Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Ann Hematol ; 103(7): 2311-2322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38519605

ABSTRACT

Acute myeloid leukemia (AML) patients with DNA methyltransferase 3A (DNMT3A) mutation display poor prognosis, and targeted therapy is not available currently. Our previous study identified increased expression of Exportin1 (XPO1) in DNMT3AR882H AML patients. Therefore, we further investigated the therapeutic effect of XPO1 inhibition on DNMT3AR882H AML. Three types of DNMT3AR882H AML cell lines were generated, and XPO1 was significantly upregulated in all DNMT3AR882H cells compared with the wild-type (WT) cells. The XPO1 inhibitor selinexor displayed higher potential in the inhibition of proliferation, promotion of apoptosis, and blockage of the cell cycle in DNMT3AR882H cells than WT cells. Selinexor also significantly inhibited the proliferation of subcutaneous tumors in DNMT3AR882H AML model mice. Primary cells with DNMT3A mutations were more sensitive to selinexor in chemotherapy-naive AML patients. RNA sequencing of selinexor treated AML cells revealed that the majority of metabolic pathways were downregulated after selinexor treatment, with the most significant change in the glutathione metabolic pathway. Glutathione inhibitor L-Buthionine-(S, R)-sulfoximine (BSO) significantly enhanced the apoptosis-inducing effect of selinexor in DNMT3AWT/DNMT3AR882H AML cells. In conclusion, our work reveals that selinexor displays anti-leukemia efficacy against DNMT3AR882H AML via downregulating glutathione pathway. Combination of selinexor and BSO provides novel therapeutic strategy for AML treatment.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Exportin 1 Protein , Glutathione , Hydrazines , Karyopherins , Leukemia, Myeloid, Acute , Mutation , Receptors, Cytoplasmic and Nuclear , Triazoles , Humans , Animals , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Karyopherins/antagonists & inhibitors , Karyopherins/genetics , Mice , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , Glutathione/metabolism , Hydrazines/pharmacology , Hydrazines/therapeutic use , Triazoles/pharmacology , Triazoles/therapeutic use , Xenograft Model Antitumor Assays , Down-Regulation/drug effects , Cell Line, Tumor , Female , Male , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects
2.
Gynecol Oncol ; 185: 202-211, 2024 06.
Article in English | MEDLINE | ID: mdl-38834399

ABSTRACT

OBJECTIVE: To report long-term efficacy and safety of selinexor maintenance therapy in adults with TP53 wild-type (TP53wt) stage IV or recurrent endometrial cancer (EC) who achieved partial remission (PR) or complete remission (CR) following chemotherapy. METHODS: Analysis of the prespecified, exploratory subgroup of patients with TP53wt EC from the phase 3 SIENDO study was performed. Progression-free survival (PFS) benefit in patients with TP53wt EC and across other patient subgroups were exploratory endpoints. Safety and tolerability were also assessed. RESULTS: Of the 263 patients enrolled in the SIENDO trial, 113 patients had TP53wt EC; 70/113 (61.9%) had TP53wt/proficient mismatch repair (pMMR) EC, and 29/113 (25.7%) had TP53wt/deficient mismatch repair (dMMR) EC. As of April 1, 2024, the median PFS (mPFS) for TP53wt patients who received selinexor compared with placebo was 28.4 versus 5.2 months (36.8-month follow-up, HR 0.44; 95% CI 0.27-0.73). A benefit in mPFS was seen with selinexor versus placebo regardless of MMR status (patients with TP53wt/pMMR EC: 39.5 vs 4.9 months, HR 0.36; 95% CI 0.19-0.71; patients with TP53wt/dMMR EC: 13.1 vs 3.7 months, HR 0.49; 95% CI 0.18-1.34). Selinexor treatment was generally manageable, with no new safety signals identified. CONCLUSION: In the phase 3 SIENDO study, selinexor maintenance therapy showed a promising efficacy signal and a manageable safety profile in the prespecified subgroup of patients with TP53wt EC who achieved a PR or CR following chemotherapy. These results are being further evaluated in an ongoing randomized phase 3 trial (NCT05611931).


Subject(s)
Endometrial Neoplasms , Hydrazines , Neoplasm Recurrence, Local , Triazoles , Tumor Suppressor Protein p53 , Humans , Female , Triazoles/administration & dosage , Triazoles/adverse effects , Triazoles/therapeutic use , Middle Aged , Hydrazines/adverse effects , Hydrazines/administration & dosage , Hydrazines/therapeutic use , Aged , Tumor Suppressor Protein p53/genetics , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Neoplasm Recurrence, Local/drug therapy , Adult , Follow-Up Studies , Progression-Free Survival , Aged, 80 and over , Maintenance Chemotherapy/methods , Neoplasm Staging
3.
Pharmacol Res ; 205: 107257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866264

ABSTRACT

Global aging is a tendency of the world, as is the increasing prevalence of diabetes, and the two are closely linked. In our early research, Enteromorpha prolifera oligosaccharide (EPO) possesses the excellent ability of anti-oxidative, anti-inflammatory, and anti-diabetic. We aim to further explore the deeper mechanism of how EPO delays aging and regulates glycometabolism. EPO effectively impacts crotonylation procession to enhance glucose metabolism and reduce cell senescence in aging diabetic rats. Crotonylation modification of XPO1 influences the expression of critical genes, including p53, CDK1, and CCNB1, which affect cell cycle regulation and aging. Additionally, EPO improves glucose metabolism by inhibiting the crotonylation modification of HSPA8-K126 and activating the AKT pathway. EPO promotes crotonylation of histones in intestinal cells, influencing the aging process by increasing the butyric acid-producing bacteria Ruminococcaceae. The observed enhancement in pyrimidine metabolism underscores EPO's potential role in regulating intestinal health, presenting a promising avenue for delaying aging. In summary, our findings affirm EPO as a naturally bioactive ingredient with significant potential for anti-aging and antidiabetic interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Oligosaccharides , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Aging/metabolism , Aging/drug effects , Cellular Senescence/drug effects , Rats, Sprague-Dawley , Rats , Humans , Gastrointestinal Microbiome/drug effects
4.
J Oncol Pharm Pract ; 30(3): 535-546, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454813

ABSTRACT

OBJECTIVE: Multiple myeloma cells resist standard therapies due to overexpression of the transport protein, exportin 1. Selinexor is a novel drug that targets the Exportin 1 protein in these cells. DATA SOURCE: A comprehensive search was done, and data showing the efficacy and safety of selinexor in relapsed/refractory multiple myeloma was collected using PubMed, Google Scholar, and clincialtrials.gov. DATA SUMMARY: Results from the clinical trials STORM, BOSTON, and STOMP were included. Parts I and II of the STORM trial revealed a progression-free survival (PFS) of 4.7 and 3.7 months, a median duration of response of 6.2 and 4.4 months, and an overall survival of 7.3 and 8.4 months, respectively. BOSTON trial's SVd arm (selinexor, bortezomib, and dexamethasone) had a median follow-up period of 13.2 months and an mPFS of 13.93 months. The Vd arm (bortezomib and dexamethasone) had a median follow-up duration of 16.5 months and an mPFS of 9.46 months. The STOMP trial is still active and has limited data available. The SKd arm (selinexor, carfilzomib, and dexamethasone) reported an overall response rate of 66.7% in patients with triple refractory multiple myeloma, and 82% in patients with high-risk cytogenetics. The SPd arm (selinexor, pomalidomide, and dexamethasone) shows an overall response rate of 54.30% in pomalidomide naïve-nonrefractory, 35.70% in pomalidomide refractory and 60% in those dosed at RP2D. SRd arm (selinexor, lenalidomide, and dexamethasone) shows an overall response rate of 91.7% in lenalidomide naïve and 12.5% in lenalidomide refractory patients. SVd (selinexor, bortezomib, and dexamethasone) arm reported an overall response rate of 63% in all patients while the SDd arm (selinexor, daratumumab, and dexamethasone) showed an overall response rate of 73%. CONCLUSION: To improve the outcome of patients with relapsed/refractory multiple myeloma, it is critical to develop new therapies, assess potential therapeutic synergies, and overcome drug resistance by determining the efficacy of multiple myeloma therapies across multiple disease subgroups.


Subject(s)
Antineoplastic Agents , Hydrazines , Multiple Myeloma , Triazoles , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/therapeutic use , Dexamethasone/therapeutic use , Drug Resistance, Neoplasm , Exportin 1 Protein , Hydrazines/therapeutic use , Karyopherins/antagonists & inhibitors , Multiple Myeloma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Progression-Free Survival , Receptors, Cytoplasmic and Nuclear , Triazoles/therapeutic use , Clinical Trials as Topic
5.
Cell Mol Immunol ; 21(8): 873-891, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38902348

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a main driver of immunosuppression in tumors. Understanding the mechanisms that determine the development and immunosuppressive function of these cells could provide new therapeutic targets to improve antitumor immunity. Here, using preclinical murine models, we discovered that exportin 1 (XPO1) expression is upregulated in tumor MDSCs and that this upregulation is induced by IL-6-induced STAT3 activation during MDSC differentiation. XPO1 blockade transforms MDSCs into T-cell-activating neutrophil-like cells, enhancing the antitumor immune response and restraining tumor growth. Mechanistically, XPO1 inhibition leads to the nuclear entrapment of ERK1/2, resulting in the prevention of ERK1/2 phosphorylation following the IL-6-mediated activation of the MAPK signaling pathway. Similarly, XPO1 blockade in human MDSCs induces the formation of neutrophil-like cells with immunostimulatory functions. Therefore, our findings revealed a critical role for XPO1 in MDSC differentiation and suppressive functions; exploiting these new discoveries revealed new targets for reprogramming immunosuppressive MDSCs to improve cancer therapeutic responses.


Subject(s)
Active Transport, Cell Nucleus , Exportin 1 Protein , Karyopherins , Myeloid-Derived Suppressor Cells , Receptors, Cytoplasmic and Nuclear , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Animals , Receptors, Cytoplasmic and Nuclear/metabolism , Humans , Karyopherins/metabolism , Mice , Mice, Inbred C57BL , Cell Differentiation , MAP Kinase Signaling System , Cell Line, Tumor , Interleukin-6/metabolism , Neoplasms/immunology , Neoplasms/pathology , Immune Tolerance , STAT3 Transcription Factor/metabolism , Cell Nucleus/metabolism
6.
Clin Transl Med ; 14(6): e1727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804617

ABSTRACT

BACKGROUND: The liver is anatomically divided into eight segments based on the distribution of Glisson's triad. However, the molecular mechanisms underlying each segment and its association with hepatocellular carcinoma (HCC) heterogeneity are not well understood. In this study, our objective is to conduct a comprehensive multiomics profiling of the segmentation atlas in order to investigate potential subtypes and therapeutic approaches for HCC. METHODS: A high throughput liquid chromatography-tandem mass spectrometer strategy was employed to comprehensively analyse proteome, lipidome and metabolome data, with a focus on segment-resolved multiomics profiling. To classify HCC subtypes, the obtained data with normal reference profiling were integrated. Additionally, potential therapeutic targets for HCC were identified using immunohistochemistry assays. The effectiveness of these targets were further validated through patient-derived organoid (PDO) assays. RESULTS: A multiomics profiling of 8536 high-confidence proteins, 1029 polar metabolites and 3381 nonredundant lipids was performed to analyse the segmentation atlas of HCC. The analysis of the data revealed that in normal adjacent tissues, the left lobe was primarily involved in energy metabolism, while the right lobe was associated with small molecule metabolism. Based on the normal reference atlas, HCC patients with segment-resolved classification were divided into three subtypes. The C1 subtype showed enrichment in ribosome biogenesis, the C2 subtype exhibited an intermediate phenotype, while the C3 subtype was closely associated with neutrophil degranulation. Furthermore, using the PDO assay, exportin 1 (XPO1) and 5-lipoxygenase (ALOX5) were identified as potential targets for the C1 and C3 subtypes, respectively. CONCLUSION: Our extensive analysis of the segmentation atlas in multiomics profiling defines molecular subtypes of HCC and uncovers potential therapeutic strategies that have the potential to enhance the prognosis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Humans , Male , Multiomics
7.
World J Gastrointest Oncol ; 16(7): 3069-3081, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072169

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. As liver cancer often presents no noticeable symptoms in its early stages, most patients are diagnosed at an advanced stage, complicating treatment. Therefore, the identification of new biomarkers is crucial for the early detection and treatment of HCC. Research on exportin-5 (XPO5) could offer new avenues for early diagnosis and improve treatment strategies. AIM: To explore the role of XPO5 in HCC progression and its potential as a prognostic biomarker. METHODS: This study assessed XPO5 mRNA expression in HCC using The Cancer Genome Atlas, TIMER, and International Cancer Genome Consortium databases, correlating it with clinical profiles and disease progression. We performed in vitro experiments to examine the effect of XPO5 on liver cell growth. Gene Set Enrichment Analysis, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology were used to elucidate the biological roles and signaling pathways. We also evaluated XPO5's impact on immune cell infiltration and validated its prognostic potential using machine learning. RESULTS: XPO5 was significantly upregulated in HCC tissues, correlating with tumor grade, T-stage, and overall survival, indicating poor prognosis. Enrichment analyses linked high XPO5 expression with tumor immunity, particularly CD4 T cell memory activation and macrophage M0 infiltration. Drug sensitivity tests identified potential therapeutic agents such as MG-132, paclitaxel, and WH-4-023. Overexpression of XPO5 in HCC cells, compared to normal liver cells, was confirmed by western blotting and quantitative real-time polymerase chain reaction. The lentiviral transduction-mediated knockdown of XPO5 significantly reduced cell proliferation and metastasis. Among the various machine learning algorithms, the C5.0 decision tree algorithm achieved accuracy rates of 95.5% in the training set and 92.0% in the validation set. CONCLUSION: Our analysis shows that XPO5 expression is a reliable prognostic indicator for patients with HCC and is significantly associated with immune cell infiltration.

8.
Med Int (Lond) ; 2(1): 2, 2022.
Article in English | MEDLINE | ID: mdl-38938904

ABSTRACT

Nuclear pore complexes (NPCs) regulate the entry and exit of molecules from the cell nucleus. Small molecules pass through NPCs by diffusion while large molecules enter and exit the nucleus by karyopherins, which serve as transport factors. Exportin-1 (XPO1) is a protein that is an important member of the karyopherin family and carries macromolecules from the nucleus to the cytoplasm. XPO1 is responsible for nuclear-cytoplasmic transport of protein, ribosomal RNA and certain required mRNAs for ribosomal biogenesis. Furthermore, XPO1-mediated nuclear export is associated with various types of disease, such as cancer, inflammation and viral infection. The key role of XPO1 in carcinogenesis and its potential as a therapeutic target has been demonstrated by previous studies. Clinical use of novel developed generation-specific XPO1 inhibitors and their combination with other agents to block XPO1-mediated nuclear export are a promising new treatment strategy. The aim of the present study was to explain the working mechanism of XPO1 and inhibitors that block XPO1-mediated nuclear export.

SELECTION OF CITATIONS
SEARCH DETAIL