Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Drug Resist Updat ; 77: 101144, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39208673

ABSTRACT

AIMS: The recent approval of enzalutamide for metastatic castration-sensitive prostate cancer underscores its growing clinical significance, raising concerns about emerging resistance and limited treatment options. While the reactivation of the androgen receptor (AR) and other genes plays a role in enzalutamide resistance, identifications of novel underlying mechanism with therapeutic potential in enzalutamide-resistant (EnzaR) cells remain largely elusive. METHODS: Drug-resistant prostate cancer cell lines, animal models, and organoids were utilized to examine NUDT21 function by transcriptomic and metabolomic analyses through loss-of-function and gain-of-function assays. Notably, a mono-methylation monoclonal antibody and conditional-knockin transgenic mouse model of NUDT21 were generated for evaluating its function. RESULTS: NUDT21 overexpression acts as a crucial alternative polyadenylation (APA) mediator, supported by its oncogenic role in prostate cancer. PRMT7-mediated mono-methylation of NUDT21 induces a shift in 3'UTR usage, reducing oncogenicity. In contrast, its un-methylation promotes cancer growth and cuproptosis insensitivity in EnzaR cells by exporting toxic copper and suppressing docosahexaenoic acid (DHA) biosynthesis. Crucially, NUDT21 inhibition or DHA supplementation with copper ionophore holds therapeutic promise for EnzaR cells. CONCLUSIONS: The un-methylation of NUDT21-mediated 3'UTR shortening unveils a novel mechanism for enzalutamide resistance, and our findings offer innovative strategies for advancing the treatment of prostate cancer patients experiencing enzalutamide resistance.

2.
Cancer Sci ; 115(8): 2630-2645, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889208

ABSTRACT

Prostate carcinoma represents a predominant malignancy affecting the male population, with androgen deprivation therapy (ADT) serving as a critical therapeutic modality for advanced disease states, but it often leads to the development of resistance. Enzalutamide (Enz), a second-generation antiandrogen drug, initially offers substantial therapeutic benefit, but its efficacy wanes as drug resistance ensues. In this study, we found that synaptotagmin 4 (SYT4) is an upregulated gene in enzalutamide-resistant (EnzR) cell lines. The downregulation of SYT4, in combination with enzalutamide therapy, substantially enhances the antiproliferative effect on resistant prostate cancer cells beyond the capacity of enzalutamide monotherapy. SYT4 promotes vesicle efflux by binding to the synaptosome-associated protein 25 (SNAP25), thereby contributing to cell resistance against enzalutamide. The elevated expression of SYT4 is mediated by bromodomain-containing protein 4 (BRD4), and BRD4 inhibition effectively suppressed the expression of SYT4. Treatment with a therapeutic dose of enzalutamide combined with ASO-1, an antisense oligonucleotide drug targeting SYT4, shows promising results in reversing the resistance of prostate cancer to enzalutamide.


Subject(s)
Benzamides , Drug Resistance, Neoplasm , Exosomes , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Synaptotagmins , Phenylthiohydantoin/pharmacology , Male , Humans , Cell Line, Tumor , Exosomes/metabolism , Exosomes/drug effects , Synaptotagmins/metabolism , Synaptotagmins/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Bromodomain Containing Proteins , Synaptosomal-Associated Protein 25
3.
Apoptosis ; 29(9-10): 1679-1695, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38478171

ABSTRACT

Prostate cancer (PCa) is one of the most common cancers affecting the health of men worldwide. Castration-resistant prostate cancer (CRPC), the advanced and refractory phase of prostate cancer, has multiple mechanisms of resistance to androgen deprivation therapy (ADT) such as AR mutations, aberrant androgen synthase, and abnormal expression of AR-related genes. Based on the research of the AR pathway, new drugs for the treatment of CRPC have been developed in clinical practice, such as Abiraterone and enzalutamide. However, many areas in this pathway are still worth exploring. In this study, single-cell sequencing analysis was utilized to scrutinize significant genes in the androgen receptor (AR) pathway related to CRPC. Our analysis of single-cell sequencing combined with bulk-cell sequencing revealed a substantial downregulation of AR-regulated AFF3 in CRPC. Overexpression of AFF3 restricted the proliferation and migration of prostate cancer cells whilst also increasing their sensitivity towards enzalutamide, while knockdown of AFF3 had the opposite effect. To elucidate the mechanism of tumor inhibition by AFF3, we applied GSVA and GSEA to investigate the metabolic pathways related to AFF3 and revealed that AFF3 had an impact on fatty acids metabolism and ferroptosis through the regulation of ACSL4 protein expression. Based on correlation analysis and flow cytometry, we can speculate that AFF3 can impact the sensitivity of the CRPC cell lines to the ferroptosis inducer (RSL3) by regulating ACSL4. Therefore, our findings may provide new insights into the mechanisms of drug resistance in CRPC, and AFF3 may serve as a novel prognostic biomarker in prostate cancer.


Subject(s)
Coenzyme A Ligases , Down-Regulation , Ferroptosis , Nuclear Proteins , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Animals , Humans , Male , Mice , Benzamides/pharmacology , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Disease Progression , Down-Regulation/genetics , Down-Regulation/drug effects , Drug Resistance, Neoplasm/genetics , Ferroptosis/genetics , Ferroptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Single-Cell Analysis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
4.
Mol Pharm ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39388218

ABSTRACT

Androgen deprivation therapy has been the primary treatment strategy for advanced prostate cancer (PCa). But most patients develop castration resistance over time. For FDA-approved second-generation androgen receptor (AR) antagonists, including enzalutamide (ENZ) and abiraterone (AA), patients who initially respond to them eventually develop resistance. The key mechanism for resistance to ENZ/AA involves AR splice variants (AR-Vs) and specifically AR-V7. Current AR antagonists cannot target AR-V7 due to its lack of the C-terminal ligand-binding domain (LBD) but keeping the AR N-terminal domain (NTD) which still can activate androgen-responsive genes. Therefore, targeting the AR NTD and AR-V7 is critically important to overcome ENZ resistance. Unfortunately, AR NTD has been considered an "undruggable" target due to the difficulty in defining its three-dimensional (3D) structure. In this context, siRNA is highly suitable to address this undruggable target. However, siRNA cannot freely diffuse into cells, and a carrier is needed. In this regard, nucleic acid-based aptamers are highly suitable for cell type-specific delivery of siRNA in vivo. In this study, we have developed a serum-stable bivalent prostate-specific membrane antigen (PSMA) aptamer-AR-V7 siRNA chimera (PAP). The results show that PAP can knock down both AR-full length and AR-V7 in PSMA-expressing castration-resistant cells. It can resensitize ENZ in cell lines and PCa xenografts. ENZ combined with PAP can significantly inhibit 22Rv1 xenograft growth in mice without experiencing castration. Owing to the low toxicity, PAP has potential to offer a new antiandrogen treatment for current ENZ-resistant PCa.

5.
Drug Resist Updat ; 70: 100985, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423117

ABSTRACT

Phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the first step of the serine synthesis pathway (SSP), is overexpressed in multiple types of cancers. The androgen receptor inhibitor enzalutamide (Enza) is the primary therapeutic drug for patients with castration-resistant prostate cancer (CRPC). However, most patients eventually develop resistance to Enza. The association of SSP with Enza resistance remains unclear. In this study, we found that high expression of PHGDH was associated with Enza resistance in CRPC cells. Moreover, increased expression of PHGDH led to ferroptosis resistance by maintaining redox homeostasis in Enza-resistant CRPC cells. Knockdown of PHGDH caused significant GSH reduction, induced lipid peroxides (LipROS) increase and significant cell death, resulting in inhibiting growth of Enza-resistant CRPC cells and sensitizing Enza-resistant CRPC cells to enzalutamide treatment both in vitro and in vivo. We also found that overexpression of PHGDH promoted cell growth and Enza resistance in CRPC cells. Furthermore, pharmacological inhibition of PHGDH by NCT-503 effectively inhibited cell growth, induced ferroptosis, and overcame enzalutamide resistance in Enza-resistant CRPC cells both in vitro and in vivo. Mechanically, NCT-503 triggered ferroptosis by decreasing GSH/GSSG levels and increasing LipROS production as well as suppressing SLC7A11 expression through activation of the p53 signaling pathway. Moreover, stimulating ferroptosis by ferroptosis inducers (FINs) or NCT-503 synergistically sensitized Enza-resistant CRPC cells to enzalutamide. The synergistic effects of NCT-503 and enzalutamide were verified in a xenograft nude mouse model. NCT-503 in combination with enzalutamide effectively restricted the growth of Enza-resistant CRPC xenografts in vivo. Overall, our study highlights the essential roles of increased PHGDH in mediating enzalutamide resistance in CRPC. Therefore, the combination of ferroptosis inducer and targeted inhibition of PHGDH could be a potential therapeutic strategy for overcoming enzalutamide resistance in CRPC.

6.
J Biol Chem ; 298(2): 101556, 2022 02.
Article in English | MEDLINE | ID: mdl-34973338

ABSTRACT

Enzalutamide, a second-generation antiandrogen, is commonly prescribed for the therapy of advanced prostate cancer, but enzalutamide-resistant, lethal, or incurable disease invariably develops. To understand the molecular mechanism(s) behind enzalutamide resistance, here, we comprehensively analyzed a range of prostate tumors and clinically relevant models by gene expression array, immunohistochemistry, and Western blot, which revealed that enzalutamide-resistant prostate cancer cells and tumors overexpress the pseudokinase, Tribbles 2 (TRIB2). Inhibition of TRIB2 decreases the viability of enzalutamide-resistant prostate cancer cells, suggesting a critical role of TRIB2 in these cells. Moreover, the overexpression of TRIB2 confers resistance in prostate cancer cells to clinically relevant doses of enzalutamide, and this resistance is lost upon inhibition of TRIB2. Interestingly, we found that TRIB2 downregulates the luminal markers androgen receptor and cytokeratin 8 in prostate cancer cells but upregulates the neuronal transcription factor BRN2 (Brain-2) and the stemness factor SOX2 (SRY-box 2) to induce neuroendocrine characteristics. Finally, we show that inhibition of either TRIB2 or its downstream targets, BRN2 or SOX2, resensitizes resistant prostate cancer cells to enzalutamide. Thus, TRIB2 emerges as a potential new regulator of transdifferentiation that confers enzalutamide resistance in prostate cancer cells via a mechanism involving increased cellular plasticity and lineage switching.


Subject(s)
Benzamides , Calcium-Calmodulin-Dependent Protein Kinases , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Benzamides/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Line, Tumor , Cell Lineage , Cell Plasticity , Drug Resistance, Neoplasm , Humans , Male , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
7.
Prostate ; 83(15): 1458-1469, 2023 11.
Article in English | MEDLINE | ID: mdl-37475584

ABSTRACT

BACKGROUND: Androgen signaling inhibitors (ASI) have been approved for treatment of metastatic castration-resistant prostate cancer (mCRPC). However, the limited success of ASI in clinic justifies an urgent need to identify new targets and develop novel approaches for treatment. EZH2 significantly increases in prostate cancer (PCa). Little is understood, however, regarding the roles of EZH2 in Enzalutamide-resistant (EnzR) mCRPC. METHODS: We firstly investigated the levels of EZH2 and the altered pathways in public database which was comprised with primary and metastatic PCa patient tumors. To elucidate the roles of EZH2 in mCRPC, we manipulated EZH2 in EnzR PCa cell lines to examine epithelial-mesenchymal transition (EMT). To dissect the underlying mechanisms, we measured the transcription levels of EMT-associated transcription factors (TFs). RESULTS: We found that EZH2 was highly expressed in mCRPC than that of primary PCa tumors and that EnzR PCa cells gained more EMT characteristics than those of enzalutamide-sensitive counterparts. Further, loss of EZH2-induced inhibition of EMT is independent of polycomb repressive complex 2 (PRC2). Mechanistically, downregulation of EZH2 inhibits transcription of EMT-associated TFs by repressing formation of H3K4me3 to the promotor regions of the TFs. CONCLUSION: We identified the novel roles of EZH2 in EnzR mCRPC. EnzR PCa gains more EMT properties than that of enzalutamide-sensitive PCa. Loss of EZH2-assocaited inhibition of EMT is PRC2 independent. Downregulation of EZH2 suppresses EMT by impairing formation of H3K4me3 at the promotor regions, thus repressing expression of EMT-associated TFs.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Epithelial-Mesenchymal Transition , Down-Regulation , Cell Line, Tumor , Nitriles , Androgen Antagonists/pharmacology , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism
8.
Pharmacol Res ; 189: 106692, 2023 03.
Article in English | MEDLINE | ID: mdl-36773708

ABSTRACT

Ubiquitin proteasome activity is suppressed in enzalutamide resistant prostate cancer cells, and the heat shock protein 70/STIP1 homology and U-box-containing protein 1 (HSP70/STUB1) machinery are involved in androgen receptor (AR) and AR variant protein stabilization. Targeting HSP70 could be a viable strategy to overcome resistance to androgen receptor signaling inhibitor (ARSI) in advanced prostate cancer. Here, we showed that a novel HSP70 allosteric inhibitor, JG98, significantly suppressed drug-resistant C4-2B MDVR and CWR22Rv1 cell growth, and enhanced enzalutamide treatment. JG98 also suppressed cell growth in conditional reprogramed cell cultures (CRCs) and organoids derived from advanced prostate cancer patient samples. Mechanistically, JG98 degraded AR/AR-V7 expression in resistant cells and promoted STUB1 nuclear translocation to bind AR-V7. Knockdown of the E3 ligase STUB1 significantly diminished the anticancer effects and partially restored AR-V7 inhibitory effects of JG98. JG231, a more potent analog developed from JG98, effectively suppressed the growth of the drug-resistant prostate cancer cells, CRCs, and organoids. Notably, the combination of JG231 and enzalutamide synergistically inhibited AR/AR-V7 expression and suppressed CWR22Rv1 xenograft tumor growth. Inhibition of HSP70 using novel small-molecule inhibitors coordinates with STUB1 to regulate AR/AR-V7 protein stabilization and ARSI resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Androgen Antagonists , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor , Nitriles/pharmacology , Androgen Receptor Antagonists , Androgens/pharmacology , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/pharmacology , Drug Resistance, Neoplasm , Ubiquitin-Protein Ligases
9.
Bioorg Med Chem Lett ; 75: 128952, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36031018

ABSTRACT

Prostate cancer (PCa) is the most frequently diagnosed male malignant tumor and remains the second leading cause of male cancer mortality in western countries. The development of novel antiandrogens to circumvent the drug resistance in anti-PCa treatment is highly demanded. Herein, we identified that gossypol (GOS) specificly inhibited the AR signaling. Further optimization of GOS derivatives led to the discovery of compound XY-32. XY-32 efficiently inhibits AR signaling with the IC50 of 1.23 µM. XY-32 downregulates both the full-length AR and the AR variable splice AR-V7 via suppressing the mRNA expression. It inhibits the proliferation of CRPC cells such as the LNCaP cells, the PC-3 cells, and enzalutamide resistance 22Rv1 cells. The work demonstrates the GOS derivatives represent a novel series of anti-androgen to conquer the acquired AR mutations or AR splice variants induced drug resistance of mCRPC.


Subject(s)
Gossypol , Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/pharmacology , Androgen Receptor Antagonists/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Gossypol/pharmacology , Humans , Male , Nitriles , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Messenger , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
10.
J Biol Chem ; 295(16): 5470-5483, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32184358

ABSTRACT

Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy.


Subject(s)
Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptor, EphB4/metabolism , Receptors, Androgen/genetics , Animals , Antineoplastic Agents/therapeutic use , Benzamides , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/metabolism , Receptor, EphB4/antagonists & inhibitors , Receptors, Androgen/metabolism
11.
J Pathol ; 252(2): 101-113, 2020 10.
Article in English | MEDLINE | ID: mdl-32617978

ABSTRACT

The histone demethylase KDM4B functions as a key co-activator for the androgen receptor (AR) and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 methylation marks. Constitutively active androgen receptor confers anti-androgen resistance in advanced prostate cancer. However, the role of KDM4B in resistance to next-generation anti-androgens and the mechanisms of KDM4B regulation are poorly defined. Here we found that KDM4B is overexpressed in enzalutamide-resistant prostate cancer cells. Overexpression of KDM4B promoted recruitment of AR to the c-Myc (MYC) gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA, which regulates the sensitivity to next-generation AR-targeted therapy. Inhibition of KDM4B significantly inhibited prostate tumor cell growth in xenografts, and improved enzalutamide treatments through suppression of c-Myc. Clinically, KDM4B expression was found upregulated and to correlate with prostate cancer progression and poor prognosis. Our results revealed a novel mechanism of anti-androgen resistance via histone demethylase alteration which could be targeted through inhibition of KDM4B to reduce AR-dependent c-Myc expression and overcome resistance to AR-targeted therapies. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenocarcinoma/metabolism , Drug Resistance, Neoplasm/physiology , Jumonji Domain-Containing Histone Demethylases/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Adenocarcinoma/pathology , Androgen Receptor Antagonists/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-myc/metabolism
12.
Prostate ; 80(3): 256-266, 2020 02.
Article in English | MEDLINE | ID: mdl-31856338

ABSTRACT

BACKGROUND: Because androgen receptor (AR) signaling is essential for prostate cancer (PCa) initiation and progression, castration is the main approach for treatment. Unfortunately, patients tend to enter a stage called castration-resistant prostate cancer (CRPC) despite the initial response to castration. For various reasons, AR signaling is reactivated in CRPC. As such, AR signaling inhibitors, such as enzalutamide, has been approved by the Food and Drug Administration to treat CRPC in the clinic. However, the limited success of these new drugs suggests an immediate unmet need to understand the underlying mechanisms for resistance so novel targets can be identified to enhance their efficacy. METHODS: An unbiased bioinformatics analysis was performed with the existing human patient dataset and RNA-seq results of in-house PCa cell lines to identify new targets to overcome enzalutamide resistance. Cell viability and growth were detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and colony formation assay. Cell invasion and migration were detected by transwell assay. Protein levels were detected by Western blot or immunofluorescence. RESULTS: We found that the noncanonical Wnt signaling was activated in enzalutamide-resistant PCa cells and that the activation of noncanonical Wnt signaling was correlated with AR expression and disease progression. This was validated by the elevated expression of noncanonical Wnt pathway members such as Wnt5a, RhoA, and ROCK in enzalutamide-resistant PCa cells in comparison to their enzalutamide-sensitive counterparts. And, both Y27632, an inhibitor of ROCK, and depletion of ROCK enhanced the efficacy of enzalutamide in enzalutamide-resistant PCa cells. Of significance, a combination of Y27632 and enzalutamide inhibited 22RV1-derived xenograft tumor growth synergistically. Finally, ROCK depletion plus enzalutamide treatment inhibited invasion and migration of enzalutamide-resistant PCa cells via inhibition of epithelial-mesenchymal transition. CONCLUSIONS: The noncanonical Wnt pathway is activated in enzalutamide-resistant PCa and inhibition of noncanonical Wnt pathway overcomes enzalutamide resistance and enhances its efficacy in CRPC.


Subject(s)
Amides/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Pyridines/pharmacology , Wnt Signaling Pathway/drug effects , Amides/administration & dosage , Animals , Benzamides , Cell Line, Tumor , Cell Movement/drug effects , Drug Resistance, Neoplasm , Drug Synergism , Humans , Male , Mice , Nitriles , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Pyridines/administration & dosage , Random Allocation , Receptors, Androgen/metabolism , Xenograft Model Antitumor Assays , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
13.
Int J Mol Sci ; 21(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339129

