Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.506
Filter
Add more filters

Publication year range
1.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38101409

ABSTRACT

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Subject(s)
Gene Expression Regulation , Super Enhancers , Transcription, Genetic , alpha-Globins , Enhancer Elements, Genetic , Promoter Regions, Genetic , Transcription Factors/metabolism , alpha-Globins/genetics
2.
Cell ; 185(12): 2164-2183.e25, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35597241

ABSTRACT

X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.


Subject(s)
Mediator Complex/metabolism , Neoplastic Stem Cells/metabolism , RNA, Long Noncoding/metabolism , Breast Neoplasms/metabolism , Cell Differentiation , Epigenesis, Genetic , Humans , RNA, Long Noncoding/genetics , X Chromosome Inactivation
3.
Cell ; 184(24): 5985-6001.e19, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34774128

ABSTRACT

Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue types from multiple donors. We integrated these datasets with previous single-cell chromatin accessibility data from 15 fetal tissue types to reveal the status of open chromatin for ∼1.2 million candidate cis-regulatory elements (cCREs) in 222 distinct cell types comprised of >1.3 million nuclei. We used these chromatin accessibility maps to delineate cell-type-specificity of fetal and adult human cCREs and to systematically interpret the noncoding variants associated with complex human traits and diseases. This rich resource provides a foundation for the analysis of gene regulatory programs in human cell types across tissues, life stages, and organ systems.


Subject(s)
Chromatin/metabolism , Genome, Human , Single-Cell Analysis , Adult , Cluster Analysis , Fetus/metabolism , Genetic Variation , Genome-Wide Association Study , Humans , Organ Specificity , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Risk Factors
4.
Annu Rev Biochem ; 89: 213-234, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32197056

ABSTRACT

Cell-type- and condition-specific profiles of gene expression require coordination between protein-coding gene promoters and cis-regulatory sequences called enhancers. Enhancers can stimulate gene activity at great genomic distances from their targets, raising questions about how enhancers communicate with specific gene promoters and what molecular mechanisms underlie enhancer function. Characterization of enhancer loci has identified the molecular features of active enhancers that accompany the binding of transcription factors and local opening of chromatin. These characteristics include coactivator recruitment, histone modifications, and noncoding RNA transcription. However, it remains unclear which of these features functionally contribute to enhancer activity. Here, we discuss what is known about how enhancers regulate their target genes and how enhancers and promoters communicate. Further, we describe recent data demonstrating many similarities between enhancers and the gene promoters they control, and we highlight unanswered questions in the field, such as the potential roles of transcription at enhancers.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , Genome , Promoter Regions, Genetic , RNA Polymerase II/genetics , Transcription, Genetic , Animals , Chromatin/chemistry , Chromatin/metabolism , DNA/genetics , DNA/metabolism , Eukaryotic Cells/metabolism , Genetic Loci , Histone Code , Histones/genetics , Histones/metabolism , Humans , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Cell ; 182(3): 754-769.e18, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32610082

ABSTRACT

To discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from nine dissected regions of the mid-gestation human telencephalon, as well as microdissected upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed temporal, regional, and laminar differences in chromatin accessibility and were correlated with gene expression differences across regions and gestational ages. We identified two functional de novo variants in a pRE for autism risk gene SLC6A1, and using CRISPRa, demonstrated that this pRE regulates SCL6A1. Additionally, mouse transgenic experiments validated enhancer activity for pREs proximal to FEZF2 and BCL11A. Thus, this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental/genetics , Prefrontal Cortex/embryology , Telencephalon/embryology , Animals , Autistic Disorder/genetics , Cell Line , Chromatin Immunoprecipitation Sequencing , Euchromatin/genetics , GABA Plasma Membrane Transport Proteins/genetics , Gene Ontology , Genetic Predisposition to Disease , Gestational Age , Humans , Mice , Mice, Transgenic , Nucleotide Motifs , Point Mutation , Prefrontal Cortex/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Spatio-Temporal Analysis , Telencephalon/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Cell ; 178(6): 1421-1436.e24, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31491386

ABSTRACT

The developmental disorder Floating-Harbor syndrome (FHS) is caused by heterozygous truncating mutations in SRCAP, a gene encoding a chromatin remodeler mediating incorporation of histone variant H2A.Z. Here, we demonstrate that FHS-associated mutations result in loss of SRCAP nuclear localization, alter neural crest gene programs in human in vitro models and Xenopus embryos, and cause craniofacial defects. These defects are mediated by one of two H2A.Z subtypes, H2A.Z.2, whose knockdown mimics and whose overexpression rescues the FHS phenotype. Selective rescue by H2A.Z.2 is conferred by one of the three amino acid differences between the H2A.Z subtypes, S38/T38. We further show that H2A.Z.1 and H2A.Z.2 genomic occupancy patterns are qualitatively similar, but quantitatively distinct, and H2A.Z.2 incorporation at AT-rich enhancers and expression of their associated genes are both sensitized to SRCAP truncations. Altogether, our results illuminate the mechanism underlying a human syndrome and uncover selective functions of H2A.Z subtypes during development.


Subject(s)
Abnormalities, Multiple/genetics , Chromatin Assembly and Disassembly , Chromatin/metabolism , Craniofacial Abnormalities/genetics , Growth Disorders/genetics , Heart Septal Defects, Ventricular/genetics , Histones/genetics , Adenosine Triphosphatases/genetics , Amino Acid Substitution , Animals , Embryonic Stem Cells , HEK293 Cells , Humans , Mutation , Xenopus laevis
7.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697116

ABSTRACT

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Subject(s)
CCCTC-Binding Factor , Cell Differentiation , Interferon-gamma , Interleukin-22 , Interleukins , Th1 Cells , Animals , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Th1 Cells/immunology , Mice , Cell Differentiation/immunology , Interferon-gamma/metabolism , Binding Sites , Interleukins/metabolism , Interleukins/genetics , Enhancer Elements, Genetic/genetics , Mice, Inbred C57BL , Chromatin/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Gene Expression Regulation , Toxoplasma/immunology , Cytokines/metabolism , Cell Lineage , Th17 Cells/immunology
8.
Cell ; 172(1-2): 289-304.e18, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29307494

ABSTRACT

Non-coding regions comprise most of the human genome and harbor a significant fraction of risk alleles for neuropsychiatric diseases, yet their functions remain poorly defined. We created a high-resolution map of non-coding elements involved in human cortical neurogenesis by contrasting chromatin accessibility and gene expression in the germinal zone and cortical plate of the developing cerebral cortex. We link distal regulatory elements (DREs) to their cognate gene(s) together with chromatin interaction data and show that target genes of human-gained enhancers (HGEs) regulate cortical neurogenesis and are enriched in outer radial glia, a cell type linked to human cortical evolution. We experimentally validate the regulatory effects of predicted enhancers for FGFR2 and EOMES. We observe that common genetic variants associated with educational attainment, risk for neuropsychiatric disease, and intracranial volume are enriched within regulatory elements involved in cortical neurogenesis, demonstrating the importance of this early developmental process for adult human cognitive function.


Subject(s)
Cerebral Cortex/metabolism , Chromatin Assembly and Disassembly , Gene Expression Regulation, Developmental , Neurogenesis , Neurons/metabolism , Cell Line , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic , Female , Humans , Male , Neurons/cytology , Polymorphism, Genetic , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
9.
Cell ; 174(4): 831-842.e12, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30057115

ABSTRACT

Overnutrition disrupts circadian metabolic rhythms by mechanisms that are not well understood. Here, we show that diet-induced obesity (DIO) causes massive remodeling of circadian enhancer activity in mouse liver, triggering synchronous high-amplitude circadian rhythms of both fatty acid (FA) synthesis and oxidation. SREBP expression was rhythmically induced by DIO, leading to circadian FA synthesis and, surprisingly, FA oxidation (FAO). DIO similarly caused a high-amplitude circadian rhythm of PPARα, which was also required for FAO. Provision of a pharmacological activator of PPARα abrogated the requirement of SREBP for FAO (but not FA synthesis), suggesting that SREBP indirectly controls FAO via production of endogenous PPARα ligands. The high-amplitude rhythm of PPARα imparted time-of-day-dependent responsiveness to lipid-lowering drugs. Thus, acquisition of rhythmicity for non-core clock components PPARα and SREBP1 remodels metabolic gene transcription in response to overnutrition and enables a chronopharmacological approach to metabolic disorders.


Subject(s)
Circadian Rhythm , Diet/adverse effects , Liver/metabolism , Obesity/metabolism , PPAR alpha/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Gene Expression Regulation , Lipid Metabolism , Lipogenesis , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/pathology , PPAR alpha/genetics , Sterol Regulatory Element Binding Protein 1/genetics
10.
Cell ; 171(7): 1573-1588.e28, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29224777

ABSTRACT

There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not employ this structural protein. Here, we show that the ubiquitously expressed transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements and forms dimers that facilitate the interaction of these DNA elements. Deletion of YY1 binding sites or depletion of YY1 protein disrupts enhancer-promoter looping and gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control.


Subject(s)
Enhancer Elements, Genetic , Promoter Regions, Genetic , YY1 Transcription Factor/metabolism , Animals , CCCTC-Binding Factor/metabolism , Embryonic Stem Cells/metabolism , Humans , Mice
11.
Cell ; 170(5): 1028-1043.e19, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28841410

ABSTRACT

Cis-regulatory elements (CREs) are commonly recognized by correlative chromatin features, yet the molecular composition of the vast majority of CREs in chromatin remains unknown. Here, we describe a CRISPR affinity purification in situ of regulatory elements (CAPTURE) approach to unbiasedly identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 protein and sequence-specific guide RNAs, we show high-resolution and selective isolation of chromatin interactions at a single-copy genomic locus. Purification of human telomeres using CAPTURE identifies known and new telomeric factors. In situ capture of individual constituents of the enhancer cluster controlling human ß-globin genes establishes evidence for composition-based hierarchical organization. Furthermore, unbiased analysis of chromatin interactions at disease-associated cis-elements and developmentally regulated super-enhancers reveals spatial features that causally control gene transcription. Thus, comprehensive and unbiased analysis of locus-specific regulatory composition provides mechanistic insight into genome structure and function in development and disease.


Subject(s)
CRISPR-Cas Systems , Endonucleases/metabolism , Genetic Techniques , Regulatory Elements, Transcriptional , Animals , Biotinylation , Cells, Cultured , Embryonic Stem Cells/metabolism , Endonucleases/genetics , Enhancer Elements, Genetic , Humans , K562 Cells , Mice , RNA, Guide, Kinetoplastida/metabolism , Telomere/metabolism , beta-Globins/genetics
12.
Cell ; 168(3): 442-459.e20, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28111071

ABSTRACT

Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription factors (TFs), and chromatin states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that OSK predominantly bind active somatic enhancers early in reprogramming and immediately initiate their inactivation genome-wide by inducing the redistribution of somatic TFs away from somatic enhancers to sites elsewhere engaged by OSK, recruiting Hdac1, and repressing the somatic TF Fra1. Pluripotency enhancer selection is a stepwise process that also begins early in reprogramming through collaborative binding of OSK at sites with high OSK-motif density. Most pluripotency enhancers are selected later in the process and require OS and other pluripotency TFs. Somatic and pluripotency TFs modulate reprogramming efficiency when overexpressed by altering OSK targeting, somatic-enhancer inactivation, and pluripotency enhancer selection. Together, our data indicate that collaborative interactions among OSK and with stage-specific TFs direct both somatic-enhancer inactivation and pluripotency-enhancer selection to drive reprogramming.


Subject(s)
Cellular Reprogramming , Transcription Factors/metabolism , Animals , Chromatin/metabolism , Fibroblasts/metabolism , Histone Code , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Mice , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Regulatory Elements, Transcriptional , SOXB1 Transcription Factors/metabolism , Silencer Elements, Transcriptional
13.
Cell ; 169(4): 636-650.e14, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28434617

ABSTRACT

Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.


Subject(s)
Carcinoma, Squamous Cell/pathology , Cell Lineage , Epidermal Cells , Hair Follicle/cytology , Skin Neoplasms/pathology , Skin/cytology , Stem Cells/metabolism , Animals , Cell Line, Tumor , Chromatin/metabolism , Epidermis/metabolism , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Skin Neoplasms/metabolism , Transcription Factors/metabolism , Transcriptome , Transplantation, Heterologous , Wound Healing
14.
Cell ; 171(3): 557-572.e24, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053968

ABSTRACT

Chromosome conformation capture technologies have revealed important insights into genome folding. Yet, how spatial genome architecture is related to gene expression and cell fate remains unclear. We comprehensively mapped 3D chromatin organization during mouse neural differentiation in vitro and in vivo, generating the highest-resolution Hi-C maps available to date. We found that transcription is correlated with chromatin insulation and long-range interactions, but dCas9-mediated activation is insufficient for creating TAD boundaries de novo. Additionally, we discovered long-range contacts between gene bodies of exon-rich, active genes in all cell types. During neural differentiation, contacts between active TADs become less pronounced while inactive TADs interact more strongly. An extensive Polycomb network in stem cells is disrupted, while dynamic interactions between neural transcription factors appear in vivo. Finally, cell type-specific enhancer-promoter contacts are established concomitant to gene expression. This work shows that multiple factors influence the dynamics of chromatin interactions in development.


Subject(s)
Chromatin/metabolism , Genome , Neurogenesis , Animals , CCCTC-Binding Factor , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Exons , Gene Expression , Gene Regulatory Networks , Mice , Promoter Regions, Genetic , Repressor Proteins/metabolism , Transcription Factors/metabolism
15.
Cell ; 171(1): 163-178.e19, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28844694

ABSTRACT

Alterations in transcriptional regulators can orchestrate oncogenic gene expression programs in cancer. Here, we show that the BRG1/BRM-associated factor (BAF) chromatin remodeling complex, which is mutated in over 20% of human tumors, interacts with EWSR1, a member of a family of proteins with prion-like domains (PrLD) that are frequent partners in oncogenic fusions with transcription factors. In Ewing sarcoma, we find that the BAF complex is recruited by the EWS-FLI1 fusion protein to tumor-specific enhancers and contributes to target gene activation. This process is a neomorphic property of EWS-FLI1 compared to wild-type FLI1 and depends on tyrosine residues that are necessary for phase transitions of the EWSR1 prion-like domain. Furthermore, fusion of short fragments of EWSR1 to FLI1 is sufficient to recapitulate BAF complex retargeting and EWS-FLI1 activities. Our studies thus demonstrate that the physical properties of prion-like domains can retarget critical chromatin regulatory complexes to establish and maintain oncogenic gene expression programs.


Subject(s)
Calmodulin-Binding Proteins/chemistry , Calmodulin-Binding Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Sarcoma, Ewing/genetics , Cell Line, Tumor , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Microsatellite Repeats , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Prion Proteins/metabolism , Protein Domains , Sarcoma, Ewing/pathology
16.
Cell ; 168(1-2): 135-149.e22, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086087

ABSTRACT

CBP/p300 are transcription co-activators whose binding is a signature of enhancers, cis-regulatory elements that control patterns of gene expression in multicellular organisms. Active enhancers produce bi-directional enhancer RNAs (eRNAs) and display CBP/p300-dependent histone acetylation. Here, we demonstrate that CBP binds directly to RNAs in vivo and in vitro. RNAs bound to CBP in vivo include a large number of eRNAs. Using steady-state histone acetyltransferase (HAT) assays, we show that an RNA binding region in the HAT domain of CBP-a regulatory motif unique to CBP/p300-allows RNA to stimulate CBP's HAT activity. At enhancers where CBP interacts with eRNAs, stimulation manifests in RNA-dependent changes in the histone acetylation mediated by CBP, such as H3K27ac, and by corresponding changes in gene expression. By interacting directly with CBP, eRNAs contribute to the unique chromatin structure at active enhancers, which, in turn, is required for regulation of target genes.


Subject(s)
Histone Acetyltransferases/metabolism , RNA, Untranslated/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Cell Line , Enhancer Elements, Genetic , Fibroblasts/metabolism , Histones/metabolism , Mice
17.
Mol Cell ; 83(5): 787-802.e9, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36758546

ABSTRACT

Enhancers are cis-regulatory elements that control the establishment of cell identities during development. In mammals, enhancer activation is tightly coupled with DNA demethylation. However, whether this epigenetic remodeling is necessary for enhancer activation is unknown. Here, we adapted single-molecule footprinting to measure chromatin accessibility and transcription factor binding as a function of the presence of methylation on the same DNA molecules. We leveraged natural epigenetic heterogeneity at active enhancers to test the impact of DNA methylation on their chromatin accessibility in multiple cell lineages. Although reduction of DNA methylation appears dispensable for the activity of most enhancers, we identify a class of cell-type-specific enhancers where DNA methylation antagonizes the binding of transcription factors. Genetic perturbations reveal that chromatin accessibility and transcription factor binding require active demethylation at these loci. Thus, in addition to safeguarding the genome from spurious activation, DNA methylation directly controls transcription factor occupancy at active enhancers.


Subject(s)
DNA Methylation , Enhancer Elements, Genetic , Animals , Chromatin , Transcription Factors/metabolism , Gene Expression Regulation , Mammals/metabolism
18.
Mol Cell ; 83(7): 1140-1152.e7, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36931273

ABSTRACT

Sox2 expression in mouse embryonic stem cells (mESCs) depends on a distal cluster of DNase I hypersensitive sites (DHSs), but their individual contributions and degree of interdependence remain a mystery. We analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple DHSs, as well as surgical alterations to transcription factor (TF) recognition sequences. Multiple mESC clones were derived for each payload, sequence-verified, and analyzed for Sox2 expression. We found that two DHSs comprising a handful of key TF recognition sequences were each sufficient for long-range activation of Sox2 expression. By contrast, three nearby DHSs were entirely context dependent, showing no activity alone but dramatically augmenting the activity of the autonomous DHSs. Our results highlight the role of context in modulating genomic regulatory element function, and our synthetic regulatory genomics approach provides a roadmap for the dissection of other genomic loci.


Subject(s)
Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Animals , Mice , Enhancer Elements, Genetic , Genomics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , SOXB1 Transcription Factors/metabolism
19.
Mol Cell ; 83(14): 2398-2416.e12, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37402365

ABSTRACT

Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.


Subject(s)
Nuclear Proteins , Sotos Syndrome , Animals , Humans , Nuclear Proteins/metabolism , Chromatin , Sotos Syndrome/genetics , Sotos Syndrome/metabolism , Histone Methyltransferases/genetics , Transcription Factors/genetics , Cell Differentiation/genetics , Mammals/metabolism , Histone-Lysine N-Methyltransferase/genetics
20.
Annu Rev Biochem ; 84: 291-323, 2015.
Article in English | MEDLINE | ID: mdl-25784052

ABSTRACT

Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.


Subject(s)
Alternative Splicing , Gene Expression Regulation , RNA Precursors/genetics , Animals , Disease/genetics , Humans , Mutation , RNA Splicing , RNA, Catalytic/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Spliceosomes/chemistry , Spliceosomes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL