ABSTRACT
Aqueous Zn metal batteries are attracting tremendous interest as promising energy storage systems due to their intrinsic safety and cost-effectiveness. Nevertheless, the reversibility of Zn metal anodes (ZMAs) is hindered by water-induced parasitic reactions and dendrite growth. Herein, a novel hydrated eutectic electrolyte (HEE) consisting of Zn(BF4)2·xH2O and sulfolane (SL) is developed to prevent the side reactions and achieve the outstanding cyclability of ZMAs. The strong coordination between Zn2+ and SL triggers the eutectic feature, enabling the low-temperature availability of HEEs. The restriction of BF4 - hydrolysis in the eutectic system can realize favorable compatibility between Zn(BF4)2-based electrolyte and ZMAs. Besides, the newly-established solvation structure with the participation of SL, H2O, and BF4 -, can induce in situ formation of desirable SEI with gradient structure consisting of B,O-rich species, ZnS, and ZnF2, to offer satisfactory protection toward ZMAs. Consequently, the HEE allows the Zn||Zn symmetric cell to cycle over 1650 h at 2 mA cm-2 and 1 mA h cm-2. Moreover, the Zn||NH4V4O10 full batteries can deliver a prolonged lifespan for 1000 cycles with a high capacity retention of 83.4%. This work represents a feasible approach toward the elaborate design of advanced electrolyte systems for next-generation batteries.
ABSTRACT
Aqueous rechargeable zinc-ion batteries (ARZIBs) are considered as an emerging energy storage technology owing to their low cost, inherent safety, and reasonable energy density. However, significant challenges associated with electrodes, and aqueous electrolytes restrict their rapid development. Herein, ethylene glycol-choline chloride (Eg-ChCl) based hydrated deep-eutectic electrolytes (HDEEs) are proposed for RZIBs. Also, a novel V10O24·nH2O@rGO composite is prepared and investigated in combination with HDEEs. The formulated HDEEs, particularly the composition of 1 ml of EG, 0.5 g of ChCl, 4 ml of H2O, and 2 M ZnTFS (1-0.5-4-2 HDEE), not only exhibit the lowest viscosity, highest Zn2+ conductivity (20.38 mS cm-1), and the highest zinc (Zn) transference number (t+ = 0.937), but also provide a wide electrochemical stability window (>3.2 V vs ZnÇZn2+) and enabledendrite-free Zn stripping/plating cycling over 1000 hours. The resulting ZnÇV10O24·nH2O@rGO cell with 1-0.5-4-2 HDEE manifests high reversible capacity of ≈365 mAh g-1 at 0.1 A g-1, high rate-performance (delivered ≈365/223 mAh g-1 at 0.1/10 mA g-1) and enhanced cycling performance (≈63.10% capacity retention in the 4000th cycle at 10 A g-1). Furthermore, 1-0.5-4-2 HDEE support feasible Zn-ion storage performance across a wide temperature range (0-80 °C) FInally, a ZnÇV10O24·nH2O@rGO pouch-cell prototype fabricated with 1-0.5-4-2 HDEE demonstrates good flexibility, safety, and durability.
ABSTRACT
Eutectic electrolytes hold promise for aqueous zinc metal batteries in sustainable energy storage chemistries, yet improvement from perspective of molecule configurational engineering are ambiguous. Herein, we propose design strategy of increasing asymmetric molecular geometry in organic ligands to regulate frustrated coordination and disordered structure for eutectic electrolytes toward enhanced zinc metal batteries. The introduced asymmetry in eutectic component gives rise to relatively weak coordination strength and configurational disorder interaction among cation-anion-ligand, leading to suppressed local aggregation, steady eutectic phase and improved Zn2+ diffusion kinetics. Such highly frustrated coordination state also enables disruption of hydrogen bonding network and reinforcement of anion participation, which results in confined side reactions, decreased water activity and the formation of inorganic-enriched solid electrolyte interphase. In comparison to highly symmetric ligands, asymmetric ligand-involved eutectic electrolytes with configurational disorder deliver high Coulombic efficiency of 99.4 %, stabilized Zn plating/stripping of 5000 h and impressive rate capability even under harsh conditions such as small N/P, low temperature. The rationale in this work advances the deep understanding of asymmetric molecular engineering in eutectic electrolytes and showcases suitability of frustrated coordination to achieve high-performance zinc metal batteries.
ABSTRACT
Rechargeable zinc-based batteries are finding their niche in energy storage applications where cost, safety, scalability matter, yet they are plagued by rapid performance degradation due to the lack of suitable electrolytes to stabilize Zn anode. Herein, we report a competitive coordination structure to form unique quaternary hydrated eutectic electrolyte with ligand-cation-anion cluster. Unraveled by experiment and calculation results, the competing component can enter initial primary coordination shell of Zn2+ ion, partially substituting Lewis basic eutectic ligands and reinforcing cation-anion interaction. The hydration-deficient complexes induced between competing eutectic as hydrogen bond donor-accepter and water also broaden the electrochemical window and confine free water activity. The altered coordination further leads to robust hybrid organic-inorganic enriched solid electrolyte interphase, enabling passivated surface and suppressed dendrite growth. Noticeably, stable Zn plating/stripping for 8000 cycles with high Coulombic efficiencies of 99.6 % and long cycling life of 10000 cycles for Zn-organic batteries are obtained. Even under harsh conditions (small N/P ratio, low temperature), the profits brought by the competitive eutectic electrolyte are still very prominent. This design principle leveraged by eutectic electrolytes with competitive coordination offers a new approach to improve battery performance.
ABSTRACT
Li-O2 batteries (LOBs) have gained widespread recognition for their exceptional energy densities. However, a major challenge faced by LOBs is the lack of appropriate electrolytes that can effectively balance reactant transport, interfacial compatibility, and non-volatility. To address this issue, a novel supramolecular deep eutectic electrolyte (DEE) has been developed, based on synergistic interaction between Li-bonds and H-bonds through a combination of lithium salt (LiTFSI), acetamide (Ace) and boric acid (BA). The incorporation of BA serves as an interface modification additive, acting as both Li-bonds acceptor and H-bonds donor/acceptor, thereby enhancing the redox stability of the electrolyte, facilitating a solution phase discharge process and improving compatibility with the Li anode. Our proposed DEE demonstrates a high oxidation voltage of 4.5â V, an ultrahigh discharge capacity of 15225â mAh g-1 and stable cycling performance of 196â cycles in LOBs. Additionally, the intrinsic non-flammability and successful operation of a Li-O2 pouch cell indicate promising practical applications of this electrolyte. This research broadens the design possibilities for LOBs electrolytes and provides theoretical insights for future studies.
ABSTRACT
Aqueous Zn-ion batteries (ZIBs) have attracted attention for grid applications due to their cost-effectiveness and high security. However, their lifespan decreases at high temperatures due to declining interfacial stability and increased side reactions. To address these challenges, a ternary deep eutectic solvent-based flexible electrolyte, comprised of Zn(ClO4)2 â 6H2O, butanedinitrile (BD), and LiCl in an amphoteric polymer matrix, was developed to enable wide-temperature ZIBs working from -20 °C to 70 °C. The interactions among BD, Li+, and zinc hydrate alongside the amphoteric groups on the polyelectrolyte matrix could effectively suppress the interfacial side reactions and Zn dendrites formation. Consequently, the symmetric Zn cell demonstrates exceptional stability across a wide-temperature range, with the ability to survive up to 2780â hours (1â mA cm-2) at 50 °C. Furthermore, the flexible Zn||PANI battery can operate stably over 1000 cycles at 50 °C, boasting an initial specific capacity of 124.8â mAh g-1 and capacity retention rate of 87.9 % (3â A g-1). This work presents an effective strategy for designing high-stability energy storage devices with excellent security features that can function reliably across diverse temperature conditions.