ABSTRACT

Enzalutamide, an antiandrogen, is approved for therapy of castration resistant prostate cancer. Clinical applications have shown that approximately 30% of patients acquire resistance after a short period of treatment. However, the molecular mechanisms underlying this resistance is not completely understood. To identify transcriptomic signatures associated with acquisition of drug resistance we profiled gene expression of paired enzalutamide sensitive and resistant human prostate cancer LNCaP (lymph node carcinoma of the prostate) and C4-2B cells. Overlapping genes differentially regulated in the enzalutamide resistant cells were ranked by Ingenuity Pathway Analysis and their functional validation was performed using ingenuity knowledge database followed by confirmation to correlate transcript with protein expression. Analysis revealed that genes associated with cancer stem cells, such as POU5F1 (OCT4), SOX2, NANOG, BMI1, BMP2, CD44, SOX9, and ALDH1 were markedly upregulated in enzalutamide resistant cells. Amongst the pathways enriched in the enzalutamide-resistant cells were those associated with RUNX2, hedgehog, integrin signaling, and molecules associated with elastic fibers. Further examination of a patient cohort undergoing ADT and its comparison with no-ADT group demonstrated high expression of POU5F1 (OCT4), ALDH1, and SOX2 in ADT specimens, suggesting that they may be clinically relevant therapeutic targets. Altogether, our approach exhibits the potential of integrative transcriptomic analyses to identify critical genes and pathways of antiandrogen resistance as a promising approach for designing novel therapeutic strategies to circumvent drug resistance.


Subject(s)
Androgens/deficiency , Gene Regulatory Networks , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms, Castration-Resistant/genetics , Transcriptome , Androgen Receptor Antagonists/pharmacology , Benzamides , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplastic Stem Cells/metabolism , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology
14.
Mol Carcinog ; 57(10): 1332-1341, 2018 10.
Article in English | MEDLINE | ID: mdl-30069922

ABSTRACT

Androgen ablation therapy is the primary therapeutic option for locally advanced and metastatic castration-resistant prostate cancer (CRPC). We investigated therapeutic effect of a dietary metabolite Urolithin A (UroA) and dissected the molecular mechanism in CRPC cells. Treatment with UroA inhibited cell proliferation in both androgen receptor-positive (AR+ ) (C4-2B) and androgen receptor-negative (AR- ) (PC-3) cells however, AR+ CaP cells were more sensitive to UroA treatment as compared with AR- CaP cells. Inhibition of the AR signaling was responsible for the UroA effect on AR+ CaP cells. Ectopic expression of AR in PC-3 cells sensitized them to UroA treatment as compared to the vector-expresseing PC-3 cells, which suggests that AR could be a target of UroA. Similarly, in enzalutamide-resistant C4-2B cells, a downregulation of AR expression also suppressed cell proliferation which was observed with the UroA treatment. Oral administration of UroA significantly suppressed the growth of C4-2B xenografts (P = 0.05) compared with PC-3 xenografts (P = 0.069) without causing toxicity to animals. Immunohistochemistry analysis confirmed in vitro findings such as downregulation of AR/pAKT signaling in UroA-treated C4-2B tumors, which suggests that UroA may be a potent chemo-preventive and therapeutic agent for CRPC.


Subject(s)
Cell Proliferation/drug effects , Coumarins/pharmacology , Down-Regulation/drug effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/metabolism , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice, Inbred BALB C , Mice, Nude , PC-3 Cells , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Burden/drug effects , Tumor Burden/genetics
15.
Aging Male ; 21(4): 231-237, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29316842

ABSTRACT

BACKGROUND: Enzalutamide, a novel androgen receptor (AR) signaling inhibitor, has been widely used to increase survival in patients with castration-resistant prostate cancer. However, resistance to enzalutamide invariably develops. METHODS: To understand the underlying mechanisms of resistance to enzalutamide, we performed integrative analysis on multiple transcriptome datasets to identify those genes constantly up- or down-regulated in response to enzalutamide treatment. RESULTS: There were 703 and 581 differentially expressed genes derived from enzalutamide-sensitive and -resistant cell lines, respectively. Functional enrichment analysis on these genes demonstrated that biological processes of cell proliferation and ubiquitin mediated proteolysis pathway are specifically disturbed in sensitive cell lines but not resistant ones. Such divergence explained why enzalutamide ineffective for resistant prostate cancer. CONCLUSIONS: Taken together, the present study revealed a set of critical genes, which can provide etiologic clues as to enzalutamide-resistant prostate cancer and guide novel therapeutic approaches.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Gene Expression/drug effects , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Antineoplastic Agents/therapeutic use , Benzamides , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Male , Nitriles , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/therapeutic use , Signal Transduction/genetics , Treatment Failure
16.
Zhonghua Nan Ke Xue ; 24(2): 116-121, 2018 Feb.
Article in Zh | MEDLINE | ID: mdl-30156069

ABSTRACT

OBJECTIVE: To establish enzalutamide-resistant human prostate cancer cell lines and screen out the lncRNA and mRNA expression profiles associated with enzalutamide resistance. METHODS: Human prostate cancer cell lines LNCAP and C4-2B were cultured with 10 µmol/L enzalutamide for 6 months in vitro for the establishment of enzalutamide-resistant subclones LNCAP-ENZA and C4-2B-ENZA. The IC50 value and enzalutamide resistance index of each cell line were examined by MTT assay, the expressions of enzalutamide-related genes FL-AR, AR-V7 and HnRNPA1 were determined by Western blot, and the lncRNA and mRNA differential expressions of C4-2B and C4-2B-ENZA were detected by high-throughout lncRNA microarray. RESULTS: Compared with LNCAP and C4-2B, the IC50 values of enzalutamide-resistant subclones LNCAP-ENZA (60.83 µmol/L) and C4-2B-ENZA (88.32 µmol/L) were increased significantly (P < 0.05) and the enzalutamide-resistance indexes of the LNCAP-ENZA and C4-2B-ENZA cells were 4.94 and 4.67, respectively. The expressions of AR-V7 and HnRNPA1 were markedly up-regulated in the LNCAP-ENZA and C4-2B-ENZA cells as compared with those in the LNCAP and C4-2B cells, but that of FL-AR showed no significant change. A total of 1 440 lncRNAs and 1 236 mRNAs were identified as differentially expressed in the C4-2B-ENZA cells. CONCLUSIONS: Enzalutamide -resistant human prostate cancer cell subclones LNCAP-ENZA and C4-2B-ENZA were successfully established and enzalutamide resistance-associated lncRNA and mRNA were identified, which may provide some molecular evidence for the management of enzalutamide-resistant human prostate cancer.


Subject(s)
Cell Line, Tumor/drug effects , Drug Resistance, Neoplasm , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , RNA, Neoplasm/metabolism , Benzamides , Humans , Male , Nitriles , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/genetics , Receptors, Androgen
17.
Oncol Rep ; 52(4)2024 10.
Article in English | MEDLINE | ID: mdl-39129317

ABSTRACT

Prostate cancer (PCa) is the leading cause of cancer­related death among men worldwide. PCa often develops resistance to standard androgen deprivation therapy and androgen receptor (AR) pathway inhibitors, such as enzalutamide (ENZ). Therefore, there is an urgent need to develop novel therapeutic strategies for this disease. The efficacy of ADA­308 was evaluated through in vitro assessments of AR activity and cell proliferation, alongside in vivo studies. ADA­308 has emerged as a promising candidate, demonstrating potent inhibition of AR­sensitive adenocarcinoma as well as ENZ­resistant PCa cell lines. The results of the study revealed that ADA­308 effectively blocked AR activity, including its nuclear localization, and inhibited cell proliferation in vitro. Furthermore, ADA­308 demonstrated notable efficacy in vivo, with a robust antitumor response in ENZ­resistant models. These findings establish the role of ADA­308 as a potent AR inhibitor that overcomes resistance to AR­targeted therapies and highlights its potential as a novel therapeutic approach in advanced PCa management.


Subject(s)
Adenocarcinoma , Androgen Antagonists , Benzamides , Cell Proliferation , Drug Resistance, Neoplasm , Nitriles , Phenylthiohydantoin , Receptors, Androgen , Humans , Male , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Receptors, Androgen/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Mice , Animals , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Xenograft Model Antitumor Assays , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use
18.
Res Sq ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585965

ABSTRACT

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 is highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression is associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibit neural lineage pathways, suppressing NEPC cell proliferation, PDX tumor organoid viability, and xenograft tumor growth. Mechanistically, the chaperone protein HSP70 regulates PLXND1 protein stability through degradation, and inhibition of HSP70 decreases PLXND1 expression and NEPC organoid growth. In summary, our findings suggest that PLXND1 could be a new therapeutic target and molecular indicator for NEPC.

19.
J Exp Clin Cancer Res ; 42(1): 209, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596700

ABSTRACT

BACKGROUND: Prostate cancer threatens the health of men over sixty years old, and its incidence ranks first among all urinary tumors among men. Enzalutamide remains the first-line drug for castration-resistant prostate cancer, however, tumors inevitably become resistant to enzalutamide. Hence, it is of great importance to investigate the mechanisms that induce enzalutamide resistance in prostate cancer cells. METHODS: Bioinformatic analyzing approaches were used to identified the over-expressed genes in prostate cancer tumor tissues from three GEO datasets. qRT-PCR, western blotting and immunochemistry/In situ hybridization staining assays were performed to assess the expression of SNHG4, RRM2, TK1, AURKA, EZH2 and RREB1. Cell cycle was measured by flow cytometry. CCK-8, plate colony formation and EdU assays were performed to assess the cell proliferation. Senescence-associated ß-Gal assay was used to detect the cell senescence level. γ-H2AX staining assay was performed to assess the DNA damages of PCa cells. Luciferase reporter assay and RNA immunoprecipitation assay were performed to verify the RNA-RNA interactions. Chromatin immunoprecipitation assay was performed to assess the bindings between protein and genomic DNA. RESULTS: We found that RRM2 and NUSAP1 are highly expressed in PCa tumors and significantly correlated with poor clinical outcomes in PCa patients. Bioinformatic analysis as well as experimental validation suggested that SNHG4 regulates RRM2 expression via a let-7 miRNA-mediated ceRNA network. In addition, SNHG4 or RRM2 knockdown significantly induced cell cycle arrest and cell senescence, and inhibited DNA damage repair and cell proliferation, and the effects can be partially reversed by let-7a knockdown or RRM2 reoverexpression. In vitro and in vivo experiments showed that SNHG4 overexpression markedly enhanced cell resistance to enzalutamide. RREB1 was demonstrated to transcriptionally regulate SNHG4, and RREB1 was also validated to be a target of let-7a and thereby regulated by the SNHG4/let-7a feedback loop. CONCLUSION: Our study uncovered a novel molecular mechanism of lncRNA SNHG4 in driving prostate cancer progression and enzalutamide resistance, revealing the critical roles and therapeutic potential of RREB1, SNHG4, RRM2 and let-7 miRNAs in anticancer therapy.


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , Humans , Male , Middle Aged , Cell Survival , DNA-Binding Proteins , Feedback , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , Transcription Factors
20.
J Cancer ; 14(13): 2574-2584, 2023.
Article in English | MEDLINE | ID: mdl-37670963

ABSTRACT

Background and aim: As non-coding RNAs, circular RNAs (circRNAs) contribute to the progression of malignancies by regulating various biological processes. In prostate cancer, however, there is still a lack of understanding regarding the potential molecular pathways and roles of circRNAs. Methods: Loss-off function experiments were performed to investigate the potential biological function of circRNA in the progression of prostate cancer. Western blot, qRT-PCR, and IHC assay were used to examine the expression level of different genes or circRNAs. Further molecular biology experiments were conducted to uncover the molecular mechanism underlying circRNA in prostate cancer using dual luciferase reporter and RNA immunoprecipitation (RIP) assays. Results: A novel circRNA (hsa_circ_0124696, named circROBO1) was identified as a significantly upregulated circRNA in both prostate cancer cells and tissues. Suppression of circROBO1 significantly attenuated the proliferation of prostate cancer cells. In addition, we found that the knockdown of circROBO1 remarkably increased the sensitivity of prostate cancer to enzalutamide treatment. A deceleration in glycolysis rate was observed after inhibition of circROBO1, which could suppress prostate cancer growth and overcome resistance to enzalutamide. Our results revealed that circROBO1 promotes prostate cancer growth and enzalutamide resistance via accelerating glycolysis. Conclusion: Our study identified the biological role of the circROBO1-miR-556-5p-PGK1 axis in the growth and enzalutamide resistance of prostate cancer, which is the potential therapeutic target of prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL