Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.350
Filter
Add more filters

Coleção CLAP
Publication year range
1.
Cell ; 187(3): 676-691.e16, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306983

ABSTRACT

Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.


Subject(s)
Movement , Neurons , Brain/physiology , Movement/physiology , Neurons/physiology , Thalamus/physiology , Memory
2.
Cell ; 187(6): 1476-1489.e21, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38401541

ABSTRACT

Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.


Subject(s)
Attention , Decision Making , Learning , Parietal Lobe , Reward , Animals , Haplorhini
3.
Proc Natl Acad Sci U S A ; 121(18): e2314428121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652743

ABSTRACT

This paper studies the effect of air pollution on voting outcomes. We use data from 60 federal and state elections in Germany from 2000 to 2018 and exploit plausibly exogenous fluctuations in ambient air pollution within counties across election dates. Higher air pollution on election day shifts votes away from incumbent parties and toward opposition parties. An increase in the concentration of particulate matter (PM10) by 10 [Formula: see text]g/m[Formula: see text]-around two within-county SDs-reduces the vote share of incumbent parties by two percentage points, which is equivalent to 4% of the mean vote share. We generalize these findings by documenting similar effects with data from a weekly opinion poll and a large-scale panel survey. We provide further evidence that poor air quality leads to more negative emotions such as anger, worry, and unhappiness, which, in turn, may reduce the support for the political status quo. Overall, these results suggest that poor air quality affects decision-making in the population at large, including consequential political decisions.

4.
Proc Natl Acad Sci U S A ; 121(22): e2322617121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771873

ABSTRACT

Optimal decision-making balances exploration for new information against exploitation of known rewards, a process mediated by the locus coeruleus and its norepinephrine projections. We predicted that an exploitation-bias that emerges in older adulthood would be associated with lower microstructural integrity of the locus coeruleus. Leveraging in vivo histological methods from quantitative MRI-magnetic transfer saturation-we provide evidence that older age is associated with lower locus coeruleus integrity. Critically, we demonstrate that an exploitation bias in older adulthood, assessed with a foraging task, is sensitive and specific to lower locus coeruleus integrity. Because the locus coeruleus is uniquely vulnerable to Alzheimer's disease pathology, our findings suggest that aging, and a presymptomatic trajectory of Alzheimer's related decline, may fundamentally alter decision-making abilities in later life.


Subject(s)
Aging , Decision Making , Locus Coeruleus , Magnetic Resonance Imaging , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/physiology , Humans , Decision Making/physiology , Aged , Male , Female , Aging/physiology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Middle Aged , Aged, 80 and over , Reward
5.
Proc Natl Acad Sci U S A ; 121(16): e2307982121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593084

ABSTRACT

A major aspiration of investors is to better forecast stock performance. Interestingly, emerging "neuroforecasting" research suggests that brain activity associated with anticipatory reward relates to market behavior and population-wide preferences, including stock price dynamics. In this study, we extend these findings to professional investors processing comprehensive real-world information on stock investment options while making predictions of long-term stock performance. Using functional MRI, we sampled investors' neural responses to investment cases and assessed whether these responses relate to future performance on the stock market. We found that our sample of investors could not successfully predict future market performance of the investment cases, confirming that stated preferences do not predict the market. Stock metrics of the investment cases were not predictive of future stock performance either. However, as investors processed case information, nucleus accumbens (NAcc) activity was higher for investment cases that ended up overperforming in the market. These findings remained robust, even when controlling for stock metrics and investors' predictions made in the scanner. Cross-validated prediction analysis indicated that NAcc activity could significantly predict future stock performance out-of-sample above chance. Our findings resonate with recent neuroforecasting studies and suggest that brain activity of professional investors may help in forecasting future stock performance.


