Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 62(40): e202310577, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37578644

ABSTRACT

Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2 O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2 O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+ ) mechanism, and the intercalated TMS works as a "pillar" that provides more zincophilic sites and stabilizes the structure of cathode (NH4 V4 O10 , (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6 mAh g-1 at a low current density of 0.2 A g-1 for over 40 days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.

2.
Materials (Basel) ; 16(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048872

ABSTRACT

Soil nutrient loss, which leads to low plant utilization, has become an urgent issue. Graphene can improve soil fertilizer-holding properties given its small size effect, strong adsorption properties, and large specific surface area. Herein, different amounts of graphene were added to soil samples to study its effect on soil nutrient retention and growth of pepper seedlings. The colloidal double electric layer theory forms the basis for an analysis of variations in soil nutrient concentration through measurements of the zeta potential, which is affected by variations in ion concentrations in soil colloids. We measured the zeta potential of graphene and soil mixed colloids and found that graphene could increase the concentration of nutrient ions in soil colloids. In addition, graphene reduced the loss of nutrients; increased the contents of ammonium nitrogen, effective phosphorus, and fast-acting potassium in the soil after leaching; and enhanced the stability of soil aggregates after leaching. In addition, pepper seedlings grown under graphene treatment for 60 days outperformed seedlings grown without graphene treatment, in terms of plant height and nutrient content. This study demonstrates that the addition of graphene to soil can reduce nutrient loss and promote fertility and plant growth.

3.
Nanoscale Res Lett ; 10: 65, 2015.
Article in English | MEDLINE | ID: mdl-25852362

ABSTRACT

The results of electrochemical studies of nanoporous carbon as electrode material for electrochemical capacitors (EC) are presented in this work. Nanoporous carbon material (NCM) was obtained from the raw materials of plant origin by carbonization and subsequent activation in potassium hydroxide. It is established that there is an optimal ratio of 1:1 between content of KOH and carbon material at chemical activation, while the maximum specific capacity of NCM is 180 F/g. An equivalent electrical circuit, which allows modeling of the impedance spectra in the frequency range of 10(-2) to 10(5) Hz, is proposed, and a physical interpretation of each element of the electrical circuit is presented.

SELECTION OF CITATIONS
SEARCH DETAIL