Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.713
Filter
Add more filters

Publication year range
1.
Immunity ; 52(2): 374-387.e6, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075729

ABSTRACT

Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.


Subject(s)
Drosophila melanogaster/immunology , Hemolymph/metabolism , Lipid Metabolism/immunology , Malpighian Tubules/immunology , Reactive Oxygen Species/immunology , Adaptive Immunity , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Diglycerides/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Feces/chemistry , Lipid Peroxidation/immunology , MAP Kinase Signaling System/immunology , Malpighian Tubules/metabolism , Protein Conformation , Reactive Oxygen Species/metabolism , Stress, Physiological/immunology
2.
Proc Natl Acad Sci U S A ; 121(13): e2317878121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466877

ABSTRACT

Can insects weighing mere grams challenge our current understanding of fluid dynamics in urination, jetting fluids like their larger mammalian counterparts? Current fluid urination models, predominantly formulated for mammals, suggest that jetting is confined to animals over 3 kg, owing to viscous and surface tension constraints at microscales. Our findings defy this paradigm by demonstrating that cicadas-weighing just 2 g-possess the capability for jetting fluids through remarkably small orifices. Using dimensional analysis, we introduce a unifying fluid dynamics scaling framework that accommodates a broad range of taxa, from surface-tension-dominated insects to inertia and gravity-reliant mammals. This study not only refines our understanding of fluid excretion across various species but also highlights its potential relevance in diverse fields such as ecology, evolutionary biology, and biofluid dynamics.


Subject(s)
Elephants , Hemiptera , Proboscidea Mammal , Animals , Ecology , Biological Evolution
3.
J Biol Chem ; 300(8): 107485, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906255

ABSTRACT

Hyperuricemia (HUA) is a metabolic disorder characterized by elevated serum uric acid (UA), primarily attributed to the hepatic overproduction and renal underexcretion of UA. Despite the elucidation of molecular pathways associated with this underexcretion, the etiology of HUA remains largely unknown. In our study, using by Uox knockout rats, HUA mouse, and cell line models, we discovered that the increased WWC1 levels were associated with decreased renal UA excretion. Additionally, using knockdown and overexpression approaches, we found that WWC1 inhibited UA excretion in renal tubular epithelial cells. Mechanistically, WWC1 activated the Hippo pathway, leading to phosphorylation and subsequent degradation of the downstream transcription factor YAP1, thereby impairing the ABCG2 and OAT3 expression through transcriptional regulation. Consequently, this reduction led to a decrease in UA excretion in renal tubular epithelial cells. In conclusion, our study has elucidated the role of upregulated WWC1 in renal tubular epithelial cells inhibiting the excretion of UA in the kidneys and causing HUA.


Subject(s)
Hippo Signaling Pathway , Hyperuricemia , Protein Serine-Threonine Kinases , Signal Transduction , Up-Regulation , Uric Acid , Animals , Hyperuricemia/metabolism , Hyperuricemia/genetics , Hyperuricemia/pathology , Uric Acid/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Rats , Humans , Male , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice, Knockout , Kidney Tubules/metabolism , Kidney Tubules/pathology , Kidney/metabolism
4.
Article in English | MEDLINE | ID: mdl-38269408

ABSTRACT

Diabetes (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. The combination of DM and HTN significantly accelerates development of renal injury; however, the underlying mechanisms of this synergy are still poorly understood. This study assessed whether mitochondria (MT) dysfunction is essential in developing renal injury in a rat model with combined DM and HTN. Type 1 DM was induced in Wistar rats by streptozotocin (STZ). HTN was induced six weeks later by inter-renal aorta constriction between the renal arteries, so that right kidneys were exposed to HTN while left kidneys were exposed to normotension. Kidneys exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion (UAE). In contrast, kidneys exposed to DM plus 8 weeks HTN had significantly increased UAE and glomerular structural damage with reduced glomerular filtration rate. Marked increases in MT-derived reactive oxygen species (ROS) were also observed in right kidneys exposed to HTN+DM. We further tested whether treatment with MT-targeted antioxidant (MitoTEMPO) after the onset of HTN attenuates renal injury in rats with DM+HTN. Results show that kidneys in DM+AC+MitoTEMPO rats had lower UAE, less glomerular damage, and preserved MT function compared to untreated DM+AC rats. Our studies indicate that MT-derived ROS play a major role in promoting kidney dysfunction when DM is combined with HTN. Preserving MT function might be a potential therapeutic approach to halt the development of renal injury when DM coexists with HTN.

