- mice were used. The brains were perfused and free-floatingsections of basal ganglia were incubated with polyclonal anti-D2 antibody, followed by secondaryimmune-fluorescent antibody. Confocal microscopy was used to detect immune-fluorescent signals.The same primary antibody was used to evaluate D2 receptor expression by western blot. The D2receptor immune-fluorescence appeared circumscribed in small disks (0.3-0.5 µm diameter), likelyrepresenting D2 synapse aggregates, densely distributed in the striatum of Tor1a+/+ mice. In theTor1a+/- mice the D2 aggregates were significantly smaller (µm2 2.4 ± SE 0.16, compared to µm2 6.73± SE 3.41 in Tor1a+/+) and sparse, with ~30% less number per microscopic field, value correspondentto the amount of reduced D2 expression in western blotting analysis. In DYT1 mutant mice thesparse and small D2 synapses in the striatum may be insufficient to "gate" the amount ofpresynaptic dopamine release diffusing in peri-synaptic space, and this consequently may result ina timing and spatially larger nonselective sphere of influence of dopamine action.


Subject(s)
Dystonia/genetics , Molecular Chaperones/genetics , Receptors, Dopamine D2/metabolism , Synapses/metabolism , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Down-Regulation , Dystonia/metabolism , Mice , Mice, Knockout , Microscopy, Confocal
9.
Pharm Biol ; 58(1): 721-731, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32715838

ABSTRACT

CONTEXT: L-DOPA is the first-line drug for Parkinson's disease (PD). However, chronic use can lead to dyskinesia. Caffeine, which is a known neuroprotectant, can potentially act as an adjunct to minimise adverse effects of L-DOPA. OBJECTIVES: This study determined changes in terms of neurodegeneration, locomotion and mechanosensation in Caenorhabditis elegans (Rhabditidae) strain UA57 overexpressing tyrosine hydroxylase (CAT-2) when treated with caffeine, L-DOPA or their combinations. MATERIALS AND METHODS: Neurodegeneration was monitored via fluorescence microscopy of GFP-tagged dopaminergic neurons in the head and tail regions of C. elegans (n = 20). Meanwhile, mechanosensation and locomotion under vehicle (0.1% DMSO), L-DOPA (60 mM), caffeine (10 mM) or 60 mM L-DOPA + 10 or 20 mM caffeine (60LC10 and 60LC20) treatments were scored for 3 days. RESULTS: L-DOPA (60 mM) reduced CEP and ADE neurons by 4.3% on day 3, with a concomitant decrease in fluorescence by 44.6%. This correlated with reductions in gentle head (-35%) and nose touch (-40%) responses, but improved locomotion (20-75%) compared with vehicle alone. CEP and ADE neuron counts were preserved with caffeine (10 mM) or 60LC10 (98-100%), which correlated with improved mechanosensation (10-23%) and locomotion (18-76%). However, none of the treatments was able to preserve PDE neuron count, reducing the basal slowing response. Discussion and conclusions: Taken together, we show that caffeine can protect DAergic neurons and can reduce aberrant locomotion and loss of sensation when co-administered with L-DOPA, which can potentially impact PD treatment and warrants further investigation.


Subject(s)
Caffeine/pharmacology , Dopaminergic Neurons/drug effects , Locomotion/drug effects , Parkinsonian Disorders/drug therapy , Animals , Animals, Genetically Modified , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/toxicity , Caenorhabditis elegans , Caffeine/administration & dosage , Dose-Response Relationship, Drug , Levodopa/administration & dosage , Levodopa/toxicity , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/physiopathology
10.
Neuroimage ; 188: 92-101, 2019 03.
Article in English | MEDLINE | ID: mdl-30502443

ABSTRACT

A comprehensive understanding of how the brain responds to a changing environment requires techniques capable of recording functional outputs at the whole-brain level in response to external stimuli. Positron emission tomography (PET) is an exquisitely sensitive technique for imaging brain function but the need for anaesthesia to avoid motion artefacts precludes concurrent behavioural response studies. Here, we report a technique that combines motion-compensated PET with a robotically-controlled animal enclosure to enable simultaneous brain imaging and behavioural recordings in unrestrained small animals. The technique was used to measure in vivo displacement of [11C]raclopride from dopamine D2 receptors (D2R) concurrently with changes in the behaviour of awake, freely moving rats following administration of unlabelled raclopride or amphetamine. The timing and magnitude of [11C]raclopride displacement from D2R were reliably estimated and, in the case of amphetamine, these changes coincided with a marked increase in stereotyped behaviours and hyper-locomotion. The technique, therefore, allows simultaneous measurement of changes in brain function and behavioural responses to external stimuli in conscious unrestrained animals, giving rise to important applications in behavioural neuroscience.


