Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
Add more filters

Publication year range
1.
Ren Fail ; 46(1): 2349133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726999

ABSTRACT

OBJECTIVE:  The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS:  We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS:  All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION:  Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.


Subject(s)
Chloride Channels , Dent Disease , Phosphoric Monoester Hydrolases , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , China/epidemiology , Chloride Channels/genetics , Dent Disease/genetics , Dent Disease/diagnosis , East Asian People , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/diagnosis , Genetic Testing , Glomerulosclerosis, Focal Segmental/genetics , Hypercalciuria/genetics , Kidney/pathology , Mutation , Mutation, Missense , Nephrocalcinosis/genetics , Nephrolithiasis/genetics , Phosphoric Monoester Hydrolases/genetics , Proteinuria/genetics , Retrospective Studies
2.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125679

ABSTRACT

Dent disease-1 (DD-1) is a rare X-linked tubular disorder characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrolithiasis and nephrocalcinosis. This disease is caused by inactivating mutations in the CLCN5 gene which encodes the voltage-gated ClC-5 chloride/proton antiporter. Currently, the treatment of DD-1 is only supportive and focused on delaying the progression of the disease. Here, we generated and characterized a Clcn5 knock-in mouse model that carries a pathogenic CLCN5 variant, c. 1566_1568delTGT; p.Val523del, which has been previously detected in several DD-1 unrelated patients, and presents the main clinical manifestations of DD-1 such as high levels of urinary b2-microglobulin, phosphate and calcium. Mutation p.Val523del causes partial ClC-5 retention in the endoplasmic reticulum. Additionally, we assessed the ability of sodium 4-phenylbutyrate, a small chemical chaperone, to ameliorate DD-1 symptoms in this mouse model. The proposed model would be of significant value in the investigation of the fundamental pathological processes underlying DD-1 and in the development of effective therapeutic strategies for this rare condition.


Subject(s)
Chloride Channels , Disease Models, Animal , Gene Knock-In Techniques , Phenylbutyrates , Proteinuria , Animals , Chloride Channels/genetics , Chloride Channels/metabolism , Mice , Proteinuria/drug therapy , Phenylbutyrates/pharmacology , Phenylbutyrates/therapeutic use , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/drug therapy , Mutation , Male , Humans , Dent Disease/drug therapy , Dent Disease/genetics , Nephrolithiasis
3.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256038

ABSTRACT

Dent disease type 1 is characterized by pathogenic CLCN5 gene variants and impaired receptor-mediated endocytosis in proximal tubules. However, mutation-related abnormalities in proximal tubules have not yet been described. Here, we present three patients with CLCN5 alterations and distinct morphological changes of the apical endocytic-lysosomal apparatus. The proximal tubular ultrastructure was investigated in kidney biopsy samples of three boys genotyped for non-nephrotic proteinuria. Controls: seven patients with nephrotic-range glomerular proteinuria. The genotyping findings revealed an already-known missense mutation in one patient and hitherto undescribed frameshift variants in two patients. Low-molecular-weight proteinuria, focal global glomerulosclerosis, proximal tubular changes, and tubular calcium deposits characterized each case. Three subsets of proximal tubular cells were observed: those without any abnormality, those with aplasia of apical endocytic-lysosomal apparatus and shrinkage of cells, and those with hypoplasia of apical endocytic apparatus, accumulation of proteinaceous substance in dysmorphic lysosomes, and dysmorphic mitochondria. The distribution of subsets varied from patient to patient. In one patient with a frameshift variant, an oxidative stress-like injury of proximal tubular cells and podocytes accompanied the above-mentioned alterations. Focal aplasia/hypoplasia of apical endocytic apparatus and subsequent changes in cytoplasmic organelles characterized proximal tubules in the CLCN5 pathogenic variants.


Subject(s)
Glomerulosclerosis, Focal Segmental , Lysosomes , Male , Humans , Mutation , Frameshift Mutation , Mutation, Missense , Proteinuria
4.
Plant Cell Environ ; 46(8): 2432-2449, 2023 08.
Article in English | MEDLINE | ID: mdl-37170821

ABSTRACT

Maize (Zea mays), a cold-sensitive crop, requires cold tolerance for extending the length of the growing season in temperate climates. However, response curves to different cold temperatures and exposure durations are lacking. We used a meta-analysis approach using data from literature to investigate the effect of cold stress in the maize leaf. We constructed response curves to temperature and exposure durations for 18 key parameters related to leaf growth, photosynthesis, oxidative stress, antioxidants, and the phytohormone ABA. To determine their relevance for cold tolerance, we compared cold tolerant Flint and cold sensitive Dent lines. Treatment temperatures ranged from -20°C to 20°C for cold and from 12°C to 30°C for control and exposure duration from 3 min to 60 days. We found interacting effects of temperature and exposure durations on different response parameters. The strongest difference between Flint and Dent was observed for electrolyte leakage (EL). Our results show that the commonly used 4°C for cold and 25°C for control with medium cold exposure (1-7 days) induces a 50% decrease in shoot dry weight and leaf area and that EL is an easy and reliable indicator for cold tolerance studies.


Subject(s)
Cold-Shock Response , Zea mays , Zea mays/physiology , Cold Temperature , Temperature , Plant Leaves/physiology
5.
Cell Commun Signal ; 21(1): 256, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38049819

ABSTRACT

BACKGROUND: This study aimed to identify an orcl1 mutation in a patient with Dent-2 Disease and investigate the underlying mechanisms. METHODS: The ocrl1 mutation was identified through exome sequencing. Knockdown of orcl1 and overexpression of the orcl1 mutant were performed in HK-2 and MPC5 cells to study its function, while flow cytometry measured reactive oxygen species (ROS), phosphatidylserine levels, and cell apoptosis. Scanning electron microscopy observed crystal adhesion, while transmission electron microscopy examined kidney tissue pathology. Laser scanning confocal microscopy was used to examine endocytosis, and immunohistochemical and immunofluorescence assays detected protein expression. Additionally, podocyte-specific orcl1 knockout mice were generated to investigate the role of orcl1 in vivo. RESULTS: We identified a mutation resulting in the replacement of Histidine with Arginine at position 318 (R318H) in ocrl1 in the proband. orcl1 was widely expressed in the kidney. In vitro experiments showed that knockdown of orcl1 and overexpression of ocrl1 mutant increased ROS, phosphatidylserine exocytosis, crystal adhesion, and cell apoptosis in HK-2 cells. Knockdown of orcl1 in podocytes reduced endocytosis and disrupted the cell cycle while increasing cell migration. In vivo studies in mice showed that conditional deletion of orcl1 in podocytes caused glomerular dysfunction, including proteinuria and fibrosis. CONCLUSION: This study identified an R318H mutation in orcl1 in a patient with Dent-2 Disease. This mutation may contribute to renal injury by promoting ROS production and inducing cell apoptosis in tubular cells, while disrupting endocytosis and the cell cycle, and promoting cell migration of podocytes. Video Abstract.


Subject(s)
Oculocerebrorenal Syndrome , Podocytes , Humans , Animals , Mice , Reactive Oxygen Species/metabolism , Phosphatidylserines/metabolism , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism , Endocytosis , Apoptosis , Cell Cycle
6.
Nephrol Dial Transplant ; 38(6): 1497-1507, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36441012

ABSTRACT

BACKGROUND: Dent's disease type 1 (DD1) is a rare X-linked nephropathy caused by CLCN5 mutations, characterized by proximal tubule dysfunction, including low molecular weight proteinuria (LMWP), hypercalciuria, nephrolithiasis-nephrocalcinosis, progressive chronic kidney disease (CKD) and kidney failure (KF). Current management is symptomatic and does not prevent disease progression. Here we describe the contemporary DD1 picture across Europe to highlight its unmet needs. METHODS: A physician-based anonymous international e-survey supported by several European nephrology networks/societies was conducted. Questions focused on DD1 clinical features, diagnostic procedure and mutation spectra. RESULTS: A total of 207 DD1 male patients were reported; clinical data were available for 163 with confirmed CLCN5 mutations. Proteinuria was the most common manifestation (49.1%). During follow-up, all patients showed LMWP, 66.4% nephrocalcinosis, 44.4% hypercalciuria and 26.4% nephrolithiasis. After 5.5 years, ≈50% of patients presented with renal dysfunction, 20.7% developed CKD stage ≥3 and 11.1% developed KF. At the last visit, hypercalciuria was more frequent in paediatric patients than in adults (73.4% versus 19.0%). Conversely, nephrolithiasis, nephrocalcinosis and renal dysfunction were more prominent in adults. Furthermore, CKD progressed with age. Despite no clear phenotype/genotype correlation, decreased glomerular filtration rate was more frequent in subjects with CLCN5 mutations affecting the pore or CBS domains compared with those with early-stop mutations. CONCLUSIONS: Results from this large DD1 cohort confirm previous findings and provide new insights regarding age and genotype impact on CKD progression. Our data strongly support that DD1 should be considered in male patients with CKD, nephrocalcinosis/hypercalciuria and non-nephrotic proteinuria and provide additional support for new research opportunities.


Subject(s)
Dent Disease , Kidney Calculi , Nephrocalcinosis , Renal Insufficiency, Chronic , Renal Insufficiency , Male , Humans , Nephrocalcinosis/etiology , Nephrocalcinosis/genetics , Dent Disease/diagnosis , Dent Disease/genetics , Hypercalciuria/epidemiology , Hypercalciuria/genetics , Mutation , Europe/epidemiology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/genetics , Proteinuria/genetics , Chloride Channels/genetics
7.
BMC Nephrol ; 24(1): 256, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37641036

ABSTRACT

BACKGROUND: The majority of cases of Dent's disease are caused by pathogenic variants in the CLCN5 gene, which encodes a voltage-gated chloride ion channel (ClC-5), resulting in proximal tubular dysfunction. We present three members of the same family and one unrelated paediatric patient with the same insertion-deletion CLCN5 variant. The identification of these patients and positive familial segregation led to the re-classification of this variant from one of unknown significance to one of likely pathogenicity. CASE PRESENTATION: A 41 year old male presented with end stage kidney failure, proteinuria and haematuria. Whole genome sequencing identified an insertion-deletion variant in CLCN5, resulting in a missense change (c.1744_1745delinsAA p.(Ala582Lys)). His brother and nephew, who both exhibited renal impairment, haematuria, proteinuria, glycosuria and nephrocalcinosis, were found to have the same variant. In addition, genetic testing of an unrelated paediatric patient who presented with proteinuria and hypercalciuria, demonstrated the same variant. CONCLUSIONS: The identification of this novel variant in four individuals with features of Dent's disease, has led to the re-classification of the variant to one of likely pathogenicity. As a result, our patients and any future patients with the same variant can be offered a likely diagnosis, without the need for kidney biopsy, and their family members can be offered genetic screening.


Subject(s)
Dent Disease , Male , Humans , Child , Adult , Dent Disease/diagnosis , Dent Disease/genetics , Hematuria , Chlorides , Family , Proteinuria
8.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674829

ABSTRACT

Dent disease (DD1) is a rare tubulopathy caused by mutations in the CLCN5 gene. Glomerulosclerosis was recently reported in DD1 patients and ClC-5 protein was shown to be expressed in human podocytes. Nephrin and actin cytoskeleton play a key role for podocyte functions and podocyte endocytosis seems to be crucial for slit diaphragm regulation. The aim of this study was to analyze whether ClC-5 loss in podocytes might be a direct consequence of the glomerular damage in DD1 patients. Three DD1 kidney biopsies presenting focal global glomerulosclerosis and four control biopsies were analyzed by immunofluorescence (IF) for nephrin and podocalyxin, and by immunohistochemistry (IHC) for ClC-5. ClC-5 resulted as down-regulated in DD1 vs. control (CTRL) biopsies in both tubular and glomerular compartments (p < 0.01). A significant down-regulation of nephrin (p < 0.01) in DD1 vs. CTRL was demonstrated. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Caspase9) gene editing of CLCN5 in conditionally immortalized human podocytes was used to obtain clones with the stop codon mutation p.(R34Efs*14). We showed that ClC-5 and nephrin expression, analyzed by quantitative Reverse Transcription/Polymerase Chain Reaction (qRT/PCR) and In-Cell Western (ICW), was significantly downregulated in mutant clones compared to the wild type ones. In addition, F-actin staining with fluorescent phalloidin revealed actin derangements. Our results indicate that ClC-5 loss might alter podocyte function either through cytoskeleton disorganization or through impairment of nephrin recycling.


Subject(s)
Chloride Channels , Dent Disease , Glomerulosclerosis, Focal Segmental , Podocytes , Humans , Actins/genetics , Actins/metabolism , Dent Disease/genetics , Dent Disease/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Kidney Glomerulus/metabolism , Podocytes/metabolism , Chloride Channels/metabolism
9.
J Sci Food Agric ; 103(14): 7199-7206, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37347847

ABSTRACT

BACKGROUND: Mycotoxin monitoring in cereal grains has great importance in the food and feed industries. This study evaluated mycotoxin contamination in corns with different endosperm textures in 2 years of cultivation. Samples of dent, semi-dent, flint and semi-flint corns from field experiments were analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). RESULTS: Occurrences of fumonisins B1 (FB1 ) and B2 (FB2 ) in 2020 were 45.72% (mean 270 µg kg-1 ) and 35.89% (94.97 µg kg-1 ), respectively, and 68.98% (446 µg kg-1 ) and 45.83% (152 µg kg-1 ) in 2021. Occurrence of aflatoxin B1 was 11.96% (0.16 µg kg-1 ) in 2020 and 11.11% (0.13 µg kg-1 ) in 2021. In 2020, deoxynivalenol (DON) and zearalenona (ZEA) presented occurrences of 1.28% and 1.70%, with means of 4.08 and 2.45 µg kg-1 , respectively. In 2021, results were 8.33% (31.00 µg kg-1 ) for DON and 8.79% (4.38 µg kg-1 ) for ZEA. Citrinin, diacetoxyscirpenol and fusarenon-X did not occur in 2020 but presented 1.66%, 0.83%, and 2.50% positive rates in 2021, respectively. In 2020, flint corn presented the lowest concentration of FB1 whereas dent corn presented the highest concentration of FB1 and FB2 (P < 0.05). In 2021, dent corn presented the highest means of FB1 , FB2 and diacetoxyscirpenol (P < 0.05). Dent and semi-dent presented the highest concentration of nivalenol (P < 0.05). CONCLUSION: The endosperm texture influenced mycotoxin contamination in corn grains, especially FB1 and FB2 , which had the highest concentration in dent corn in the 2 years of this study. © 2023 Society of Chemical Industry.


Subject(s)
Callosities , Citrinin , Fumonisins , Mycotoxins , Mycotoxins/analysis , Zea mays/chemistry , Endosperm/chemistry , Tandem Mass Spectrometry/methods , Food Contamination/analysis , Fumonisins/analysis , Citrinin/analysis , Edible Grain/chemistry
10.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 367-378, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35534948

ABSTRACT

The objective of this study was to evaluate the effects of corn hybrid and processing methods on intake and digestibility of nutrients, rumen fermentation and blood metabolites of steers fed no-forage finishing diets. Four ruminally fistulated Nellore castrated steers (502 ± 15 kg initial body weight) were distributed in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement consisting of two corn hybrids (semi-dent and flint) and two processing methods (dry milled and high moisture grain). Interactions of hybrid and processing methods were observed on intake of dry matter (DM), organic matter (OM) and crude protein (CP), as well as on digestibility of DM and CP, rumen pH and ammonia nitrogen (N-NH3 ). There was no interaction between hybrid and processing for the volatile fatty acids (VFA) total, acetate (C2), propionate (C3), isobutyric (iC4) and valeric (nC5) concentrations. VFA total concentration shown an average of 103.4 mmol/L. The C2 and C3 concentrations had no effect of the hybrid or processing with averages of 58.7 mmol/L for C2, and 31.3 mmol/l for C3. There was an effect of the processing method on starch consumption and fecal pH, the highest values were observed in grains with high moisture content. Starch digestibility was 0.89 g/g in dry milled and 0.96 g/g in high moisture corn. The greatest digestibility of starch in high moisture corn, irrespective of the corn hybrid, provided evidence of an increase in the energy supply, which may improve the feed efficiency and growth performance of cattle fed no-roughage finishing diets.


Subject(s)
Animal Feed , Zea mays , Cattle , Animals , Zea mays/metabolism , Animal Feed/analysis , Digestion/physiology , Diet/veterinary , Fatty Acids, Volatile/metabolism , Starch/metabolism , Rumen/metabolism , Fermentation
11.
Adv Gerontol ; 36(1): 83-88, 2023.
Article in English | MEDLINE | ID: mdl-37192359

ABSTRACT

The object of the study was senile people, who sought dental orthopedic care in municipal healthcare institutions of the town of Cheboksary, the Chuvash Republic. The sample size was 1 000 people. The obtained quantitative indicators were subjected to statistical processing using parametric and nonparametric statistical methods. The analysis of mounted orthopedic dent prosthetic structures manufactured and installed in elderly and senile patients shows that the choice of material and method of manufacture is largely determined by such a social factor as the average monthly income. This, in turn, largely depends on income-generating employment and the possibility of obtaining additional financial support from family members in which the patient lives. Social factors have a significant impact on the quality of life in elderly and senile people.


Subject(s)
Aging , Quality of Life , Humans , Aged , Family , Delivery of Health Care , Employment
12.
Sud Med Ekspert ; 66(6): 45-48, 2023.
Article in Russian | MEDLINE | ID: mdl-38093429

ABSTRACT

THE OBJECTIVE: Is to develop a differential approach to determining the severity of harm caused to health in case of depressed skull injuries in infants, depending on their morphological features and the character of required treatment. The material included data from literature sources on the study of brain injuries in infants, clinical guidelines, describing the features of clinical picture and diagnosis of depressed skull fractures in infants and legal and regulatory framework of forensic medical evaluation of harm caused to health in injury. The following methods of research were used: logical-analytical, logical-synthetic (generalization), comparative, system-analytical (analysis of relations between facts) and radiological method. An algorithm for determining the severity of harm caused to health in depressed skull deformations by «ping-pong¼ type in an infant is proposed for discussion. The algorithm is based on the data from injury imaging techniques, including X-ray computed tomography, takes into account the clinical picture and the availability of indications for surgical treatment, and will allow to objectively assess the severity of harm caused to health in such cases.


Subject(s)
Fractures, Bone , Skull Fracture, Depressed , Skull Fractures , Infant , Humans , Skull Fracture, Depressed/etiology , Skull Fracture, Depressed/diagnostic imaging , Skull Fracture, Depressed/surgery , Skull/diagnostic imaging , Head , Radiography
13.
Nephrol Dial Transplant ; 37(2): 262-270, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34586410

ABSTRACT

BACKGROUND: Although Lowe syndrome and Dent disease-2 are caused by Oculocerebrorenal syndrome of Lowe (OCRL) mutations, their clinical severities differ substantially and their molecular mechanisms remain unclear. Truncating mutations in OCRL exons 1-7 lead to Dent disease-2, whereas those in exons 8-24 lead to Lowe syndrome. Herein we identified the mechanism underlying the action of novel OCRL protein isoforms. METHODS: Messenger RNA samples extracted from cultured urine-derived cells from a healthy control and a Dent disease-2 patient were examined to detect the 5' end of the OCRL isoform. For protein expression and functional analysis, vectors containing the full-length OCRL transcripts, the isoform transcripts and transcripts with truncating mutations detected in Lowe syndrome and Dent disease-2 patients were transfected into HeLa cells. RESULTS: We successfully cloned the novel isoform transcripts from OCRL exons 6-24, including the translation-initiation codons present in exon 8. In vitro protein-expression analysis detected proteins of two different sizes (105 and 80 kDa) translated from full-length OCRL, whereas only one protein (80 kDa) was found from the isoform and Dent disease-2 variants. No protein expression was observed for the Lowe syndrome variants. The isoform enzyme activity was equivalent to that of full-length OCRL; the Dent disease-2 variants retained >50% enzyme activity, whereas the Lowe syndrome variants retained <20% activity. CONCLUSIONS: We elucidated the molecular mechanism underlying the two different phenotypes in OCRL-related diseases; the functional OCRL isoform translated starting at exon 8 was associated with this mechanism.


Subject(s)
Dent Disease , Oculocerebrorenal Syndrome , Phosphoric Monoester Hydrolases , Dent Disease/diagnosis , Dent Disease/genetics , HeLa Cells , Humans , Mutation/genetics , Oculocerebrorenal Syndrome/diagnosis , Oculocerebrorenal Syndrome/genetics , Phenotype , Phosphoric Monoester Hydrolases/genetics , Protein Isoforms/genetics
14.
J Pathol ; 255(4): 362-373, 2021 12.
Article in English | MEDLINE | ID: mdl-34370295

ABSTRACT

Urinary fatty acid binding protein 1 (FABP1, also known as liver-type FABP) has been implicated as a biomarker of acute kidney injury (AKI) in humans. However, the precise biological mechanisms underlying its elevation remain elusive. Here, we show that urinary FABP1 primarily reflects impaired protein reabsorption in proximal tubule epithelial cells (PTECs). Bilateral nephrectomy resulted in a marked increase in serum FABP1 levels, suggesting that the kidney is an essential organ for removing serum FABP1. Injected recombinant FABP1 was filtered through the glomeruli and robustly reabsorbed via the apical membrane of PTECs. Urinary FABP1 was significantly elevated in mice devoid of megalin, a giant endocytic receptor for protein reabsorption. Elevation of urinary FABP1 was also observed in patients with Dent disease, a rare genetic disease characterized by defective megalin function in PTECs. Urinary FABP1 levels were exponentially increased following acetaminophen overdose, with both nephrotoxicity and hepatotoxicity observed. FABP1-deficient mice with liver-specific overexpression of FABP1 showed a massive increase in urinary FABP1 levels upon acetaminophen injection, indicating that urinary FABP1 is liver-derived. Lastly, we employed transgenic mice expressing diphtheria toxin receptor (DT-R) either in a hepatocyte- or in a PTEC-specific manner, or both. Upon administration of diphtheria toxin (DT), massive excretion of urinary FABP1 was induced in mice with both kidney and liver injury, while mice with either injury type showed marginal excretion. Collectively, our data demonstrated that intact PTECs have a considerable capacity to reabsorb liver-derived FABP1 through a megalin-mediated mechanism. Thus, urinary FABP1, which is synergistically enhanced by concurrent liver injury, is a biomarker for impaired protein reabsorption in AKI. These findings address the use of urinary FABP1 as a biomarker of histologically injured PTECs that secrete FABP1 into primary urine, and suggest the use of this biomarker to simultaneously monitor impaired tubular reabsorption and liver function. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Acute Kidney Injury , Biomarkers/urine , Fatty Acid-Binding Proteins/urine , Liver Diseases , Animals , Humans , Mice
15.
Pediatr Dev Pathol ; 25(4): 397-403, 2022.
Article in English | MEDLINE | ID: mdl-35100899

ABSTRACT

The study aims to explore the clinicopathological features and whether the nonsense mutations of CLCN5 gene have effect on the renal expression of CLC-5 protein and megalin/cubilin complex in children with Dent-1 disease. The clinicopathological features and genetic examination of three patients with Dent-1 disease were investigated. The expression of CLC-5 and megalin/cubilin complex in renal tissues was detected by using immunohistochemistry method. Urinary albumin, α1-microglobulin, ß2-microglobulin, retinol binding protein, and calcium levels were measured by immunonephelometry. Urinary calcium and low molecular weight proteinuria (LMWP) were enhanced in three patients, and two presented with nephrotic range proteinuria. Focal glomerular obsolescence, minor tubulointerstitial injury, and focal calcification in corticomedullary junction were found in one patient. Nonsense mutations of CLCN5 gene from their mothers were identified in all three patients with Dent-1 disease; however, the expression of CLC-5 protein was not decreased in renal tubular cells. As the receptor complex of albumin and LMWP reabsorption, the expression of megalin/cubilin in the brush border of proximal tubules was decreased in Dent-1 patients. Even if the renal CLC-5 protein is expressed normally, the reduced expression of megalin/cubilin in the brush border of renal proximal tubules may be helpful to understand the physiopathology of Dent-1 disease with nonsense mutations of CLCN5 gene.


Subject(s)
Chloride Channels/metabolism , Codon, Nonsense , Dent Disease , Low Density Lipoprotein Receptor-Related Protein-2 , Albumins/genetics , Albumins/metabolism , Calcium/metabolism , Child , Codon, Nonsense/metabolism , Dent Disease/metabolism , Humans , Kidney Tubules, Proximal , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Proteinuria/metabolism , Receptors, Cell Surface
16.
BMC Nephrol ; 23(1): 182, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35549682

ABSTRACT

BACKGROUND: Dent disease is an X-linked disorder characterized by low molecular weight proteinuria (LMWP), hypercalciuria, nephrolithiasis and chronic kidney disease (CKD). It is caused by mutations in the chloride voltage-gated channel 5 (CLCN5) gene (Dent disease-1), or in the OCRL gene (Dent disease-2). It is associated with chronic metabolic acidosis; however metabolic alkalosis has rarely been reported. CASE PRESENTATION: We present a family with Dent-2 disease and a Bartter-like phenotype. The main clinical problems observed in the proband included a) primary phosphaturia leading to osteomalacia and stunted growth; b) elevated serum calcitriol levels, leading to hypercalcemia, hypercalciuria, nephrolithiasis and nephrocalcinosis; c) severe salt wasting causing hypotension, hyperaldosteronism, hypokalemia and metabolic alkalosis; d) partial nephrogenic diabetes insipidus attributed to hypercalcemia, hypokalemia and nephrocalcinosis; e) albuminuria, LMWP. Phosphorous repletion resulted in abrupt cessation of hypercalciuria and significant improvement of hypophosphatemia, physical stamina and bone histology. Years later, he presented progressive CKD with nephrotic range proteinuria attributed to focal segmental glomerulosclerosis (FSGS). Targeted genetic analysis for several phosphaturic diseases was unsuccessful. Whole Exome Sequencing (WES) revealed a c.1893C > A variant (Asp631Glu) in the OCRL gene which was co-segregated with the disease in male family members. CONCLUSIONS: We present the clinical characteristics of the Asp631Glu mutation in the OCRL gene, presenting as Dent-2 disease with Bartter-like features. Phosphorous repletion resulted in significant improvement of all clinical features except for progressive CKD. Angiotensin blockade improved proteinuria and stabilized kidney function for several years.


Subject(s)
Alkalosis , Dent Disease , Hypercalcemia , Hypokalemia , Kidney Calculi , Nephrocalcinosis , Renal Insufficiency, Chronic , Chloride Channels/genetics , Dent Disease/complications , Dent Disease/diagnosis , Dent Disease/genetics , Female , Humans , Hypercalcemia/genetics , Hypercalciuria/complications , Hypercalciuria/genetics , Hypokalemia/complications , Hypokalemia/genetics , Male , Mutation/genetics , Nephrocalcinosis/complications , Nephrocalcinosis/genetics , Phenotype , Phosphoric Monoester Hydrolases/genetics , Proteinuria/etiology , Renal Insufficiency, Chronic/complications
17.
Hum Mutat ; 42(5): 537-550, 2021 05.
Article in English | MEDLINE | ID: mdl-33600050

ABSTRACT

Mutations in the CLCN5 gene encoding the 2Cl- /1H+ exchanger ClC-5 are associated with Dent disease 1, an inherited renal disorder characterized by low-molecular-weight (LMW) proteinuria and hypercalciuria. In the kidney, ClC-5 is mostly localized in proximal tubule cells, where it is thought to play a key role in the endocytosis of LMW proteins. Here, we investigated the consequences of eight previously reported pathogenic missense mutations of ClC-5 surrounding the "proton glutamate" that serves as a crucial H+ -binding site for the exchanger. A complete loss of function was observed for a group of mutants that were either retained in the endoplasmic reticulum of HEK293T cells or unstainable at plasma membrane due to proteasomal degradation. In contrast, the currents measured for the second group of mutations in Xenopus laevis oocytes were reduced. Molecular dynamics simulations performed on a ClC-5 homology model demonstrated that such mutations might alter ClC-5 protonation by interfering with the water pathway. Analysis of clinical data from patients harboring these mutations demonstrated no phenotype/genotype correlation. This study reveals that mutations clustered in a crucial region of ClC-5 have diverse molecular consequences in patients with Dent disease 1, ranging from altered expression to defects in transport.


Subject(s)
Dent Disease , Protons , Chloride Channels/chemistry , Dent Disease/genetics , Dent Disease/metabolism , Genetic Diseases, X-Linked , Glutamic Acid , HEK293 Cells , Humans , Nephrolithiasis
18.
J Cell Mol Med ; 25(2): 1319-1322, 2021 01.
Article in English | MEDLINE | ID: mdl-33200471

ABSTRACT

Dent disease type 1 is caused by mutations in the CLCN5 gene that encodes CLC5, a 2Cl- /H+ exchanger. The CLC5 mutants that have been functionally analysed constitute three major classes based on protein expression, cellular localization and channel function. We tested two small molecules, 4-phenylbutyrate (4PBA) and its analogue 2-naphthoxyacetic acid (2-NOAA), for their effect on mutant CLC5 function and expression by whole-cell patch-clamp and Western blot, respectively. The expression and function of non-Class I CLC5 mutants that have reduced function could be restored by either treatment. Cell viability was reduced in cells treated with 2-NOAA. 4PBA is a FDA-approved drug for the treatment of urea cycle disorders and offers a potential therapy for Dent disease.


Subject(s)
Chemokine CCL5/genetics , Dent Disease/genetics , Mutation/genetics , Small Molecule Libraries/pharmacology , Cell Survival/drug effects , Chemokine CCL5/metabolism , Glycolates/pharmacology , HEK293 Cells , Humans , Phenylbutyrates/pharmacology
19.
J Biol Chem ; 295(6): 1464-1473, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31852738

ABSTRACT

Dent disease 1 (DD1) is caused by mutations in the CLCN5 gene encoding a voltage-gated electrogenic nCl-/H+ exchanger ClC-5. Using ion-selective microelectrodes and Xenopus oocytes, here we studied Cl-/H+ coupling properties of WT ClC-5 and four DD1-associated variants (S244L, R345W, Q629*, and T657S), along with trafficking and localization of ClC-5. WT ClC-5 had a 2Cl-/H+ exchange ratio at a Vh of +40 mV with a [Cl-]out of 104 mm, but the transport direction did not reverse with a [Cl-]out of 5 mm, indicating that ClC-5-mediated exchange of two Cl- out for one H+ in is not permissible. We hypothesized that ClC-5 and H+-ATPase are functionally coupled during H+-ATPase-mediated endosomal acidification, crucial for ClC-5 activation by depolarizing endosomes. ClC-5 transport that provides three net negative charges appeared self-inhibitory because of ClC-5's voltage-gated properties, but shunt conductance facilitated further H+-ATPase-mediated endosomal acidification. Thus, an on-and-off "burst" of ClC-5 activity was crucial for preventing Cl- exit from endosomes. The subcellular distribution of the ClC-5:S244L variant was comparable with that of WT ClC-5, but the variant had a much slower Cl- and H+ transport and displayed an altered stoichiometry of 1.6:1. The ClC-5:R345W variant exhibited slightly higher Cl-/H+ transport than ClC-5:S244L, but co-localized with early endosomes, suggesting decreased ClC-5:R345W membrane trafficking is perhaps in a fully functional form. The truncated ClC-5:Q629* variant displayed the lowest Cl-/H+ exchange and was retained in the endoplasmic reticulum and cis-Golgi, but not in early endosomes, suggesting the nonsense mutation affects ClC-5 maturation and trafficking.


Subject(s)
Chloride Channels/genetics , Genetic Diseases, X-Linked/genetics , Nephrolithiasis/genetics , Point Mutation , Animals , Cell Line , Chloride Channels/analysis , Chloride Channels/metabolism , Chlorides/metabolism , Endosomes/genetics , Endosomes/metabolism , Genetic Diseases, X-Linked/metabolism , Humans , Hydrogen/metabolism , Ion Transport , Nephrolithiasis/metabolism , Protein Transport , Xenopus
20.
BMC Nephrol ; 22(1): 24, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33430795

ABSTRACT

BACKGROUND: Dent disease is an X-linked form of progressive renal disease. This rare disorder was characterized by hypercalciuria, low molecular weight (LMW) proteinuria and proximal tubular dysfunction, caused by pathogenic variants in CLCN5 (Dent disease 1) or OCRL (Dent disease 2) genes. Fanconi syndrome is a consequence of decreased water and solute resorption in the proximal tubule of the kidney. Fanconi syndrome caused by proximal tubular dysfunction such as Dent disease might occur in early stage of the disease. CASE PRESENTATION: Three cases reported in this study were 3-, 10- and 14-year-old boys, and proteinuria was the first impression in all the cases. All the boys presented with LMW proteinuria and elevated urine albumin-to-creatinine ratio (ACR). Case 1 revealed a pathogenic variant in exon 11 of CLCN5 gene [NM_001127899; c.1444delG] and a nonsense mutation at nucleotide 1509 [p.L503*], and he was diagnosed as Dent disease 1. Case 2 carried a deletion of exon 3 and 4 of OCRL1 gene [NM_000276.4; c.120-238delG…A] and a nonsense mutation at nucleotide 171 in exon 5 [p.E57*], and this boy was diagnosed as Dent disease 2. Genetic analysis of Case 3 showed a missense mutation located in exon 2 of HNF4A gene [EF591040.1; c.253C > T; p.R85W] which is responsible for Fanconi syndrome. All of three pathogenic variants were not registered in GenBank. CONCLUSIONS: Urine protein electrophoresis should be performed for patients with proteinuria. When patients have LMW proteinuria and/or hypercalciuria, definite diagnosis and identification of Dent disease and Fanconi syndrome requires further genetic analyses.


Subject(s)
Dent Disease/diagnosis , Fanconi Syndrome/diagnosis , Adolescent , Child , Child, Preschool , Dent Disease/complications , Dent Disease/genetics , Fanconi Syndrome/complications , Fanconi Syndrome/genetics , Humans , Male , Molecular Weight , Proteinuria/etiology
SELECTION OF CITATIONS
SEARCH DETAIL