5.
Am J Physiol Renal Physiol ; 326(3): F460-F476, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38269409

ABSTRACT

Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is an isoform of WNK1 kinase that is predominantly found in the distal convoluted tubule of the kidney. The precise physiological function of KS-WNK1 remains unclear. Some studies have suggested that it could play a role in regulating potassium renal excretion by modulating the activity of the Na+-Cl- cotransporter (NCC). However, changes in the potassium diet from normal to high failed to reveal a role for KS-WNK1, but under a normal-potassium diet, the expression of KS-WNK1 is negligible. It is only detectable when mice are exposed to a low-potassium diet. In this study, we investigated the role of KS-WNK1 in regulating potassium excretion under extreme changes in potassium intake. After following a zero-potassium diet (0KD) for 10 days, KS-WNK1-/- mice had lower plasma levels of K+ and Cl- while exhibiting higher urinary excretion of Na+, Cl-, and K+ compared with KS-WNK1+/+ mice. After 10 days of 0KD or normal-potassium diet (NKD), all mice were challenged with a high-potassium diet (HKD). Plasma K+ levels markedly increased after the HKD challenge only in mice previously fed with 0KD, regardless of genotype. KSWNK1+/+ mice adapt better to HKD challenge than KS-WNK1-/- mice after a potassium-retaining state. The difference in the phosphorylated NCC-to-NCC ratio between KS-WNK1+/+ and KS-WNK1-/- mice after 0KD and HKD indicates a role for KS-WNK1 in both NCC phosphorylation and dephosphorylation. These observations show that KS-WNK1 helps the distal convoluted tubule to respond to extreme changes in potassium intake, such as those occurring in wildlife.NEW & NOTEWORTHY The findings of this study demonstrate that kidney-specific with-no-lysine kinase 1 plays a role in regulating urinary electrolyte excretion during extreme changes in potassium intake, such as those occurring in wildlife. .


Subject(s)
Mice, Knockout , Potassium, Dietary , WNK Lysine-Deficient Protein Kinase 1 , Animals , Male , Mice , Kidney/metabolism , Kidney Tubules, Distal/metabolism , Mice, Inbred C57BL , Phosphorylation , Potassium/urine , Potassium/metabolism , Potassium/blood , Potassium, Dietary/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Renal Elimination , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Female
6.
J Hepatol ; 80(4): 586-595, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38081365

ABSTRACT

BACKGROUND & AIMS: In Wilson disease (WD), copper accumulates in the liver and brain causing disease. Bis-choline tetrathiomolybdate (TTM) is a potent copper chelator that may be associated with a lower risk of inducing paradoxical neurological worsening than conventional therapy for neurologic WD. To better understand the mode of action of TTM, we investigated its effects on copper absorption and biliary excretion. METHODS: In a double-blind randomized setting, hepatic 64Cu activity was examined after orally administered 64Cu by PET/CT in 16 healthy volunteers before and after seven days of TTM treatment (15 mg/d) or placebo. Oral 64Cu was administered one hour after the final TTM dose. Changes in hepatic 64Cu activity reflected changes in intestinal 64Cu uptake. Additionally, in four patients with WD, the distribution of 64Cu in venous blood, liver, gallbladder, kidney, and brain was followed after i.v. 64Cu dosing for up to 68 hours before and after seven days of TTM (15 mg/day), using PET/MRI. Increased gallbladder 64Cu activity was taken as evidence of increased biliary 64Cu excretion. RESULTS: In healthy volunteers, TTM reduced intestinal 64Cu uptake by 82% 15 hours after the oral 64Cu dose. In patients with WD, gallbladder 64Cu activity was negligible before and after TTM, while TTM effectively retained 64Cu in the blood, significantly reduced hepatic 64Cu activity at all time-points and significantly reduced cerebral 64Cu activity two hours after the intravenous 64Cu dose. CONCLUSIONS: While we did not show an increase in biliary excretion of 64Cu following TTM administration, we demonstrated that TTM effectively inhibited most intestinal 64Cu uptake and retained 64Cu in the blood stream, limiting the exposure of organs like the liver and brain to 64Cu. IMPACT AND IMPLICATIONS: Bis-choline tetrathiomolybdate (TTM) is an investigational copper chelator being developed for the treatment of Wilson disease. In animal models of Wilson disease, TTM has been shown to facilitate biliary copper excretion. In the present human study, TTM surprisingly did not facilitate biliary copper excretion but instead reduced intestinal copper uptake to a clinically significant degree. Our study builds on our understanding of human copper metabolism and the mechanism of action of TTM.


Subject(s)
Hepatolenticular Degeneration , Molybdenum , Animals , Humans , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Copper/metabolism , Positron Emission Tomography Computed Tomography , Healthy Volunteers , Chelating Agents/pharmacology , Choline
7.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G424-G437, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38917324

ABSTRACT

Ischemia-reperfusion injury (IRI) is an intrinsic risk associated with liver transplantation. Ex vivo hepatic machine perfusion (MP) is an emerging organ preservation technique that can mitigate IRI, especially in livers subjected to prolonged warm ischemia time (WIT). However, a method to quantify the biological response to WIT during MP has not been established. Previous studies used physiologically based pharmacokinetic (PBPK) modeling to demonstrate that a decrease in hepatic transport and biliary excretion of the tracer molecule sodium fluorescein (SF) could correlate with increasing WIT in situ. Furthermore, these studies proposed intracellular sequestration of the hepatocyte canalicular membrane transporter multidrug resistance-associated protein 2 (MRP2) leading to decreased MRP2 activity (maximal transport velocity; Vmax) as the potential mechanism for decreased biliary SF excretion. We adapted an extant PBPK model to account for ex vivo hepatic MP and fit a six-parameter version of this model to control time-course measurements of SF in MP perfusate and bile. We then identified parameters whose values were likely insensitive to changes in WIT and fixed them to generate a reduced model with only three unknown parameters. Finally, we fit the reduced model to each individual biological replicate SF time course with differing WIT, found the mean estimated value for each parameter, and compared them using a one-way ANOVA. We demonstrated that there was a significant decrease in the estimated value of Vmax for MRP2 at the 30-min WIT. These studies provide the foundation for future studies investigating real-time assessment of liver viability during ex vivo MP.NEW & NOTEWORTHY We developed a computational model of sodium fluorescein (SF) biliary excretion in ex vivo machine perfusion and used this model to assess changes in model parameters associated with the activity of MRP2, a hepatocyte membrane transporter, in response to increasing warm ischemia time. We found a significant decrease in the parameter value describing MRP2 activity, consistent with a role of decreased MRP2 function in ischemia-reperfusion injury leading to decreased secretion of SF into bile.


Subject(s)
Fluorescein , Liver , Models, Biological , Reperfusion Injury , Reperfusion Injury/metabolism , Liver/metabolism , Animals , Fluorescein/pharmacokinetics , Fluorescein/metabolism , Perfusion , Warm Ischemia , Bile/metabolism , Liver Transplantation , Multidrug Resistance-Associated Protein 2 , Organ Preservation/methods , Hepatobiliary Elimination , ATP-Binding Cassette Transporters
8.
Biochem Biophys Res Commun ; 694: 149383, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38150918

ABSTRACT

Metformin is currently a strong candidate antitumor agent for multiple cancers, and has the potential to inhibit cancer cell viability, growth, and proliferation. Metabolic reprogramming is a critical feature of cancer cells. However, the effects of metformin which targets glucose metabolism on HepG2 cancer cells remain unclear. In this study, to explore the effects of metformin on glucose metabolism in HepG2 cells, we conducted real-time metabolomic monitoring of live HepG2 cells treated with metformin using 13C in-cell NMR spectroscopy. Metabolic tracing with U-13C6-glucose revealed that metformin significantly increased the production of 13C-G3P and 13C-glycerol, which were reported to attenuate liver cancer development, but decreased the production of potential oncogenesis-supportive metabolites, including 13C-lactate, 13C-alanine, 13C-glycine, and 13C-glutamate. Moreover, the expression levels of enzymes associated with the measured metabolites were carried out. The results showed that the levels of ALT1, MCT4, GPD2 and MPC1 were greatly reduced, which were consistent with the changes of measured metabolites in 13C in-cell NMR spectroscopy. Overall, our approach directly provides fundamental insights into the effects of metformin on glucose metabolism in live HepG2 cells, and highlights the potential mechanism of metformin, including the increase in production of G3P and glycerol derived from glucose, as well as the inhibition of glucose incorporation into lactate, alanine, glutamate, and glycine.


Subject(s)
Metformin , Humans , Metformin/pharmacology , Hep G2 Cells , Glycerol , Magnetic Resonance Spectroscopy , Glucose/metabolism , Alanine/metabolism , Glutamic Acid , Glycine , Lactates
9.
J Pharmacol Exp Ther ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117460

ABSTRACT

Lenacapavir (LEN), a long-acting injectable, is the first approved human immunodeficiency virus type 1 capsid inhibitor and one of a few FDA-approved drugs that exhibit atropisomerism. LEN exists as a mixture of two class 2 atropisomers that interconvert at a fast rate (t1/2 <2 hours) with a ratio that is stable over time and unaffected by enzymes or binding to proteins in plasma. LEN exhibits low systemic clearance (CL) in nonclinical species and humans; however, in all species the observed CL was higher than the in vitro predicted CL. The volume of distribution was moderate in nonclinical species and consistent with the tissue distribution observed by whole body autoradiography in rats. LEN does not distribute to brain, consistent with being a P-glycoprotein (P-gp) substrate. Mechanistic drug disposition studies with [14C]LEN in IV-dosed BDC rats and dogs showed a substantial amount of unchanged LEN (31 - 60% of dose) excreted in feces, indicating that intestinal excretion (IE) was a major clearance pathway for LEN in both species. Coadministration of oral elacridar, a P-gp inhibitor, in rats decreased CL and IE of LEN. Renal excretion was <1% of dose in both species. In plasma, almost all radioactivity was unchanged LEN. Low levels of metabolites in excreta included LEN-conjugates with glutathione, pentose, and glucuronic acid, which were consistent with metabolites formed in vitro in Hµrel® hepatocyte co­cultures and those observed in human. Our studies highlight the importance of IE for efflux substrates that are highly metabolically stable compounds with slow elimination rates. Significance Statement LEN is a long-acting injectable that exists as conformationally stable atropisomers. Due to an atropisomeric interconversion rate that significantly exceeds the in vivo elimination rate, the atropisomer ratio of LEN remains constant in circulation. The disposition of LEN highlights that intestinal excretion has a substantial part in the elimination of compounds that are metabolically highly stable and efflux transporter substrates.

10.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R230-R241, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38223938

ABSTRACT

Although body fluid volume control by the kidneys may be classified as a long-term arterial pressure (AP) control system, it does not necessarily follow that the urine flow (UF) response to changes in AP is slow. We quantified the dynamic characteristics of the UF response to short-term AP changes by changing mean AP between 60 mmHg and 100 mmHg every 10 s according to a binary white noise sequence in anesthetized rats (n = 8 animals). In a baro-on trial (the carotid sinus baroreflex was enabled), the UF response represented the combined synergistic effects of pressure diuresis (PD) and neurally mediated antidiuresis (NMA). In a baro-fix trial (the carotid sinus pressure was fixed at 100 mmHg), the UF response mainly reflected the effect of PD. The UF step response was quantified using the sum of two exponential decay functions. The fast and slow components had time constants of 6.5 ± 3.6 s and 102 ± 85 s (means ± SD), respectively, in the baro-on trial. Although the gain of the fast component did not differ between the two trials (0.49 ± 0.21 vs. 0.66 ± 0.22 µL·min-1·kg-1·mmHg-1), the gain of the slow component was greater in the baro-on than in the baro-fix trial (0.51 ± 0.14 vs. 0.09 ± 0.39 µL·min-1·kg-1·mmHg-1, P = 0.023). The magnitude of NMA relative to PD was calculated to be 32.2 ± 29.8%. In conclusion, NMA contributed to the slow component, and its magnitude was approximately one-third of that of the effect of PD.NEW & NOTEWORTHY We quantified short-term dynamic characteristics of the urine flow (UF) response to arterial pressure (AP) changes using white noise analysis. The UF step response approximated the sum of two exponential decay functions with time constants of ∼6.5 s and 102 s. The neurally mediated antidiuretic (NMA) effect contributed to the slow component of the UF step response, with the magnitude of approximately one-third of that of the pressure diuresis (PD) effect.


Subject(s)
Arterial Pressure , Baroreflex , Animals , Rats , Baroreflex/physiology , Blood Pressure/physiology , Carotid Arteries , Diuresis
11.
J Anat ; 244(5): 708-721, 2024 May.
Article in English | MEDLINE | ID: mdl-38234265

ABSTRACT

Using diffusible iodine-based contrast-enhanced computed tomography (diceCT), we examined the morphology of the oral glands of 12 species of the family Homalopsidae. Snakes of this family exhibit substantial interspecific morphological variation in their oral glands. Particular variables are the venom glands, ranging from large (e.g., Subsessor bocourti) to small (e.g., Erpeton tentaculatum). The supra- and infralabial glands are more uniform in morphology, being the second most developed in almost all the sampled species. Premaxillary glands distinct from the supralabial glands were observed in five species (Myron richardsonii, Bitia hydroides, Cantoria violacea, Fordonia leucobalia, and Gerarda prevostiana), in addition to Cerberus rynchops, the only species in which this condition was previously documented associated with the excretion of salt. In the three species of the saltwater group of homalopsids (C. violacea, F. leucobalia, and G. prevostiana), the premaxillary glands also extend posteriorly, occupying a large area above the supralabial gland, a condition not observed in any other species of snake studied thus far. Character evolution analyses indicate that premaxillary glands differentiated from the supralabial gland and evolved independently three or four times in the family, always in lineages that invaded marine habitats. Our results suggest that the differentiated premaxillary glands are likely salt glands, as is the case in C. rynchops. If corroborated, this increases to six or seven the number of independent evolutionary origins of salt glands in snakes that have undergone an evolutionary transition to marine life.


Subject(s)
Colubridae , Salt Gland , Animals , Snakes/anatomy & histology , Mouth , Colubridae/anatomy & histology , Salivary Glands
12.
Drug Metab Dispos ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038951

ABSTRACT

Mobocertinib (formerly known as TAK-788) is a targeted covalent tyrosine kinase inhibitor of epidermal growth factor receptor with exon 20 insertion mutations. This article describes the metabolism and excretion of mobocertinib in healthy male subjects after a single oral administration of [14C]mobocertinib. Mobocertinib related materials were highly covalently bound to plasma proteins such as human serum albumin. The mean extraction recovery of total radioactivity was only 3.9% for 6 individual Hamilton pooled plasma samples. After extraction, mobocertinib was the most abundant component accounting for 7.7% of total extracted circulating radioactivity (TECRA) in the supernatant. Each of identified metabolites accounted for <10% of TECRA. Mobocertinib underwent extensive first-pass metabolism with the fraction of the dose absorbed estimated to be approximately 91.7%. Fecal excretion of mobocertinib metabolites was the major elimination route. Mobocertinib was mainly eliminated via oxidative metabolism with a fraction of approximately 88% metabolized by CYP3A4/5. The other minor elimination pathways included cysteine conjugation, metabolism by other CYPs, and renal excretion of unchanged mobocertinib. Significance Statement This manuscript describes the metabolism and excretion of a targeted covalent inhibitor mobocertinib in humans after a single oral administration of [14C]mobocertinib. Mobocertinib was highly covalently bound to human plasma proteins. No metabolite accounted for >10% of total extracted circulating radioactivity in human plasma. Mobocertinib was mainly eliminated via CYP3A4/5 mediated oxidative metabolism followed by fecal excretion after approximately 91.7% of the dose was absorbed.

13.
Drug Metab Dispos ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39111823

ABSTRACT

Ritlecitinib is an oral once-daily irreversible inhibitor of Janus kinase 3 and tyrosine-protein kinase family being developed for the treatment of moderate-to-severe alopecia areata. This study examined the disposition of ritlecitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite profiles. The results indicated ritlecitinib had a systemic clearance of 43.7 L/h, a steady state volume of distribution of 73.8 L, extent of absorption of 89%, time to maximum plasma concentration of ~0.5 hour, and absolute oral bioavailability of 64%. An observed long terminal half-life of total radioactivity was primarily attributed to ritlecitinib binding to plasma albumin. Ritlecitinib was the main circulating drug species in plasma (~30%) with one major pharmacologically inactive cysteine conjugated metabolite (M2) at >10%. Oxidative metabolism (fractional clearance 0.47) and glutathione related conjugation (fractional clearance 0.24) were the primary routes of elimination for ritlecitinib with the greatest disposition of radioactivity shown in the urine (~71%). In vitro phenotyping indicated ritlecitinib cytochrome P450 fraction of metabolism assignments of 0.29 for CYP3A, 0.09 for CYP2C8, 0.07 for CYP1A2, and 0.02 for CYP2C9. In vitro phenotyping in recombinant human glutathione S-transferases indicated ritlecitinib was turned over by a number of cytosolic and microsomal enzyme isoforms. Significance Statement This study provides a detailed understanding of the disposition and metabolism of ritlecitinib, a JAK3 and TEC family kinase inhibitor for alopecia areata, in humans, as well as characterization of clearance pathways and PK of ritlecitinib and its metabolites. As an AMS-based ADME study design, we have expanded on reporting the standard ADME endpoints, providing key pharmacokinetic parameters like clearance, volume of distribution and bioavailability allowing for a more comprehensive understanding of drug disposition.

14.
Drug Metab Dispos ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251368

ABSTRACT

Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow, decreasing glomerular filtration rate (GFR) and liver blood flow, thereby, altering absorption, distribution, metabolism and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g. muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. Pharmacokinetics of midazolam, quinidine, digoxin and lidocaine during exercise were predicted by a whole body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within 5th-95th percentiles of the simulations, and the estimated peak concentrations and area under the curve of drugs were also within 0.5-2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time and alterations in physiological parameters significantly affected drug pharmacokinetics, and the net effect depending on drug characteristics and exercise conditions. In conclusion, pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. Significance Statement This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed.

15.
Cardiovasc Diabetol ; 23(1): 71, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360626

ABSTRACT

BACKGROUND: We assessed the efficacy and safety of enavogliflozin (0.3 mg), a newly developed SGLT-2 inhibitor, in patients with type 2 diabetes mellitus based on kidney function via pooled analysis of two 24-week, randomized, double-blind phase III trials. METHODS: Data from 470 patients were included (enavogliflozin: 0.3 mg/day, n = 235; dapagliflozin: 10 mg/day, n = 235). The subjects were classified by mildly reduced (60 ≤ eGFR < 90 mL/min/1.73 m², n = 247) or normal eGFR (≥ 90 mL/min/1.73 m², n = 223). RESULTS: In the mildly reduced eGFR group, enavogliflozin significantly reduced the adjusted mean change of HbA1c and fasting plasma glucose levels at week 24 compared to dapagliflozin (- 0.94% vs. -0.77%, P = 0.0196). Enavogliflozin exhibited a more pronounced glucose-lowering effect by HbA1c when combined with dipeptidyl peptidase-4 inhibitors than that observed in their absence. Enavogliflozin showed potent blood glucose-lowering effects regardless of renal function. Conversely, dapagliflozin showed a significant decrease in the glucose-lowering efficacy as the renal function decreased. Enavogliflozin showed a higher urinary glucose excretion rate in both groups. The homeostatic model assessment showed that enavogliflozin markedly decreased the insulin resistance. The blood pressure, weight loss, or homeostasis model assessment of beta-cell function values did not differ significantly between enavogliflozin and dapagliflozin. Adverse events were similar between both drugs. CONCLUSIONS: The glucose-lowering efficacy of enavogliflozin is superior to that of dapagliflozin in patients with type 2 diabetes mellitus with mild renal function impairment; this is attributed to its potent urinary glucose excretion-promoting ability. The emergence of new and potent SGLT-2 inhibitors is considered an attractive option for patients with inadequate glycemic control and decreased renal function. TRIAL REGISTRATION: Not applicable (pooled analysis).


Subject(s)
Diabetes Mellitus, Type 2 , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Hypoglycemic Agents/adverse effects , Glycated Hemoglobin , Treatment Outcome , Randomized Controlled Trials as Topic , Benzhydryl Compounds/adverse effects , Blood Glucose , Glucose , Kidney , Double-Blind Method
16.
Insect Mol Biol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664880

ABSTRACT

Zinc excretion is crucial for zinc homeostasis. However, the mechanism of zinc excretion has not been well characterized. Zinc homeostasis in Drosophila seems well conserved to mammals. In this study, we screened all members of the zinc transporters ZnT (SLC30) and Zip (SLC39) for their potential roles in Drosophila hindgut, an insect organ that belongs to the excretory system. The results indicated that Catecholamines up (Catsup, CG10449), a ZIP member localized to the Golgi, is responsible for zinc homeostasis in the hindgut of Drosophila hindgut-specific knockdown of Catsup leads to a developmental arrest in the larval stage, which could be rescued well by human ZIP7. Further study suggested that Catsup RNAi in the hindgut reduced zinc levels in the excretory system (containing the Malpighian tubule and hindgut) but exhibited systemic zinc overload. Besides, more calculi were observed in the Malpighian tubules of Catsup RNAi flies. The developmental arrest and calculi in the Malpighian tubules of hindgut-specific Catsup RNAi flies could be rescued by dietary zinc restriction but hypersensitivity to zinc. These results will help us understand the fundamental process of zinc excretion in higher eukaryotes.

17.
Toxicol Appl Pharmacol ; 487: 116959, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734151

ABSTRACT

Pethoxamid (PXA) is a chloroacetamide herbicide that works by inhibiting the germination of target weeds in crops. PXA is not a genotoxic agent, however, in a two-year chronic toxicity study, incidence of thyroid follicular cell hyperplasia was observed in male rats treated at a high dose. Many non-mutagenic chemicals, including agrochemicals are known to produce thyroid hyperplasia in rodents through a hepatic metabolizing enzyme induction mode of action (MoA). In this study, the effects of oral gavage PXA treatment at 300 mg/kg for 7 days on the disposition of intravenously (iv) administered radio-labeled thyroxine ([125I]-T4) was assessed in bile-duct cannulated (BDC) rats. Another group of animals were treated with phenobarbital (PB, 100 mg/kg), a known enzyme inducer, serving as a positive control. The results showed significant increase (p < 0.01) in the mean liver weights in the PB and PXA-treated groups relative to the control group. The serum total T4 radioactivity Cmax and AUC0-4 values for PB and PXA-treated groups were lower than for the control group, suggesting increased clearance from serum. The mean percentages of administered radioactivity excreted in bile were 7.96 ± 0.38%, 16.13 ± 5.46%, and 11.99 ± 2.80% for the control, PB and PXA groups, respectively, indicating increased clearance via the bile in the treated animals. These data indicate that PXA can perturb the thyroid hormone homeostasis in rats by increasing T4 elimination in bile, possibly through enzyme induction mechanism similar to PB. In contrast to humans, the lack of high affinity thyroid binding globulin (TBG) in rats perhaps results in enhanced metabolism of T4 by uridine diphosphate glucuronosyl transferase (UGT). Since this liver enzyme induction MoA for thyroid hyperplasia by PB is known to be rodent specific, PXA effects on thyroid can also be considered not relevant to humans. The data from this study also suggest that incorporating a BDC rat model to determine thyroid hormone disposition using [125I]-T4 is valuable in a thyroid mode of action analysis.


Subject(s)
Herbicides , Liver , Rats, Sprague-Dawley , Thyroxine , Animals , Thyroxine/blood , Male , Rats , Liver/drug effects , Liver/metabolism , Herbicides/toxicity , Iodine Radioisotopes , Organ Size/drug effects , Phenobarbital/pharmacology , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Thyroid Gland/pathology
18.
Eur J Nucl Med Mol Imaging ; 51(10): 2941-2952, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38581443

ABSTRACT

PURPOSE: The accuracy of surgery for patients with solid tumors can be greatly improved through fluorescence-guided surgery (FGS). However, existing FGS technologies have limitations due to their low penetration depth and sensitivity/selectivity, which are particularly prevalent in the relatively short imaging window (< 900 nm). A solution to these issues is near-infrared-II (NIR-II) FGS, which benefits from low autofluorescence and scattering under the long imaging window (> 900 nm). However, the inherent self-assembly of organic dyes has led to high accumulation in main organs, resulting in significant background signals and potential long-term toxicity. METHODS: We rationalize the donor structure of donor-acceptor-donor-based dyes to control the self-assembly process to form an ultra-small dye nanocluster, thus facilitating renal excretion and minimizing background signals. RESULTS: Our dye nanocluster can not only show clear vessel imaging, tumor and tumor sentinel lymph nodes definition, but also achieve high-performance NIR-II imaging-guided surgery of tumor-positive sentinel lymph nodes. CONCLUSION: In summary, our study demonstrates that the dye nanocluster-based NIR-II FGS has substantially improved outcomes for radical lymphadenectomy.


Subject(s)
Surgery, Computer-Assisted , Surgery, Computer-Assisted/methods , Animals , Mice , Optical Imaging/methods , Infrared Rays , Humans , Fluorescent Dyes/chemistry , Female , Cell Line, Tumor , Spectroscopy, Near-Infrared/methods , Nanoparticles/chemistry , Coloring Agents
19.
J Nutr ; 154(7): 2006-2013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718924

ABSTRACT

BACKGROUND: In lactating women, iodine metabolism is regulated and maintained by the kidneys and mammary glands. Limited research exists on how iodine absorbed by lactating women is distributed between the kidneys and breasts. OBJECTIVES: This study aimed to accurately evaluate the total iodine intake (TII), urinary iodine excretion (UIE), and breast milk iodine excretion (BMIE) in lactating women and explore the relationship between TII and total iodine excretion (TIE). METHODS: A 7-d iodine metabolism study was conducted on 41 lactating women with a mean age of 30 y in Yuncheng and Gaoqing, China, from December 2021 to August 2023. TII and TIE were calculated by measuring the iodine content in food, water, 24-h urine, feces, and breast milk. The urinary iodine excretion rate (UIER), breast milk iodine excretion rate (BMIER), and partitioning of iodine excretion between urine and breast milk were determined. RESULTS: Iodine metabolism studies were performed for 285 d. The median TII and TIE values were 255 and 263 µg/d, respectively. With an increase in TII, UIER, and BMIER, the UIE and BMIE to TII ratio exhibited a downward trend. The median UIER, BMIER, and proportion of iodine excreted in urine and breast milk were 51.5%, 38.5%, 52%, and 37%, respectively. When the TII was <120 µg/d, the BMIER decreased with the increase of the TII (ß: -0.90; 95% confidence interval: -1.08, -0.72). CONCLUSIONS: When maternal iodine intake is low, the proportion in breast milk increases, ensuring sufficient iodine nutrition for infants. In addition, the UIE of lactating women with adequate iodine concentrations is higher than their BMIE. This study was registered at clinicaltrials.gov as NCT04492657.


Subject(s)
Iodine , Lactation , Milk, Human , Adult , Female , Humans , China , Iodine/urine , Iodine/metabolism , Lactation/metabolism , Milk, Human/chemistry , Milk, Human/metabolism , Cohort Studies
20.
Clin Sci (Lond) ; 138(17): 1039-1054, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39136693

ABSTRACT

Maternal high-fat diet intake has profound effects on the long-term health of offspring, predisposing them to a higher susceptibility to obesity and metabolic dysfunction-associated steatotic liver disease. However, the detailed mechanisms underlying the role of a maternal high-fat diet in hepatic lipid accumulation in offspring, especially at the weaning age, remain largely unclear. In this study, female C57BL/6J mice were randomly assigned to either a high-fat diet or a control diet, and lipid metabolism parameters were assessed in male offspring at weaning. Gut microbiota analysis and targeted metabolomics of short-chain fatty acids (SCFAs) in these offspring were further performed. Both in vivo and in vitro studies were conducted to explore the role of butyrate in hepatic cholesterol excretion in the liver and HepG2 cells. Our results showed that maternal high-fat feeding led to obesity and dyslipidemia, and exacerbated hepatic lipid accumulation in the livers of offspring at weaning. We observed significant decreases in the abundance of the Firmicutes phylum and the Allobaculum genus, known as producers of SCFAs, particularly butyrate, in the offspring of dams fed a high-fat diet. Additionally, maternal high-fat diet feeding markedly decreased serum butyrate levels and down-regulated ATP-binding cassette transporters G5 (ABCG5) in the liver, accompanied by decreased phosphorylated AMP-activated protein kinase (AMPK) and histone deacetylase 5 (HADC5) expressions. Subsequent in vitro studies revealed that butyrate could induce ABCG5 activation and alleviate lipid accumulation via the AMPK-pHDAC5 pathway in HepG2 cells. Moreover, knockdown of HDAC5 up-regulated ABCG5 expression and promoted cholesterol excretion in HepG2 cells. In conclusion, our study provides novel insights into how maternal high-fat diet feeding inhibits hepatic cholesterol excretion and down-regulates ABCG5 through the butyrate-AMPK-pHDAC5 pathway in offspring at weaning.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , Butyrates , Cholesterol , Diet, High-Fat , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Female , Butyrates/metabolism , Humans , Liver/metabolism , Hep G2 Cells , ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Male , Cholesterol/metabolism , Cholesterol/blood , Pregnancy , Mice , Lipid Metabolism , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena , Obesity/metabolism , Obesity/microbiology , Dyslipidemias/metabolism , Dyslipidemias/microbiology , Dyslipidemias/etiology , Lipoproteins
SELECTION OF CITATIONS
SEARCH DETAIL