Subject(s)
Behavior, Animal/physiology , Brain/physiology , Functional Neuroimaging/methods , Positron-Emission Tomography/methods , Animals , Functional Neuroimaging/instrumentation , Male , Positron-Emission Tomography/instrumentation , Rats , Rats, Sprague-Dawley
11.
Hum Brain Mapp ; 40(10): 3125-3138, 2019 07.
Article in English | MEDLINE | ID: mdl-30932295

ABSTRACT

Theories of adult brain development, based on neuropsychological test results and structural neuroimaging, suggest differential rates of age-related change in function across cortical and subcortical sub-regions. However, it remains unclear if these trends also extend to the aging dopamine system. Here we examined cross-sectional adult age differences in estimates of D2-like receptor binding potential across several cortical and subcortical brain regions using PET imaging and the radiotracer [18 F]Fallypride in two samples of healthy human adults (combined N = 132). After accounting for regional differences in overall radioligand binding, estimated percent difference in receptor binding potential by decade (linear effects) were highest in most temporal and frontal cortical regions (~6-16% per decade), moderate in parahippocampal gyrus, pregenual frontal cortex, fusiform gyrus, caudate, putamen, thalamus, and amygdala (~3-5%), and weakest in subcallosal frontal cortex, ventral striatum, pallidum, and hippocampus (~0-2%). Some regions showed linear effects of age while many showed curvilinear effects such that binding potential declined from young adulthood to middle age and then was relatively stable until old age. Overall, these data indicate that the rate and pattern of decline in D2 receptor availability is regionally heterogeneous. However, the differences across regions were challenging to organize within existing theories of brain development and did not show the same pattern of regional change that has been observed in gray matter volume, white matter integrity, or cognitive performance. This variation suggests that existing theories of adult brain development may need to be modified to better account for the spatial dynamics of dopaminergic system aging.


Subject(s)
Aging/metabolism , Brain/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Models, Statistical , Positron-Emission Tomography , Young Adult
12.
Bioorg Med Chem ; 27(10): 2100-2111, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30981605

ABSTRACT

Dopamine D1/D2 receptors are important targets for drug discovery in the treatment of central nervous system diseases. To discover new and potential D1/D2 ligands, 17 derivatives of tetrahydroprotoberberine (THPB) with various substituents were prepared by chemical synthesis or microbial transformation using Streptomyces griseus ATCC 13273. Their functional activities on D1 and D2 receptors were determined by cAMP assay and calcium flux assay. Seven compounds showed high activity on D1/D2 receptor with low IC50 values less than 1 µM. Especially, top compound 5 showed strong antagonistic activity on both D1 and D2 receptor with an IC50 of 0.391 and 0.0757 µM, respectively. Five compounds displayed selective antagonistic activity on D1 and D2 receptor. The SAR studies revealed that (1) the hydroxyl group at C-9 position plays an important role in keeping a good activity and small or fewer substituents on ring D of THPBs may also stimulate their effects, (2) the absence of substituents at C-9 position tends to be more selective for D2 receptor, and (3) hydroxyl substitution at C-2 position and the substitution at C-9 position may facilitate the conversion of D1 receptor from antagonist to agonist. Molecular docking simulations found that Asp 103/Asp 114, Ser 107/Cys 118, and Trp 285/ Trp 386 of D1/ D2 receptors are the key residues, which have strong interactions with the active D1/D2 compounds and may influence their functional profiles.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemistry , Ligands , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D2/chemistry , Animals , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Dopamine Agonists/chemistry , Dopamine Agonists/metabolism , Dopamine D2 Receptor Antagonists/chemistry , Dopamine D2 Receptor Antagonists/metabolism , Heterocyclic Compounds, 4 or More Rings/metabolism , Molecular Conformation , Molecular Docking Simulation , Protein Structure, Tertiary , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Streptomyces griseus/chemistry , Streptomyces griseus/metabolism , Structure-Activity Relationship
13.
Bull Exp Biol Med ; 168(2): 193-198, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31776959

ABSTRACT

Stimulation of the serotoninergic system (5-hydroxytryptophan, 50 mg/kg; fluoxetine, 3 mg/kg) induced a significant increase in HR and a reduction in the amplitude of all waves of the heart rhythm variability. Stimulation of the dopaminergic system (L-DOPA and amantadine, 20 mg/kg each) resulted in a moderate increase in HR and amplitudes of low-frequency (LF) and very-low-frequency (VLF) waves of the heart rhythm variability. Successive blockade of nicotinic (hexamethonium, 7 mg/kg) and muscarinic cholinergic receptors (atropine, 1 mg/kg) leads to a significant decrease in the variability of cardiointervals (almost to complete levelling) both under control conditions and after stimulation of the neurotransmitter systems. Serotonin receptor blockade (promethazine, 2 mg/kg) did not affect HR, but reduced the amplitude of LF- and VLF-waves. Under conditions of serotoninergic system stimulation, the blockade of serotonin receptors was followed by a significant HR acceleration without changes in heart rhythm variability; blockade of dopamine receptors (sulpiride, 1 mg/kg) induced HR acceleration and increase in the amplitude of LF- and VLF-waves; blockade of dopamine receptors under conditions of dopamine system stimulation was followed by a significant increase in HR and a decrease in the amplitude of all waves of the heart rhythm variability. It can be hypothesized that serotonin- and dopaminergic systems affect the heart rhythm via cardiomyocyte receptors and via modulation of activity of the adrenergic and cholinergic systems. The effects of serotonin- and dopaminergic systems can be considered as synergic in the CNS, and antagonistic at the periphery.


Subject(s)
Dopaminergic Neurons/physiology , Heart Rate/drug effects , Neurotransmitter Agents/pharmacology , Receptors, Neurotransmitter/drug effects , Serotonergic Neurons/physiology , Animals , Choline/antagonists & inhibitors , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dopaminergic Neurons/drug effects , Heart Rate/physiology , Male , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Rats , Receptors, Dopamine/metabolism , Receptors, Muscarinic/metabolism , Receptors, Serotonin/metabolism , Serotonergic Neurons/drug effects , Serotonin/metabolism , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology
14.
J Neurosci ; 37(46): 11166-11180, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29030431

ABSTRACT

Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivoSIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is also minimal in the shell in part due to elevated acetylcholinesterase activity. This distinctive modulation of DA transmission in the shell may have functional implications in the acquisition of reward-motivated behaviors and reward seeking.


Subject(s)
Dopamine/metabolism , Nucleus Accumbens/metabolism , Receptors, Dopamine/physiology , Receptors, Nicotinic/physiology , Animals , Cholinergic Antagonists/pharmacology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nucleus Accumbens/drug effects , Organ Culture Techniques
15.
J Physiol ; 596(15): 3101-3117, 2018 08.
Article in English | MEDLINE | ID: mdl-28801916

ABSTRACT

KEY POINTS: Adenosine and dopamine (DA) are neuromodulators in the carotid body (CB) chemoafferent pathway, but their mechanisms of action are incompletely understood. Using functional co-cultures of rat CB chemoreceptor (type I) cells and sensory petrosal neurons (PNs), we show that adenosine enhanced a hyperpolarization-activated cation current Ih in chemosensory PNs via A2a receptors, whereas DA had the opposite effect via D2 receptors. Adenosine caused a depolarizing shift in the Ih activation curve and increased firing frequency, whereas DA caused a hyperpolarizing shift in the curve and decreased firing frequency. Acute hypoxia and isohydric hypercapnia depolarized type I cells concomitant with increased excitation of adjacent PNs; the A2a receptor blocker SCH58261 inhibited both type I and PN responses during hypoxia, but only the PN response during isohydric hypercapnia. We propose that adenosine and DA control firing frequency in chemosensory PNs via their opposing actions on Ih . ABSTRACT: Adenosine and dopamine (DA) act as neurotransmitters or neuromodulators at the carotid body (CB) chemosensory synapse, but their mechanisms of action are not fully understood. Using a functional co-culture model of rat CB chemoreceptor (type I) cell clusters and juxtaposed afferent petrosal neurons (PNs), we tested the hypothesis that adenosine and DA act postsynaptically to modulate a hyperpolarization-activated, cyclic nucleotide-gated (HCN) cation current (Ih ). In whole-cell recordings from hypoxia-responsive PNs, cAMP mimetics enhanced Ih whereas the HCN blocker ZD7288 (2 µm) reversibly inhibited Ih . Adenosine caused a potentiation of Ih (EC50 ∼ 35 nm) that was sensitive to the A2a blocker SCH58261 (5 nm), and an ∼16 mV depolarizing shift in V½ for voltage dependence of Ih activation. By contrast, DA (10 µm) caused an inhibition of Ih that was sensitive to the D2 blocker sulpiride (1-10 µm), and an ∼11 mV hyperpolarizing shift in V½ . Sulpiride potentiated Ih in neurons adjacent to, but not distant from, type I cell clusters. DA also decreased PN action potential frequency whereas adenosine had the opposite effect. During simultaneous paired recordings, SCH58261 inhibited both the presynaptic hypoxia-induced receptor potential in type I cells and the postsynaptic PN response. By contrast, SCH58261 inhibited only the postsynaptic PN response induced by isohydric hypercapnia. Confocal immunofluorescence confirmed the localization of HCN4 subunits in tyrosine hydroxylase-positive chemoafferent neurons in tissue sections of rat petrosal ganglia. These data suggest that adenosine and DA, acting through A2a and D2 receptors respectively, regulate PN excitability via their opposing actions on Ih .


Subject(s)
Adenosine/pharmacology , Dopamine/pharmacology , Neurons/drug effects , Animals , Cells, Cultured , Coculture Techniques , Geniculate Ganglion/cytology , Geniculate Ganglion/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Neurons/physiology , Potassium Channels/metabolism , Rats, Wistar
16.
J Biol Chem ; 292(2): 435-445, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27920206

ABSTRACT

Lung carcinoma is the leading cause of cancer-related death worldwide, and among this cancer, non-small cell lung carcinoma (NSCLC) comprises the majority of cases. Furthermore, recurrence and metastasis of NSCLC correlate well with CD133+ve tumor cells, a small population of tumor cells that have been designated as cancer stem cells (CSC). We have demonstrated for the first time high expression of D2 dopamine (DA) receptors in CD133+ve adenocarcinoma NSCLC cells. Also, activation of D2 DA receptors in these cells significantly inhibited their proliferation, clonogenic ability, and invasiveness by suppressing extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT, as well as down-regulation of octamer-binding transcription factor 4 (Oct-4) expression and matrix metalloproteinase-9 (MMP-9) secretion by these cells. These results are of significance as D2 DA agonists that are already in clinical use for treatment of other diseases may be useful in combination with conventional chemotherapy and radiotherapy for better management of NSCLC patients by targeting both tumor cells and stem cell compartments in the tumor mass.


Subject(s)
AC133 Antigen , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Dopamine D2/biosynthesis , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Heterografts , Humans , Lung Neoplasms/pathology , MAP Kinase Signaling System , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplastic Stem Cells/pathology , Octamer Transcription Factor-3/metabolism
17.
Metab Brain Dis ; 33(3): 893-906, 2018 06.
Article in English | MEDLINE | ID: mdl-29470766

ABSTRACT

Previous studies have demonstrated that repeated psychostimulant administration produces behavioural sensitization and cognitive tolerance. Brain dopaminergic system and the involvement of dopamine D2-receptors are considered to be important in psychostimulant-induced sensitization. Study designed to compared the motor activity by using familiar and novel enviroments and cognitive effects by water maze and passive avoidance test after long term administration of methylphenidate(at the dose 0.6 mg/kg/day, 2.5 mg/kg/day and 10 mg/kg/day) and modafinil (50 mg/kg/day, 64 mg/kg/day and 75 mg/kg/day) in rats. The effects of challenge dose of haloperidol (at the dose of 1 mg/kg i.p.) has monitored to visualize any subsensitization or supersensitization of D2 receptors. We found that motor activity and cognitive performance was increased in all doses and sensitization effect was more pronounced after 13 days of drug administration were greater at high than low and medium doses.Challenge dose of haloperidol attenuate motor activity in familiar and novel environment and impaired cognition in water maze and passive avoidance test in all treated rats. The effect of Haloperidol in high dose treated rats were however somewhat greater than low and medium dose treated rats following methylphenidate and modafinil administration. Increased response of haloperidol in methylphenidate treated rats can be explained in term of supersensitization of D2 receptors which is greater in high dose treated rats. The results show that the role of D2 receptors to develop side effects such as behavioural sensitization and cognitive tolerance by the long term administration of psychostimulants is of sufficient importance and helpful in understanding the mechanisms underlying the undesirable effects of psychostimulants.