Subject(s)
Nervous System Physiological Phenomena , Nucleus Accumbens , Humans , Forecasting , Investments
6.
Proc Natl Acad Sci U S A ; 121(14): e2318521121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38551832

ABSTRACT

During foraging behavior, action values are persistently encoded in neural activity and updated depending on the history of choice outcomes. What is the neural mechanism for action value maintenance and updating? Here, we explore two contrasting network models: synaptic learning of action value versus neural integration. We show that both models can reproduce extant experimental data, but they yield distinct predictions about the underlying biological neural circuits. In particular, the neural integrator model but not the synaptic model requires that reward signals are mediated by neural pools selective for action alternatives and their projections are aligned with linear attractor axes in the valuation system. We demonstrate experimentally observable neural dynamical signatures and feasible perturbations to differentiate the two contrasting scenarios, suggesting that the synaptic model is a more robust candidate mechanism. Overall, this work provides a modeling framework to guide future experimental research on probabilistic foraging.


Subject(s)
Choice Behavior , Reward , Brain , Learning , Neuronal Plasticity , Decision Making
7.
Proc Natl Acad Sci U S A ; 121(22): e2316459121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781215

ABSTRACT

Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.


Subject(s)
Androgens , Oryzias , Receptors, Androgen , Sexual Behavior, Animal , Signal Transduction , Animals , Male , Oryzias/metabolism , Oryzias/physiology , Sexual Behavior, Animal/physiology , Female , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Androgens/metabolism , Aggression/physiology
8.
Proc Natl Acad Sci U S A ; 121(33): e2401331121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102546

ABSTRACT

In the pursuit of mental and physical health, effective pain management stands as a cornerstone. Here, we examine a potential sex bias in pain management. Leveraging insights from psychological research showing that females' pain is stereotypically judged as less intense than males' pain, we hypothesize that there may be tangible differences in pain management decisions based on patients' sex. Our investigation spans emergency department (ED) datasets from two countries, including discharge notes of patients arriving with pain complaints (N = 21,851). Across these datasets, a consistent sex disparity emerges. Female patients are less likely to be prescribed pain-relief medications compared to males, and this disparity persists even after adjusting for patients' reported pain scores and numerous patient, physician, and ED variables. This disparity extends across medical practitioners, with both male and female physicians prescribing less pain-relief medications to females than to males. Additional analyses reveal that female patients' pain scores are 10% less likely to be recorded by nurses, and female patients spend an additional 30 min in the ED compared to male patients. A controlled experiment employing clinical vignettes reinforces our hypothesis, showing that nurses (N = 109) judge pain of female patients to be less intense than that of males. We argue that the findings reflect an undertreatment of female patients' pain. We discuss the troubling societal and medical implications of females' pain being overlooked and call for policy interventions to ensure equal pain treatment.


Subject(s)
Pain Management , Sexism , Humans , Female , Male , Pain Management/methods , Adult , Emergency Service, Hospital/statistics & numerical data , Middle Aged , Pain/drug therapy , Sex Factors , Decision Making , Practice Patterns, Physicians'/statistics & numerical data , Physicians/psychology
9.
Proc Natl Acad Sci U S A ; 121(33): e2408731121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39106305

ABSTRACT

AI is now an integral part of everyday decision-making, assisting us in both routine and high-stakes choices. These AI models often learn from human behavior, assuming this training data is unbiased. However, we report five studies that show that people change their behavior to instill desired routines into AI, indicating this assumption is invalid. To show this behavioral shift, we recruited participants to play the ultimatum game, where they were asked to decide whether to accept proposals of monetary splits made by either other human participants or AI. Some participants were informed their choices would be used to train an AI proposer, while others did not receive this information. Across five experiments, we found that people modified their behavior to train AI to make fair proposals, regardless of whether they could directly benefit from the AI training. After completing this task once, participants were invited to complete this task again but were told their responses would not be used for AI training. People who had previously trained AI persisted with this behavioral shift, indicating that the new behavioral routine had become habitual. This work demonstrates that using human behavior as training data has more consequences than previously thought since it can engender AI to perpetuate human biases and cause people to form habits that deviate from how they would normally act. Therefore, this work underscores a problem for AI algorithms that aim to learn unbiased representations of human preferences.


Subject(s)
Artificial Intelligence , Decision Making , Humans , Decision Making/physiology , Male , Female , Adult , Choice Behavior/physiology , Young Adult
10.
Proc Natl Acad Sci U S A ; 121(31): e2322869121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39047043

ABSTRACT

Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we report an exploratory investigation into this with chronic intracranial recordings from the prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12 to 20 Hz) oscillations tracking effort on a single-trial basis and PFC theta (4 to 7 Hz) signaling previous trial reward, with no effects of net subjective value. Stimulation of PFC increased overall acceptance of offers and sensitivity to reward while decreasing the impact of effort on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, supports a causal role of PFC for such choices, and seeds hypotheses for future studies.


Subject(s)
Basal Ganglia , Decision Making , Parkinson Disease , Prefrontal Cortex , Reward , Theta Rhythm , Humans , Prefrontal Cortex/physiology , Prefrontal Cortex/physiopathology , Decision Making/physiology , Basal Ganglia/physiology , Basal Ganglia/physiopathology , Male , Theta Rhythm/physiology , Female , Parkinson Disease/physiopathology , Middle Aged , Beta Rhythm/physiology , Aged
11.
Proc Natl Acad Sci U S A ; 121(5): e2312898121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38277436

ABSTRACT

Perceptual decision-making is highly dependent on the momentary arousal state of the brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The textbook relationship between momentary arousal and task performance is captured by an inverted U-shape, as put forward in the Yerkes-Dodson law. This law suggests optimal performance at moderate levels of arousal and impaired performance at low or high arousal levels. However, despite its popularity, the evidence for this relationship in humans is mixed at best. Here, we use pupil-indexed arousal and performance data from various perceptual decision-making tasks to provide converging evidence for the inverted U-shaped relationship between spontaneous arousal fluctuations and performance across different decision types (discrimination, detection) and sensory modalities (visual, auditory). To further understand this relationship, we built a neurobiologically plausible mechanistic model and show that it is possible to reproduce our findings by incorporating two types of interneurons that are both modulated by an arousal signal. The model architecture produces two dynamical regimes under the influence of arousal: one regime in which performance increases with arousal and another regime in which performance decreases with arousal, together forming an inverted U-shaped arousal-performance relationship. We conclude that the inverted U-shaped arousal-performance relationship is a general and robust property of sensory processing. It might be brought about by the influence of arousal on two types of interneurons that together act as a disinhibitory pathway for the neural populations that encode the available sensory evidence used for the decision.


Subject(s)
Arousal , Brain , Humans , Arousal/physiology , Task Performance and Analysis , Pupil/physiology , Sensation
12.
Proc Natl Acad Sci U S A ; 121(12): e2317751121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38489382

ABSTRACT

Do people's attitudes toward the (a)symmetry of an outcome distribution affect their choices? Financial investors seek return distributions with frequent small returns but few large ones, consistent with leading models of choice in economics and finance that assume right-skewed preferences. In contrast, many experiments in which decision-makers learn about choice options through experience find the opposite choice tendency, in favor of left-skewed options. To reconcile these seemingly contradicting findings, the present work investigates the effect of skewness on choices in experience-based decisions. Across seven studies, we show that apparent preferences for left-skewed outcome distributions are a consequence of those distributions having a higher value in most direct outcome comparisons, a "frequent-winner effect." By manipulating which option is the frequent winner, we show that choice tendencies for frequent winners can be obtained even with identical outcome distributions. Moreover, systematic choice tendencies in favor of right- or left-skewed options can be obtained by manipulating which option is experienced as the frequent winner. We also find evidence for an intrinsic preference for right-skewed outcome distributions. The frequent-winner phenomenon is robust to variations in outcome distributions and experimental paradigms. These findings are confirmed by computational analyses in which a reinforcement-learning model capturing frequent winning and intrinsic skewness preferences provides the best account of the data. Our work reconciles conflicting findings of aggregated behavior in financial markets and experiments and highlights the need for theories of decision-making sensitive to joint outcome distributions of the available options.


Subject(s)
Choice Behavior , Decision Making , Humans , Learning , Reinforcement, Psychology
13.
Proc Natl Acad Sci U S A ; 121(18): e2314224121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648482

ABSTRACT

Making healthy dietary choices is essential for keeping weight within a normal range. Yet many people struggle with dietary self-control despite good intentions. What distinguishes neural processing in those who succeed or fail to implement healthy eating goals? Does this vary by weight status? To examine these questions, we utilized an analytical framework of gradients that characterize systematic spatial patterns of large-scale neural activity, which have the advantage of considering the entire suite of processes subserving self-control and potential regulatory tactics at the whole-brain level. Using an established laboratory food task capturing brain responses in natural and regulatory conditions (N = 123), we demonstrate that regulatory changes of dietary brain states in the gradient space predict individual differences in dietary success. Better regulators required smaller shifts in brain states to achieve larger goal-consistent changes in dietary behaviors, pointing toward efficient network organization. This pattern was most pronounced in individuals with lower weight status (low-BMI, body mass index) but absent in high-BMI individuals. Consistent with prior work, regulatory goals increased activity in frontoparietal brain circuits. However, this shift in brain states alone did not predict variance in dietary success. Instead, regulatory success emerged from combined changes along multiple gradients, showcasing the interplay of different large-scale brain networks subserving dietary control and possible regulatory strategies. Our results provide insights into how the brain might solve the problem of dietary control: Dietary success may be easier for people who adopt modes of large-scale brain activation that do not require significant reconfigurations across contexts and goals.


Subject(s)
Body Mass Index , Humans , Male , Female , Adult , Young Adult , Feeding Behavior/physiology , Magnetic Resonance Imaging , Brain/physiology , Self-Control , Cerebral Cortex/physiology , Diet
14.
J Neurosci ; 44(11)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38253532

ABSTRACT

Disparities in socioeconomic status (SES) lead to unequal access to financial and social support. These disparities are believed to influence reward sensitivity, which in turn are hypothesized to shape how individuals respond to and pursue rewarding experiences. However, surprisingly little is known about how SES shapes reward sensitivity in adolescence. Here, we investigated how SES influenced adolescent responses to reward, both in behavior and the striatum-a brain region that is highly sensitive to reward. We examined responses to both immediate reward (tracked by phasic dopamine) and average reward rate fluctuations (tracked by tonic dopamine) as these distinct signals independently shape learning and motivation. Adolescents (n = 114; 12-14 years; 58 female) performed a gambling task during functional magnetic resonance imaging. We manipulated trial-by-trial reward and loss outcomes, leading to fluctuations between periods of reward scarcity and abundance. We found that a higher reward rate hastened behavioral responses, and increased guess switching, consistent with the idea that reward abundance increases response vigor and exploration. Moreover, immediate reward reinforced previously rewarding decisions (win-stay, lose-switch) and slowed responses (postreward pausing), particularly when rewards were scarce. Notably, lower-SES adolescents slowed down less after rare rewards than higher-SES adolescents. In the brain, striatal activations covaried with the average reward rate across time and showed greater activations during rewarding blocks. However, these striatal effects were diminished in lower-SES adolescents. These findings show that the striatum tracks reward rate fluctuations, which shape decisions and motivation. Moreover, lower SES appears to attenuate reward-driven behavioral and brain responses.


Subject(s)
Corpus Striatum , Dopamine , Adolescent , Humans , Female , Dopamine/physiology , Corpus Striatum/physiology , Motivation , Learning/physiology , Reward , Magnetic Resonance Imaging
15.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38499360

ABSTRACT

Social experiences carry tremendous weight in our decision-making, even when social partners are not present. To determine mechanisms, we trained female mice to respond for two food reinforcers. Then, one food was paired with a novel conspecific. Mice later favored the conspecific-associated food, even in the absence of the conspecific. Chemogenetically silencing projections from the prelimbic subregion (PL) of the medial prefrontal cortex to the basolateral amygdala (BLA) obstructed this preference while leaving social discrimination intact, indicating that these projections are necessary for socially driven choice. Further, mice that performed the task had greater densities of dendritic spines on excitatory BLA neurons relative to mice that did not. We next induced chemogenetic receptors in cells active during social interactions-when mice were encoding information that impacted later behavior. BLA neurons stimulated by social experience were necessary for mice to later favor rewards associated with social conspecifics but not make other choices. This profile contrasted with that of PL neurons stimulated by social experience, which were necessary for choice behavior in social and nonsocial contexts alike. The PL may convey a generalized signal allowing mice to favor particular rewards, while units in the BLA process more specialized information, together supporting choice motivated by social information.


Subject(s)
Basolateral Nuclear Complex , Prefrontal Cortex , Female , Mice , Animals , Prefrontal Cortex/physiology , Amygdala/physiology , Neurons/physiology , Basolateral Nuclear Complex/physiology
16.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38508713

ABSTRACT

Economic choice theories usually assume that humans maximize utility in their choices. However, studies have shown that humans make inconsistent choices, leading to suboptimal behavior, even without context-dependent manipulations. Previous studies showed that activation in value and motor networks are associated with inconsistent choices at the moment of choice. Here, we investigated if the neural predispositions, measured before a choice task, can predict choice inconsistency in a later risky choice task. Using functional connectivity (FC) measures from resting-state functional magnetic resonance imaging (rsfMRI), derived before any choice was made, we aimed to predict subjects' inconsistency levels in a later-performed choice task. We hypothesized that rsfMRI FC measures extracted from value and motor brain areas would predict inconsistency. Forty subjects (21 females) completed a rsfMRI scan before performing a risky choice task. We compared models that were trained on FC that included only hypothesized value and motor regions with models trained on whole-brain FC. We found that both model types significantly predicted inconsistency levels. Moreover, even the whole-brain models relied mostly on FC between value and motor areas. For external validation, we used a neural network pretrained on FC matrices of 37,000 subjects and fine-tuned it on our data and again showed significant predictions. Together, this shows that the tendency for choice inconsistency is predicted by predispositions of the nervous system and that synchrony between the motor and value networks plays a crucial role in this tendency.


Subject(s)
Choice Behavior , Magnetic Resonance Imaging , Humans , Female , Male , Choice Behavior/physiology , Magnetic Resonance Imaging/methods , Adult , Young Adult , Brain/physiology , Brain/diagnostic imaging , Nerve Net/physiology , Nerve Net/diagnostic imaging , Connectome/methods , Brain Mapping/methods , Neural Pathways/physiology , Neural Pathways/diagnostic imaging , Risk-Taking
17.
J Neurosci ; 44(13)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38360748

ABSTRACT

A prominent account of decision-making assumes that information is accumulated until a fixed response threshold is crossed. However, many decisions require weighting of information appropriately against time. Collapsing response thresholds are a mathematically optimal solution to this decision problem. However, our understanding of the neurocomputational mechanisms underlying dynamic response thresholds remains significantly incomplete. To investigate this issue, we used a multistage drift-diffusion model (DDM) and also analyzed EEG ß power lateralization (BPL). The latter served as a neural proxy for decision signals. We analyzed a large dataset (n = 863; 434 females and 429 males) from a speeded flanker task and data from an independent confirmation sample (n = 119; 70 females and 49 males). We showed that a DDM with collapsing decision thresholds, a process wherein the decision boundary reduces over time, captured participants' time-dependent decision policy more accurately than a model with fixed thresholds. Previous research suggests that BPL over motor cortices reflects features of a decision signal and that its peak, coinciding with the motor response, may serve as a neural proxy for the decision threshold. We show that BPL around the response decreased with increasing RTs. Together, our findings offer compelling evidence for the existence of collapsing decision thresholds in decision-making processes.


Subject(s)
Decision Making , Male , Female , Humans , Decision Making/physiology , Reaction Time/physiology
18.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38631914

ABSTRACT

Foraging decisions involve assessing potential risks and prioritizing food sources, which can be challenging when confronted with changing and conflicting circumstances. A crucial aspect of this decision-making process is the ability to actively overcome defensive reactions to threats and focus on achieving specific goals. The ventral pallidum (VP) and basolateral amygdala (BLA) are two brain regions that play key roles in regulating behavior motivated by either rewards or threats. However, it is unclear whether these regions are necessary in decision-making processes involving competing motivational drives during conflict. Our aim was to investigate the requirements of the VP and BLA for foraging choices in conflicts involving overcoming defensive responses. Here, we used a novel foraging task and pharmacological techniques to inactivate either the VP or BLA or to disconnect these brain regions before conducting a conflict test in male rats. Our findings showed that BLA is necessary for making risky choices during conflicts, whereas VP is necessary for invigorating the drive to obtain food, regardless of the presence of conflict. Importantly, our research revealed that the connection between VP and BLA is critical in controlling risky food-seeking choices during conflict situations. This study provides a new perspective on the collaborative function of VP and BLA in driving behavior, aimed at achieving goals in the face of dangers.


Subject(s)
Amygdala , Basal Forebrain , Reward , Animals , Male , Rats , Basal Forebrain/physiology , Amygdala/physiology , Conflict, Psychological , Basolateral Nuclear Complex/physiology , Risk-Taking , Rats, Long-Evans , Feeding Behavior/physiology , Fear/physiology
19.
J Neurosci ; 44(33)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38951037

ABSTRACT

An economic choice entails computing and comparing the values of individual offers. Offer values are represented in the orbitofrontal cortex (OFC)-an area that participates in value comparison-but it is unknown where offer values are computed in the first place. One possibility is that this computation takes place in OFC. Alternatively, offer values might be computed upstream of OFC. For choices between edible goods, a primary candidate is the gustatory region of the anterior insula (gustatory cortex, GC). Here we recorded from the GC of male rhesus monkeys choosing between different juice types. As a population, neurons in GC represented the flavor, the quantity, and the subjective value of the juice chosen by the animal. These variables were represented by distinct groups of cells and with different time courses. Specifically, chosen value signals emerged shortly after offer presentation, while neurons encoding the chosen juice and the chosen quantity peaked after juice delivery. Surprisingly, neurons in GC did not represent individual offer values in a systematic way. In a computational sense, the variables encoded in GC follow the process of value comparison. Thus our results argue against the hypothesis that offer values are computed in GC. At the same time, signals representing the subjective value of the expected reward indicate that responses in GC are not purely sensory. Thus neuronal responses in GC appear consummatory in nature.


Subject(s)
Choice Behavior , Macaca mulatta , Neurons , Animals , Male , Choice Behavior/physiology , Neurons/physiology , Reward
20.
J Neurosci ; 44(33)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38960720

ABSTRACT

The ability to make accurate and timely decisions, such as judging when it is safe to cross the road, is the foundation of adaptive behavior. While the computational and neural processes supporting simple decisions on isolated stimuli have been well characterized, decision-making in the real world often requires integration of discrete sensory events over time and space. Most previous experimental work on perceptual decision-making has focused on tasks that involve only a single, task-relevant source of sensory input. It remains unclear, therefore, how such integrative decisions are regulated computationally. Here we used psychophysics, electroencephalography, and computational modeling to understand how the human brain combines visual motion signals across space in the service of a single, integrated decision. To that purpose, we presented two random-dot kinematograms in the left and the right visual hemifields. Coherent motion signals were shown briefly and concurrently in each location, and healthy adult human participants of both sexes reported the average of the two motion signals. We directly tested competing predictions arising from influential serial and parallel accounts of visual processing. Using a biologically plausible model of motion filtering, we found evidence in favor of parallel integration as the fundamental computational mechanism regulating integrated perceptual decisions.


Subject(s)
Decision Making , Electroencephalography , Motion Perception , Humans , Male , Female , Decision Making/physiology , Motion Perception/physiology , Adult , Electroencephalography/methods , Young Adult , Photic Stimulation/methods , Psychophysics , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL