ABSTRACT
BACKGROUND: The biofloc system (BFS) provides a sustainable aquaculture system through its efficient in situ water quality maintenance by the microbial biomass, besides continuous availability of these protein-rich microbes as feed to enhance growth and immunity of the reared organism. This study explores the gill architecture, growth performance, digestive enzyme activity, intestinal microbial composition, and histology of three freshwater fish species, Puntius gonionotus, Pangasianodon hypophthalmus, and Heteropneustus fossilis reared in biofloc based polyculture system. RESULTS: The three species in T2 showed significantly higher WG and SGR, followed by T1 and T3. The wet mount of gill architecture showed smaller inter-filament gaps in gill arches of silver barb followed by stinging catfish and stripped catfish, but showed no correlation with the weight gain. However, silver barb being an omnivore and filter-feeder, accumulated a more diverse microbial community, both in T1 and BFS (T2 and T3), while the bottom feeder H. fossilis exhibited unique gut bacterial adaptability. The presence of floc in T2 and T3 enhanced bacterial abundance in water and fish gut, but their microbial diversities significantly reduced compared to T1 receiving only feed. Next-generation sequencing revealed that the Pseudomonas dominated in gut of P. gonionotus and P. hypophthalmus in T1, Enterobacterales and Fusobacterium prevailed in those of T2 and T3, respectively. In contrast, gut of H. fossilis had the highest proportion of Clostridium in T1, while Rhizobiaceae dominated in T3. Similarly in floc samples, Enterococcus dominated in T1 while Micrococcales and Rhizobiaceae dominated in T2 and T3, respectively. A positive correlation of enterobacteria, with the digestive enzyme activities and growth patterns was observed in all treatments. CONCLUSION: The present study revealed feeding behaviour to play crucial role in distinguishing the gut microbial composition patterns in fishes reared in Biofloc System. Further it revealed the requirement of supplementary feed along with floc in these three species for higher growth in the biofloc system.
Subject(s)
Aquaculture , Catfishes , Fresh Water , Gastrointestinal Microbiome , Animals , Aquaculture/methods , Catfishes/microbiology , Catfishes/growth & development , Fresh Water/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Gills/microbiology , Cyprinidae/microbiology , Cyprinidae/growth & development , MicrobiotaABSTRACT
As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.
ABSTRACT
Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae) is a highly polyphagous insect that significantly reduces agricultural production of several food staples. We evaluated performance of S. littoralis on several meridic diets based on various maize hybrids, including Oteel, Simon, Valbum, SC703, and SC704. Growth, feeding behaviours, and activity of digestive enzymes of S. littoralis were examined under laboratory conditions. In addition, selected biochemical characteristics of maize hybrid seeds were evaluated, including starch, protein, anthocyanin, as well as phenolic and flavonoid contents, to examine relationships between plant properties and digestive performance of S. littoralis. Performance of S. littoralis on maize hybrids, as measured by nutritional indices, was related to both proteolytic and amylolytic activities quantified using gut extracts. Larval S. littoralis reared on SC703 exhibited the highest efficiency of conversion of digested food, while the lowest was recorded in those fed on the Oteel hybrid. S. littoralis reared on SC703 and Oteel also exhibited the highest and lowest relative growth rates, respectively. The highest levels of proteolytic activity in S. littoralis were measured from larvae reared on the SC703 hybrid, while the lowest levels occurred on the Oteel and Valbum hybrids. Amylolytic activity was lowest in larvae reared on SC703 and Valbum hybrids and highest in larvae reared on the Oteel hybrid. Our results suggest that the SC703 hybrid was the most suitable host for S. littoralis, while the Oteel hybrid demonstrated the greatest level of tolerance against S. littoralis of those evaluated. We discuss the potential utility of maize hybrids exhibiting tolerance traits against this cosmopolitan pest with reference to cultivation of tolerant varieties and identification of specific tolerance traits.
ABSTRACT
In this study, we investigated the effects of supplemental Glycyrrhiza polysaccharide (GCP) on growth performance and intestinal health of weaned piglets. Ninety piglets weaned at 28 days of age were randomly allocated to three groups with five replicates per treatment. Piglets were fed the following diets for 28 days: (1) CON (control group), basal diet; (2) G500, CON + 500 mg/kg GCP; (3) G1000, CON + 1000 mg/kg GCP. The results showed that supplementation with 1000 mg/kg GCP increased the average daily gain (ADG) and decreased the feed-to-gain ratio (F/G) (P < 0.05). Serum diamine oxidase (DAO) and D-lactic acid (DL-A) levels were lower in the G1000 group (P < 0.05). Dietary GCP 1000 mg/kg improved mucosal trypsin activity in the duodenum, jejunum and ileum and increased lipase and amylase activity in the jejunum (P < 0.05). Moreover, in the G1000 group, ZO-1, claudin 1 and occludin levels were increased in the jejunum mucosa, whereas interleukin-1ß (IL-1ß) and IL-6 levels were decreased (P < 0.05). The 16S rRNA gene analysis indicated that dietary 1000 mg/kg GCP altered the jejunal microbial community, with increased relative abundances of beneficial bacteria. In conclusion, dietary GCP 1000 mg/kg can improve growth performance, digestive enzyme activity, intestinal immunity, barrier function and microbial community in weaned piglets.
Subject(s)
Animal Feed , Dietary Supplements , Glycyrrhiza , Polysaccharides , Weaning , Animals , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Swine/growth & development , Animal Feed/analysis , Glycyrrhiza/chemistry , Intestines/drug effects , Diet/veterinary , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , MaleABSTRACT
To assess the impact of supplementing betaine (BT) under heat stress (HS) conditions on broiler performance and intestinal health from 21 to 42 days of age, a total of 150 male Ross 308 broilers were indiscriminately allotted to 3 treatments with 10 replications of 5 birds each. The control (CON) group was given a basal ration and accommodated at a thermoneutral condition (22 ± 1 °C), whereas the HS and HS + BT groups were raised under cyclic HS (33 ± 1 °C for 8 h and 22 ± 1 °C for 16 h per day) and received the basal ration without or with 1000 mg/kg BT, respectively. The HS reduced average daily gain (ADG); average daily feed intake; villus height (VH); VH to crypt depth (CD) ratio (VCR); activities of trypsin, lipase, glutathione peroxidase (GPX), and catalase; and enumeration of Lactobacillus and Bifidobacterium (P < 0.05) and augmented feed conversion ratio (FCR), CD, malondialdehyde (MDA) accumulation, and enumeration of Escherichia coli, Clostridium, and coliforms (P < 0.05). Conversely, BT supplementation heightened ADG, VH, VCR, trypsin activity, GPX activity, and populations of Lactobacillus and Bifidobacterium (P < 0.05) and lowered FCR, MDA accumulation, and Clostridium population (P < 0.05). Furthermore, the FCR value, trypsin and GPX activities, MDA content, and Bifidobacterium and Clostridium populations in the HS + BT group were nearly equivalent to those in the CON group. To conclude, feeding BT under HS conditions could improve broiler performance through improving intestinal health by specifically mitigating oxidative damage and enhancing the colonization of beneficial bacteria.
Subject(s)
Betaine , Microbiota , Animals , Male , Betaine/pharmacology , Chickens/metabolism , Trypsin , Antioxidants , Heat-Shock Response , Oxidative Stress , Animal Feed/analysis , Dietary Supplements , Diet/veterinaryABSTRACT
Temperature and nutrition are suggested as the primary factors affecting larval survival during the transition from endogenous to exogenous feeding in fish. However, little is known about its simultaneous impact during this period. In this study, Seriola rivoliana eggs were subjected to a constant 24 °C (CTE) and a daily temperature fluctuation (DTF) between 22.8 and 25.2 °C until oil droplet exhaustion (5.5 days after hatching). On the other hand, marine fish larvae mostly rely on live feed, with certain nutritional deficiencies such as poor long-chain fatty acids. Thus, rotifer Brachionus rotundiformis enrichment was simultaneously evaluated with temperature using three enrichment diets: Ori-green, S.presso, and a Domestic emulsion. For this purpose, the five experimental groups were established in triplicate using six 100-L tanks with three 10-L containers inside (18 experimental units in total). One hundred eggs were incubated, using a green water system, and 10 rotifers mL-1 were offered at mouth opening. After oil droplet exhaustion, survival was only affected by temperature (P < 0.01), being higher at DTF compared to CTE. At the same stage, Domestic emulsion resulted in bigger larvae than Ori-green. In a further assay at 3.7 DAH, the relative expression of the trypsin gene was higher at Domestic emulsion compared to S.presso and Ori-green. This study indicates that daily temperature fluctuation can improve larval performance and low levels of EPA and DHA in Domestic emulsion enriched rotifers were not critical for Seriola rivoliana at first feeding.
ABSTRACT
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.
Subject(s)
Carnivora , Chitinases , Amino Acid Sequence , Animals , Carnivora/metabolism , Chitin/chemistry , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolism , Diet , Dogs , MiceABSTRACT
The rise of functional diversity through gene duplication contributed to the adaption of organisms to various environments. Here we investigate the evolution of putative cellulases of the subfamily 2 of glycoside hydrolase family 5 (GH5_2) in the Cerambycidae (longhorned beetles), a megadiverse assemblage of mostly xylophagous beetles. Cerambycidae originally acquired GH5_2 from a bacterial donor through horizontal gene transfer (HGT), and extant species harbor multiple copies that arose from gene duplication. We ask how these digestive enzymes contributed to the ability of these beetles to feed on wood. We analyzed 113 GH5_2, including the functional characterization of 52 of them, derived from 25 species covering most subfamilies of Cerambycidae. Ancestral gene duplications led to five well-defined groups with distinct substrate specificity, allowing these beetles to break down, in addition to cellulose, polysaccharides that are abundant in plant cell walls (PCWs), namely, xyloglucan, xylan, and mannans. Resurrecting the ancestral enzyme originally acquired by HGT, we show it was a cellulase that was able to break down glucomannan and xylan. Finally, recent gene duplications further expanded the catalytic repertoire of cerambycid GH5_2, giving rise to enzymes that favor transglycosylation over hydrolysis. We suggest that HGT and gene duplication, which shaped the evolution of GH5_2, played a central role in the ability of cerambycid beetles to use a PCW-rich diet and may have contributed to their successful radiation.
ABSTRACT
Digestion is driven by digestive enzymes and digestive enzyme gene copy number can provide insights on the genomic underpinnings of dietary specialization. The "Adaptive Modulation Hypothesis" (AMH) proposes that digestive enzyme activity, which increases with increased gene copy number, should correlate with substrate quantity in the diet. To test the AMH and reveal some of the genetics of herbivory vs carnivory, we sequenced, assembled, and annotated the genome of Anoplarchus purpurescens, a carnivorous prickleback fish in the family Stichaeidae, and compared the gene copy number for key digestive enzymes to that of Cebidichthys violaceus, a herbivorous fish from the same family. A highly contiguous genome assembly of high quality (N50 = 10.6 Mb) was produced for A. purpurescens, using combined long-read and short-read technology, with an estimated 33,842 protein-coding genes. The digestive enzymes that we examined include pancreatic α-amylase, carboxyl ester lipase, alanyl aminopeptidase, trypsin, and chymotrypsin. Anoplarchus purpurescens had fewer copies of pancreatic α-amylase (carbohydrate digestion) than C. violaceus (1 vs. 3 copies). Moreover, A. purpurescens had one fewer copy of carboxyl ester lipase (plant lipid digestion) than C. violaceus (4 vs. 5). We observed an expansion in copy number for several protein digestion genes in A. purpurescens compared to C. violaceus, including trypsin (5 vs. 3) and total aminopeptidases (6 vs. 5). Collectively, these genomic differences coincide with measured digestive enzyme activities (phenotypes) in the two species and they support the AMH. Moreover, this genomic resource is now available to better understand fish biology and dietary specialization.
Subject(s)
Carnivory , Perciformes , Animals , Trypsin/metabolism , Phylogeny , Pancreatic alpha-Amylases/metabolism , Fishes , Diet , Lipase/metabolism , Esters/metabolismABSTRACT
Bilateria share sequential steps in their digestive systems, and digestion occurs in a pre-absorption step within a chamber-like structure. Previous studies on the ascidian Ciona intestinalis type A, an evolutionary research model of vertebrate organs, revealed that Ciona homologs of pancreas-related exocrine digestive enzymes (XDEs) are exclusively expressed in the chamber-like bulging stomach. In the development of the gastrointestinal tract, genes for the pancreas-related transcription factors, namely Ptf1a, Nr5a2, and Pdx, are expressed near the stomach. Recent organ/tissue RNA-seq studies on two Ciona species reported that transcripts of the XDE homologs exist in the intestinal regions, as well as in the stomach. In the present study, we investigated the spatial gene expression of XDE homologs in the gastrointestinal region of the C. intestinalis type A. Whole-mount in situ hybridization using adult and juvenile specimens revealed apparent expression signals of XDE homologs in a small number of gastrointestinal epithelial cells. Furthermore, two pancreas-related transcription factor genes, Nr5a2 and Pdx, exhibited multi-regional expression along the Ciona juvenile intestines. These results imply that ascidians may form multiple digestive regions corresponding to the vertebrate pancreas.
Subject(s)
Ciona intestinalis , Animals , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , Vertebrates/genetics , Pancreas , Gastrointestinal Tract/metabolism , IntestinesABSTRACT
Xylophagous larvae of longhorned beetles (Coleoptera; Cerambycidae) efficiently break down polysaccharides of the plant cell wall, which make the bulk of their food, using a range of carbohydrate-active enzymes (CAZymes). In this study, we investigated the function and evolutionary history of the first identified example of insect-encoded members of glycoside hydrolase family 7 (GH7) derived from the Lamiinae Exocentrus adspersus. The genome of this beetle contained two genes encoding GH7 proteins located in tandem and flanked by transposable elements. Phylogenetic analysis revealed that the GH7 sequences of E. adspersus were closely related to those of Ascomycete fungi, suggesting that they were acquired through horizontal gene transfer (HGT) from fungi. However, they were more distantly related to those encoded by genomes of Crustacea and of protist symbionts of termites and cockroaches, supporting that the same enzyme family was recruited several times independently in Metazoa during the course of their evolution. The recombinant E. adspersus GH7 was found to primarily break down cellulose polysaccharides into cellobiose, indicating that it is a cellobiohydrolase, and could also use smaller cellulose oligomers as substrates. Additionally, the cellobiohydrolase activity was boosted by the presence of calcium chloride. Our findings suggest that the combination of GH7 cellobiohydrolases with other previously characterized endo-ß-1,4-glucanases and ß-glucosidases allows longhorned beetles like E. adspersus to efficiently break down cellulose into monomeric glucose.
Subject(s)
Coleoptera , Animals , Coleoptera/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose 1,4-beta-Cellobiosidase/metabolism , Phylogeny , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Polysaccharides , CelluloseABSTRACT
Although numerous investigations on the adverse impact of Cr and Pb have been performed, studies on intestinal homeostasis in amphibians are limited. Here, single and combined effects of Cr (104 µg/L) and Pb (50 µg/L) on morphological and histological features, bacterial community, digestive enzymes activities, as well as transcriptomic profile of intestines in Rana chensinensis tadpoles were assessed. Significant decrease in the relative intestine length (intestine length/snout-to-vent length, IL/SVL) was observed after exposure to Pb and Cr/Pb mixture. Intestinal histology and digestive enzymes activities were altered in metal treatment groups. In addition, treatment groups showed significantly increased bacterial richness and diversity. Tadpoles in treatment groups were observed to have differential gut bacterial composition from controls, especially for the abundance of phylum Proteobacteria, Firmicutes, Verrucomicrobia, Actinobacteria, and Fusobacteria as well as genus Citrobacter, Anaerotruncus, Akkermansia, and Alpinimonas. Moreover, transcriptomic analysis showed that the transcript expression profiles of GPx and SOD isoforms responded differently to Cr and/or Pb exposure. Besides, transcriptional activation of pro-apoptotic and glycolysis-related genes, such as Bax, Apaf 1, Caspase 3, PK, PGK, TPI, and GPI were detected in all treatment groups but downregulation of Bcl2 in Pb and Cr/Pb mixture groups. Collectively, these results suggested that Cr and Pb exposure at environmental relevant concentration, alone and in combination, could disrupt intestinal homeostasis of R. chensinensis tadpoles.
Subject(s)
Gastrointestinal Microbiome , Intestines , Animals , Larva , Lead/toxicity , Ranidae/genetics , VerrucomicrobiaABSTRACT
In order to improve the rearing of Coccinella septempunctata L. (Coleoptera: Coccinellidae), nutrients such as shrimp, pollen, honey, and lard were added to the basic artificial diet, and the effects of the artificial diet on biological parameters and digestive enzymes were evaluated. The results show that beetles feeding on the supplemented diet exhibited pupation, emergence, fecundity, and hatching rates that were 102.69%, 125.02%, 162.33%, and 119.90% of those supplied with the basic diet, respectively. The addition of shrimp and pollen to the basal diet improved protease, trypsin, chymotrypsin, and aminopeptidase activity in larvae and female adults. The addition of lard improved lipase activity in female adults, and the addition of honey improved invertase activity in adults of both sexes. This study provides guidance for improving the nutritional benefits of ladybug artificial diets.
Subject(s)
Coleoptera , Male , Female , Animals , Larva , Fertility , DietABSTRACT
Polyphenols from stevia leaves (PPSs) are abundant byproducts from steviol glycoside production, which have been often studied as raw extracts from stevia extracts for their bioactivities. Herein, the PPSs rich in isochlorogenic acids were studied for their antimicrobial and anti-inflammatory properties, as well as their inhibitory effects on digestive enzymes. The PPSs presented stronger antibacterial activity against E. coli, S. aureus, P. aeruginosa, and B. subtilis than their antifungal activity against M. furfur and A. niger. Meanwhile, the PPSs inhibited four cancer cells by more than 60% based on their viability, in a dose-dependent manner. The PPSs presented similar IC50 values on the inhibition of digestive enzyme activities compared to epigallocatechin gallate (EGCG), but had weaker anti-inflammatory activity. Therefore, PPSs could be a potential natural alternative to antimicrobial agents. This is the first report on the bioactivity of polyphenols from stevia rebaudiana (Bertoni) leaves excluding flavonoids, and will be of benefit for understanding the role of PPSs and their application.
Subject(s)
Diterpenes, Kaurane , Stevia , Polyphenols/pharmacology , Escherichia coli , Staphylococcus aureus , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Diterpenes, Kaurane/pharmacology , Plant LeavesABSTRACT
Knowledge of the developmental ontogeny of the digestive system and nutritional requirements of marine fish larvae is a primary requisite for their successful rearing under an optimal feeding regime. In this context, we assessed the activity profile of key digestive enzymes viz., trypsin, chymotrypsin, leucine aminopeptidase, lipase, amylase, and alkaline phosphatase during the early ontogeny of milkfish, Chanos chanos (0 day, 3 days, 6 days, 9 days, 12 days, 15 days, 18 days, 21 days, 25 days, and 30 days post-hatch). Larvae for this study were obtained from the successful breeding of milkfish at ICAR-Central Institute of Brackishwater Aquaculture, India. Growth curves (length and weight) of the larvae indicated a positive morphological development under a standardized feeding regime that comprised Chlorella salina, Brachionus plicatilis, Artemia salina nauplii, and commercial weaning feed for different larval stages. With respect to protein digestion, the specific activity of pancreatic enzymes trypsin and chymotrypsin and intestinal brush border leucine aminopeptidase showed two peaks at 3 dph and 15 dph, following the introduction of rotifer and Artemia nauplii. Similar bimodal peaks were observed for alkaline phosphatase and amylase activities, with the first peak at 3 dph and the second peak at 18 dph and 21 dph, respectively. Whereas in the case of lipase, high activity levels were observed at 0 dph, 3 dph, and 18 dph, with subsequent decreases and fluctuations. Overall, as most of the enzymes were found to have peak activities at 15 to 21 dph, this period can be potentially considered as the developmental window for weaning larvae from live to formulated feeds in milkfish hatcheries.
Subject(s)
Chlorella , Rotifera , Animals , Larva , Chymotrypsin/metabolism , Trypsin/metabolism , Alkaline Phosphatase/metabolism , Leucyl Aminopeptidase/metabolism , Chlorella/metabolism , Plant Breeding , Fishes/metabolism , Amylases/metabolism , Lipase/metabolismABSTRACT
A 30-day experiment was carried out to know responses of different weaning approaches to the growth and survival of Anabas testudineus larvae. A total of 10800 larvae (Avg. weight 0.016 ± 0.03 mg; 3DPH) were randomly distributed in nine treatments (triplicates), including two controls. The strategies are as follows: C1 (Control I): feeding with live food (LF) for 30 days and C2 (Control II): feeding with microparticulate diet (MPD) for 30 days; T1: LF for 5 days and MPD for next 25 days; T2: LF for 10 days and MPD for next 20 days; T3: LF for 15 days and MPD for next 15 day; T4: LF for 20 days and MPD for next 10 days; T5: LF for 25 days and MPD for next 5 days; T6: LF for 5 days, then 25% LF replacement by MPD for next 5 days, 50% LF replacement by MPD for next 5 days, 75% LF replacement by MPD for next 5 days, and 100% LF replacement by MPD for last 10 days; and T7: LF for 10 days, then 25% LF replacement by MPD for next 5 days, 50% LF replacement by MPD for next 5 days, 75% LF replacement by MPD for next 5 days, and 100% LF replacement by MPD for last 5 days. Significantly (p < 0.05) higher WG and SGR were recorded in T2 (213.17 ± 0.32, 23.98 ± 0.02) followed by T6, whereas the lowest was found in C2. Significantly higher (p < 0.05) percentage survival was manifested in the T7 (31.83 ± 0.22), followed by T2 (24.75 ± 0.13), and the lowest survival was observed in the C2. The digestive enzyme activities were found to be non-significant (p > 0.05) between different treatment groups. The alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) were reported to be significantly higher (p < 0.05) in C2 (68.52 ± 0.08, 19.55 ± 0.10, 21.79 ± 0.04, and 0.044 ± 0.01) followed by T1; however, their reduced level was observed in C1. The activity of superoxide dismutase (SOD), catalase (CAT), glucose, and cortisol levels was observed significantly (p < 0.05) higher in C2 and lower in C1 and T2. As per the finding, it can be recommended that the appropriate weaning time for A. testudineus larvae is from 13 DPH onwards, in which larvae can be fed an initial ten days LF afterward MPD and the best weaning strategy can be adopted as in the T7 group for higher survival percentage.
Subject(s)
Perches , Animals , Larva , Weaning , Diet/veterinary , Alanine TransaminaseABSTRACT
This study was conducted to investigate the structural and ontogenetic development of the skeletal system and digestive tract histologically and enzymatically in larvae of shi drum (U. cirrosa) under intensive rearing conditions until 40 days after hatching (DAH). Among digestive enzymes, amylase was detected at 0.89 ± 0.12 mU mg protein-1 on the first hatching day. The specific activities of trypsin and lipase were detected simultaneously with mouth opening on 3 DAH with 28.47 ± 3.52 and 2.8 ± 0.32 mU mg protein-1, respectively. In addition, pepsin was found for the first time at 0.88 ± 0.21 mU mg protein-1 on 15 DAH in association with stomach formation and increased sharply up to 40 DAH. In the structural development of the skeletal system, the development of the caudal fin in larvae was morphologically associated with the flexion of the notochord. It was observed that the shape of the fin and spine, which reached 40 DAH, became similar to the adult shape. Histologically, 3 DAH, the mouth and anus were opened. The formation of the primitive stomach was observed at the end of the seventh day-the pyloric sphincter formed between 13 and 18 days. A functional stomach was seen on the 15th DAH. Therefore, U. cirrosa is believed to have critical aquaculture potential that can be cultured under intensive conditions. The developmental profile of skeletal, enzymatic, and histological ontogeny observed in U. cirrosa is similar to that described for other sciaenid species.
Subject(s)
Perciformes , Animals , Larva , Gastrointestinal Tract , Lipase , TrypsinABSTRACT
Head-starting programs are extremely important for restoring the population of sea turtles in wild whereas husbandry conditions and feeding regimens of captive turtles are still limited. In the current study, the optimal dietary protein requirement for green turtle (Chelonia mydas) was investigated to support rearing in head-starting programs. Twenty-five-day-old turtles (44.5-46.2 g body weight, n = 45) were randomly distributed into 15 experimental plastic tanks, comprising three treatment replications of 3 turtles each. They were fed fishmeal-based feeds containing different levels of protein (30%, 35%, 40%, 45%, and 50%) for 8 weeks. At the end of feeding trial, growth performance (specific growth rate = 1.86% body weight/day) and feed utilization (protein efficiency ratio = 3.30 g gain/g protein) were highest in turtles fed with 40% protein in feed (p < .05). These nutritional responses were significantly supported by specific activities of fecal digestive enzymes, especially trypsin, chymotrypsin, amylase, and the amylase/trypsin ratio. Also, this dietary level improved the deposition of calcium and phosphorus in carapace, supporting a hard carapace and strong healthy bones. There were no negative effects in general health status of reared turtles, as indicated by hematological parameters. Based on a broken-line analysis between dietary protein levels and specific growth rate, the optimal protein level for green turtles was estimated as 40.6%. Findings from the current study support the use of artificial diets of specific protein levels to rear captive green turtle before release to natural habitats.
Subject(s)
Turtles , Animals , Turtles/physiology , Trypsin/metabolism , Animals, Zoo , Diet , Dietary Proteins/metabolism , Amylases/metabolism , Body WeightABSTRACT
BACKGROUND: Genetic mutations in various pancreatic enzymes or their counteracting proteins have been linked to chronic pancreatitis. In particular, variants in the genes encoding pancreatic lipase (PNLIP) and carboxyl ester lipase (CEL) have been associated with pancreatitis. Therefore, we investigated pancreatic phospholipase A2 (PLA2G1B) as a promising candidate gene in patients with chronic pancreatitis. METHODS: We analyzed all coding exons and adjacent intronic regions of PLA2G1B in 416 German patients with non-alcoholic chronic pancreatitis (NACP) and 186 control subjects by direct DNA sequencing. RESULTS: We detected 2 frequent synonymous variants in exon 3: c.222T>C (p.Y74 = ) and c.294G>A (p.S98 = ). The genotype and allele frequencies of these variants were similar between patients and controls (c.222 TC: 9.6% in NACP vs. 9.7% in controls; c.222CC: 0.2% in NACP vs. 0% in controls; c.294 GA: 31.3% in NACP vs. 28.0% in controls; c.294AA: 2.4% in NACP vs. 1.1% in controls). All p-values were non-significant. In addition, we found one synonymous variant, c.138C>T (p.N46 = ) and one non-synonymous variant, c.244A>G (p.S82G), in a single case each. CONCLUSIONS: Our results suggest that genetic alterations in PLA2G1B do not predispose to the development of non-alcoholic chronic pancreatitis.
Subject(s)
Pancreatitis, Alcoholic , Pancreatitis, Chronic , Gene Frequency , Genetic Testing , Group IB Phospholipases A2/genetics , Humans , Pancreatitis, Alcoholic/genetics , Pancreatitis, Chronic/genetics , Sequence Analysis, DNAABSTRACT
In the present study, a potential probiotic Bacillus subtilis D1-2 with antibacterial activity was isolated from the gut of Apostichopus japonicus. The purpose of this experiment was to assess the effect of B. subtilis D1-2 at different concentrations (C: 0 CFU/g, BL: 105 CFU/g, BM: 107 CFU/g and BH: 109 CFU/g) on the growth performance, digestive enzyme activity, immune ability and intestinal flora of A. japonicus. After the 56-day feeding trial, the final body weight and weight gain rate of juvenile sea cucumber A. japonicus fed B. subtilis D1-2 were significantly increased, especially in the BM group. Additionally, the lipase activity of the intestine was significantly increased in the BM and BH groups. Enhanced immunity was also found in sea cucumbers supplemented with B. subtilis D1-2. Alpha diversity indices showed that the B. subtilis D1-2-supplemented groups had higher intestinal microbial richness and diversity than the control group. The beta diversity analysis indicated that the bacterial communities in the B. subtilis D1-2-supplemented groups were quite similar but different from the bacterial communities in the control group. Dietary supplementation with B. subtilis D1-2 increased the relative abundance of some potential probiotic-related genera, including Lactobacillus, Clostridium, Lactococcus, Bifidobacterium and Streptococcus. In conclusion, dietary addition of B. subtilis D1-2 could effectively promote the growth of A. japonicus, improve its digestion and immunity capacity to a certain extent, and actively regulate the intestinal microflora of A. japonicus.