Subject(s)
Behavior, Animal/drug effects , Haloperidol/pharmacology , Methylphenidate/pharmacology , Modafinil/pharmacology , Nootropic Agents/pharmacology , Animals , Antipsychotic Agents/pharmacology , Central Nervous System Stimulants/pharmacology , Cognition/drug effects , Learning/drug effects , Male , Motor Activity/drug effects , Rats, Sprague-Dawley
18.
J Labelled Comp Radiopharm ; 61(3): 291-298, 2018 03.
Article in English | MEDLINE | ID: mdl-28857231

ABSTRACT

The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [11 C]raclopride, [18 F]fallypride, and [11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET.


Subject(s)
Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Ligands , Protein Binding , Radiopharmaceuticals/pharmacology
19.
Encephale ; 44(6): 558-564, 2018 Dec.
Article in French | MEDLINE | ID: mdl-30466778

ABSTRACT

Aripiprazole may be viewed as the prototype of third-generation antipsychotics. This concept is based on the notion of D2 partial agonism, whereas all molecules of first-and second generation were D2 antagonists. After reviewing the basic pharmacological notions linked to such concepts, the mechanisms of action of these molecules are addressed, with a particular focus on functional selectivity and biased ligand. One of the essential pharmacological properties of D2 agonists, and particularity aripiprazole, is their ability to not induce D2 supersensitivity as well as to reverse this supersensitivity when it has been induced by D2 antagonists. In clinical practice, this impacts the choice of treatment in first episode psychosis as well as in refractory schizophrenia. Animal research shows that D2 supersensitivity could contribute to worsen addictive trends. The pharmacokinetic incidence of D2 supersensitivity tends to favour the long-acting forms of partial agonists. The notion of partial agonism could finally lead to design fourth-generation antipsychotics, on the basis on research focusing on functional selectivity.


Subject(s)
Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Dopamine Agonists/pharmacology , Dopamine Agonists/therapeutic use , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Animals , Humans
20.
Neuroimage ; 158: 12-17, 2017 09.
Article in English | MEDLINE | ID: mdl-28655632

ABSTRACT

The central dopaminergic system is of major importance in the pathophysiology of Parkinson's disease, schizophrenia, and other neuropsychiatric disorders. In the present study, the normative data of dopaminergic neurotransmission functions in the midbrain, consisting of neuromelanin, dopamine synthesis, dopamine transporters and dopamine D2 receptors, were constructed using magnetic resonance (MR) imaging and positron emission tomography (PET). PET studies with L-[ß-11C]DOPA, [18F]FE-PE2I and [11C]FLB457 and MRI studies were performed on healthy young men. Neuromelanin accumulation measured by MRI was compared with dopaminergic functions, dopamine synthesis capacity, dopamine transporter binding and dopamine D2 receptor binding measured by PET in the substantia nigra. Although neuromelanin is synthesized from DOPA and dopamine in dopaminergic neurons, neuromelanin accumulation did not correlate with dopamine synthesis capacity in young healthy subjects. The role of dopamine transporters in the substantia nigra is considered to be the transport of dopamine into neurons, and therefore dopamine transporter binding might be related to neuromelanin accumulation; however, no significant correlation was observed between them. A positive correlation between dopamine D2 receptor binding and neuromelanin accumulation was observed, indicating a feedback mechanism by dopaminergic autoreceptors. Discrepancies in regional distribution between neuromelanin accumulation and dopamine synthesis capacity, dopamine transporter binding or dopamine D2 receptor binding were observed in the substantia nigra.


Subject(s)
Melanins/metabolism , Substantia Nigra/physiology , Synaptic Transmission/physiology , Adult , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Receptors, Dopamine D2/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL