Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 15775, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982238

ABSTRACT

A three-dimensional convolutional neural network model was developed to classify the severity of chronic kidney disease (CKD) using magnetic resonance imaging (MRI) Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) imaging. Seventy-three patients with severe renal dysfunction (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73 m2, CKD stage G4-5); 172 with moderate renal dysfunction (30 ≤ eGFR < 60 mL/min/1.73 m2, CKD stage G3a/b); and 76 with mild renal dysfunction (eGFR ≥ 60 mL/min/1.73 m2, CKD stage G1-2) participated in this study. The model was applied to the right, left, and both kidneys, as well as to each imaging method (T1-weighted IP/OP/WO images). The best performance was obtained when using bilateral kidneys and IP images, with an accuracy of 0.862 ± 0.036. The overall accuracy was better for the bilateral kidney models than for the unilateral kidney models. Our deep learning approach using kidney MRI can be applied to classify patients with CKD based on the severity of kidney disease.


Subject(s)
Glomerular Filtration Rate , Kidney , Magnetic Resonance Imaging , Neural Networks, Computer , Renal Insufficiency, Chronic , Severity of Illness Index , Humans , Renal Insufficiency, Chronic/diagnostic imaging , Renal Insufficiency, Chronic/pathology , Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Kidney/diagnostic imaging , Kidney/pathology , Aged , Adult , Deep Learning , Imaging, Three-Dimensional/methods
SELECTION OF CITATIONS
SEARCH DETAIL