ABSTRACT
Zn metal as a promising anode for aqueous batteries suffers from severe zinc dendrites, anion-related side reactions, hydrogen evolution reaction (HER) and narrow electrochemical stable window (ESW). Herein, an "anions-in-colloid" hydrated deep eutectic electrolyte consisting of Zn(ClO4)2 â 6H2O, ß-cyclodextrin (ß-CD), and H2O with mass ratio of 7 : 4.5 : 3 (ACDE-3) is designed to improve the stability of zinc anode. The ACDE-3 reconfigures the hydrogen-bond (HB) network and regulates the solvation shell. More importantly, the hydroxyl-rich ß-cyclodextrins (ß-CDs) in ACDE-3 self-assemble into micelles, in which the steric effect between adjacent ß-CDs in micelles restricts the movement of anions. This unique "anions-in-colloid" structure enables the eutectic system with a high Zn2+ transference number (tZn 2+) of 0.84. Thus, ACDE-3 inhibits the formation of dendrite, prevents the anion-involved side reactions, suppresses the HER, and enlarges the ESW to 2.32â V. The Zn//Zn symmetric cell delivers a long lifespan of 900â hours at 0.5â mA cm-2, and the Zn//Cu half cells have a high average columbic efficiency (ACE) of 97.9 % at 0.5â mA cm-2 from cycle 15 to 200 with a uniform and compact zinc deposition. When matched with a poly(1,5-naphthalenediamine) (poly(1, 5-NAPD)) cathode, the full battery with a low negative/positive capacity (N/P) ratio of 2 can still cycle steadily for 200 cycles at a current density of 1.0â A g-1. Additionally, this electrolyte has been proven to be operative over a wide temperature range from -40 °C to 40 °C.
ABSTRACT
Prussian blue analogues (PBAs) have been widely studied in aqueous zinc-ion batteries (AZIBs) due to the characteristics of large specific surface area, open aperture, and straightforward synthesis. In this work, vanadium-based PBA nanocubes were firstly prepared using a mild in situ conversion strategy at room temperature without the protection of noble gas. Benefiting from the multiple-redox active sites of V3+/V4+, V4+/V5+, and Fe2+/Fe3+, the cathode exhibited an excellent discharge specific capacity of 200â mAh g-1 in AZIBs, which is much higher than those of other metal-based PBAs nanocubes. To further improve the long-term cycling stability of the V-PBA cathode, a high concentration water-in-salt electrolyte (4.5â M ZnSO4+3â M Zn(OTf)2), and a water-based eutectic electrolyte (5.55â M glucose+3â M Zn(OTf)2) were designed to successfully inhibit the dissolution of vanadium and improve the deposition of Zn2+ onto the zinc anode. More importantly, the assembled AZIBs maintained 55 % of their highest discharge specific capacity even after 10000â cycles at 10â A g-1 with superior rate capability. This study provides a new strategy for the preparation of pure PBA nanostructures and a new direction for enhancing the long-term cycling stability of PBA-based AZIBs at high current densities for industrialization prospects.
ABSTRACT
Aqueous highly concentrated electrolytes (AHCEs) have recently emerged as an innovative strategy to enhance the cycling stability of aqueous Zinc (Zn) batteries (AZB). Particularly, thanks to high Zn Chloride (ZnCl2 ) solubility in water, AHCEs based on ZnCl2 feature remarkable Zn anode stability. However, due to their inherently acidic pH and Cl- anion reactivity, these electrolytes face compatibility challenges with other battery components. Here, an aqueous eutectic electrolyte (AEE) based on Brønsted-Lowry concept is reported-allowing the usage of cheap and abundant salts, ZnCl2, and sodium acetate (NaAc). The reported, pH buffered, AEE displays a higher coordination of water at an even lower salt concentration, by simply balancing the acceptor-donor Hâbonding. This results in impressive improvement of electrolyte properties such as high electrochemical stability, high transport properties and low glass transition temperature. The developed AEE displays higher compatibility with vanadium oxide-based cathode with a 50% increase in capacity retention in comparison to sat. ZnCl2 . More importantly, the pH buffered AEE solves the incompatibility issues of ZnCl2 toward commonly used aluminium (Al) current collector as well as cellulose separator. This work presents an efficient, simple, and low-cost strategy for the development of aqueous electrolytes for the practical application of Zn batteries.
ABSTRACT
Zinc-based energy storage has lately gained popularity due to natural abundance, operational safety, high energy density. Unfortunately, dendrite growth is a common and intractable issue faced in existing zinc-ion batteries to shorten cycle lifespan/stability. This review summarizes recent progress in assembly component (e. g., anode, electrolyte, separator) engineering for dendrite-free zinc-ion batteries. First, diversiform strategies of Zn surface modification and Zn host design are presented to shield the fundamental adverse effect aroused by uneven zinc deposition on the anode. Then, subtle deployments of electrolyte constituents are illustrated to optimize the Zn2+ solvation structure for ultimate dendrite control and Coulombic efficiency elevation in aqueous systems and beyond (e. g., eutectic electrolytes). Furthermore, rational manipulation of advanced separators and the upgrade of zinc metal-free Zn2+ -storage devices are briefly discussed to explore the dendrite-free and high-level Zn2+ -storage. Finally, challenges and perspectives are proposed to offer research inspirations toward safe, high-efficiency and long-lifespan zinc storage.
ABSTRACT
Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2 O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2 O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+ ) mechanism, and the intercalated TMS works as a "pillar" that provides more zincophilic sites and stabilizes the structure of cathode (NH4 V4 O10 , (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6â mAh g-1 at a low current density of 0.2â A g-1 for over 40â days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.
ABSTRACT
As a burgeoning electrolyte system, eutectic electrolytes based on ZnCl2 /Zn(CF3 SO3 )2 /Zn(TFSI)2 have been widely proposed in advanced Zn-I2 batteries; however, safety and cost concerns significantly limit their applications. Here, we report new-type ZnSO4 -based eutectic electrolytes that are both safe and cost-effective. Their universality is evident in various solvents of polyhydric alcohols, in which multiple -OH groups not only involve in Zn2+ solvation but also interact with water, resulting in the high stability of electrolytes. Taking propylene glycol-based hydrated eutectic electrolyte as an example, it features significant advantages in non-flammability and low price that is <1/200 cost of Zn(CF3 SO3 )2 /Zn(TFSI)2 -based eutectic electrolytes. Moreover, its effectiveness in confining the shuttle effects of I2 cathode and side reactions of Zn anodes is evidenced, resulting in Zn-I2 cells with high reversibility at 1â C and 91.4 % capacity remaining under 20â C. After scaling up to the pouch cell with a record mass loading of 33.3â mg cm-2 , super-high-capacity retention of 96.7 % is achieved after 500â cycles, which exceeds other aqueous counterparts. This work significantly broadens the eutectic electrolyte family for advanced Zn battery design.
ABSTRACT
The brain-storm of designing low-cost and commercialized eutectic electrolytes for zinc (Zn)-based electrochemical energy storage (ZEES) remains unresolved and attractive, especially when implementing it at low temperatures. Here, we report an appealing layout of advancing chlorine-functionalized eutectic (Cl-FE) electrolytes via exploiting Cl anion-induced eutectic interaction with Zn acetate solutions. This novel eutectic liquid shows high affinity to collaborate with 1,3-dioxolane (DOL) and is prone to constitute Cl-FE/DOL-based electrolytes with a unique inner/outer eutectic solvation sheath for the better regulation of Zn-solvating neighboring and reconstruction of H-bonding. The side reactions are effectively restricted on Zn anodes and a high Coulombic efficiency of 99.5 % can be achieved over 1000â cycles at -20 °C with Zn//Cu setups. By prototyping scale-up Zn-ion pouch cells using the optimal eutectic liquid of 3ZnOAc1.2 Cl1.8 -DOL, we obtain improved electrochemical properties at -20 °C with a high capacitance of 203.9â F g-1 at 0.02â A g-1 in a range of 0.20-1.90â V and long-term cycling ability with 95.3 % capacitance retention at 0.2â A g-1 over 3,000â cycles. Overall, the proposal of ideal Cl-FE/DOL-based electrolytes guides the design of sub-zero and endurable aqueous ZEES devices and beyond.
ABSTRACT
Deep eutectic electrolytes (DEEs) are a new class of electrolytes with unique properties. However, the intermolecular interactions of DEEs are mostly dominated by Liâ â â O interactions, limiting the diversity of chemical space and material constituents. Herein, we report a new class of DEEs induced by Liâ â â N interactions between 2,2'-dipyridyl disulfide (DpyDS) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The strong ion-dipole interaction triggers the deep eutectic phenomenon, thus liberating the Li+ from LiTFSI and endowing the DEEs with promising ionic conductivity. These DEEs show admirable intrinsic safety, which cannot be ignited by flame. The DEE at the molar ratio of DpyDS:LiTFSI=4:1 (abbreviated as DEE-4:1) is electrochemically stable between 2.1 and 4.0â V vs. Li/Li+ , and exhibits an ionic conductivity of 1.5×10-4 â S cm-1 at 50 °C. The Li/LiFePO4 half cell with DEE-4:1 can provide a reversible capacity of 130â mAh g-1 and Coulombic efficiency above 98 % at 50 °C.
ABSTRACT
Intrinsically safe sodium-ion batteries are considered as a promising candidate for large-scale energy storage systems. However, the high flammability of conventional electrolytes may pose serious safety threats and even explosions. Herein, a strategy of constructing a deep eutectic electrolyte is proposed to boost the safety and electrochemical performance of succinonitrile (SN)-based electrolyte. The strong hydrogen bond between SâO of 1,3,2-dioxathiolane-2,2-dioxide (DTD) and the α-H of SN endows the enhanced safety and compatibility of SN with Lewis bases. Meanwhile, the DTD participates in the inner Na+ sheath and weakens the coordination number of SN. The unique solvation configuration promotes the formation of robust gradient inorganic-rich electrode-electrolyte interphase, and merits stable cycling of half-cells in a wide temperature range, with a capacity retention of 82.8% after 800 cycles (25 °C) and 86.3% after 100 cycles (60 °C). Correspondingly, the full cells deliver tremendous improvement in cycling stability and rate performance.
ABSTRACT
Aqueous aluminum-ion batteries (AAIBs) are considered as a promising alternative to lithium-ion batteries due to their large theoretical capacity, high safety, and low cost. However, the uneven deposition, hydrogen evolution reaction (HER), and corrosion during cycling impede the development of AAIBs, especially under a harsh environment. Here, a hydrated eutectic electrolyte (AATH40) composed of Al(OTf)3, acetonitrile (AN), triethyl phosphate (TEP), and H2O was designed to improve the electrochemical performance of AAIBs in a wide temperature range. The combination of molecular dynamics simulations and spectroscopy analysis reveals that AATH40 has a less-water-solvated structure [Al(AN)2(TEP)(OTf)2(H2O)]3+, which effectively inhibits side reactions, decreases the freezing point, and extends the electrochemical window of the electrolyte. Furthermore, the formation of a solid electrolyte interface, which effectively inhibits HER and corrosion, has been demonstrated by X-ray photoelectron spectroscopy, X-ray diffraction tests, and in situ differential electrochemical mass spectrometry. Additionally, operando synchrotron Fourier transform infrared spectroscopy and electrochemical quartz crystal microbalance with dissipation monitoring reveal a three-electron storage mechanism for the Al//polyaniline full cells. Consequently, AAIBs with this electrolyte exhibit improved cycling stability within the temperature range of -10-50 °C. This present study introduces a promising methodology for designing electrolytes suitable for low-cost, safe, and stable AAIBs over a wide temperature range.
ABSTRACT
Aluminum-ion batteries (AIBs) have been highlighted as a potential alternative to lithium-ion batteries for large-scale energy storage due to the abundant reserve, light weight, low cost, and good safety of Al. However, the development of AIBs faces challenges due to the usage of AlCl3-based ionic liquid electrolytes, which are expensive, corrosive, and sensitive to humidity. Here, we develop a low-cost, non-corrosive, and air-stable hydrated eutectic electrolyte composed of aluminum perchlorate nonahydrate and methylurea (MU) ligand. Through optimizing the molar ratio to achieve the unique solvation structure, the formed Al(ClO4)3·9H2O/MU hydrated deep eutectic electrolyte (AMHEE) with an average coordination number of 2.4 can facilely realize stable and reversible deposition/stripping of Al. When combining with vanadium oxide nanorods positive electrode, the Al-ion full battery delivers a high discharge capacity of 320 mAh g-1 with good capacity retention. The unique solvation structure with a low desolvation energy of the AMHEE enables Al3+ insertion/extraction during charge/discharge processes, which is evidenced by in situ synchrotron radiation X-ray diffraction. This work opens a new pathway of developing low-cost, safe, environmentally friendly and high-performance electrolytes for practical and sustainable AIBs.
ABSTRACT
Low-cost, high-safety, and broad-prospect aqueous zinc-manganese batteries (ZMBs) are limited by complex interfacial reactions. The solid-liquid interfacial state of the cathode dominates the Mn dissolution/deposition process of aqueous ZMBs, especially the important influence on the mass and charge transfer behavior of Zn2+ and Mn2+. We proposed a quasi-eutectic electrolyte (QEE) that would stabilize the reversible behavior of interfacial deposition and favorable interfacial reaction kinetic of manganese-based cathodes in a long cycle process by optimizing mass and charge transfer. We emphasize that the initial interfacial reaction energy barrier is not the main factor affecting cycling performance, and the good reaction kinetics induced by interfacial deposition during the cycling process is more conducive to the stable cycling of the battery, which has been confirmed by theoretical analysis, quartz crystal microbalance with dissipation monitoring, depth etching X-ray photon-electron spectroscopy, etc. As a result, the QEE electrolyte maintained a stable specific capacity of 250 mAh g-1 at 0.5 A g-1 after 350 cycles in zinc-manganese batteries. The energy density retention rate of the ZMB with QEE increased by 174% compared to that of conventional aqueous electrolyte. Furthermore, the multi-stacked soft-pack battery with a cathodic mass load of 54.4 mg maintained a stable specific capacity of 200 mAh g-1 for 100 cycles, demonstrating its commercial potential. This work proves the feasibility of adapting lean-water QEE to the stable aqueous ZMBs.
ABSTRACT
The development of electrolytes with high safety, high ionic conductivity, and the ability to inhibit lithium dendrites growth is crucial for the fabrication of high-energy-density lithium metal batteries. In this study, a ternary eutectic electrolyte is designed with LiTFSI (TFSI = bis(trifluoromethanesulfonyl)imide), butyrolactam (BL), and succinonitrile (SN). This electrolyte exhibits a high ion conductivity, nonflammability, and a wide electrochemical window. The competitive solvation effect among SN, BL, and Li+ reduces the viscosity and improves the stability of the eutectic electrolyte. The preferential coordination of BL toward Li+ facilitates the formation of stable solid electrolyte interphase films, leading to homogeneous and dendrite-free Li plating. As expected, the LiFePO4/Li cell with this ternary eutectic electrolyte delivers a high capacity retention of 90% after 500 cycles at 2 C and an average Coulombic efficiency of 99.8%. Moreover, Ni-rich LiNi0.8Co0.1Al0.1O2/Li and LiNi0.8Co0.1Mn0.1O2/Li cells based on the modified ternary eutectic electrolyte achieve an outstanding cycling performance. This study provides insights for understanding and designing better electrolytes for lithium metal batteries and analogous sodium/potassium metal batteries.