Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.512
Filter
Add more filters

Publication year range
1.
Cell ; 182(6): 1623-1640.e34, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32946783

ABSTRACT

Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.


Subject(s)
Cell Differentiation/genetics , Organoids/cytology , Organoids/metabolism , Retina/cytology , Retina/metabolism , Single-Cell Analysis/methods , Synapses/physiology , Transcriptome/genetics , Cell Culture Techniques/methods , Cell Line , Electrophysiology , Female , Gene Expression Regulation, Developmental/genetics , Genetic Predisposition to Disease/genetics , Humans , In Situ Hybridization , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Microscopy, Electron , Multigene Family , Naphthoquinones , Organoids/radiation effects , Organoids/ultrastructure , Retina/pathology , Retina/radiation effects
2.
Annu Rev Cell Dev Biol ; 37: 441-468, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34351785

ABSTRACT

Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive to the ultraviolet to red spectrum of light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection.


Subject(s)
Opsins , Rod Opsins , Animals , Fishes/genetics , Mammals , Opsins/genetics , Phylogeny , Retinal Pigments/genetics , Rod Opsins/genetics , Vertebrates/genetics
3.
Cell ; 168(1-2): 280-294.e12, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28065412

ABSTRACT

Vision influences behavior, but ongoing behavior also modulates vision in animals ranging from insects to primates. The function and biophysical mechanisms of most such modulations remain unresolved. Here, we combine behavioral genetics, electrophysiology, and high-speed videography to advance a function for behavioral modulations of visual processing in Drosophila. We argue that a set of motion-sensitive visual neurons regulate gaze-stabilizing head movements. We describe how, during flight turns, Drosophila perform a set of head movements that require silencing their gaze-stability reflexes along the primary rotation axis of the turn. Consistent with this behavioral requirement, we find pervasive motor-related inputs to the visual neurons, which quantitatively silence their predicted visual responses to rotations around the relevant axis while preserving sensitivity around other axes. This work proposes a function for a behavioral modulation of visual processing and illustrates how the brain can remove one sensory signal from a circuit carrying multiple related signals.


Subject(s)
Drosophila melanogaster/physiology , Visual Pathways , Animals , Drosophila melanogaster/cytology , Flight, Animal , Head Movements , Neurons/cytology , Optic Flow , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/metabolism
4.
Physiol Rev ; 104(3): 881-929, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38206586

ABSTRACT

The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.


Subject(s)
Anterior Chamber , Humans , Prospective Studies
5.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38421315

ABSTRACT

Vision is mainly based on two different tasks, object detection and color discrimination, carried out by photoreceptor (PR) cells. The Drosophila compound eye consists of ∼800 ommatidia. Every ommatidium contains eight PR cells, six outer cells (R1-R6) and two inner cells (R7 and R8), by which object detection and color vision are achieved, respectively. Expression of opsin genes in R7 and R8 is highly coordinated through the instructive signal from R7 to R8, and two major ommatidial subtypes are distributed stochastically; pale type expresses Rh3/Rh5 and yellow type expresses Rh4/Rh6 in R7/R8. The homeodomain protein Defective proventriculus (Dve) is expressed in yellow-type R7 and in six outer PRs, and it is involved in Rh3 repression to specify the yellow-type R7. dve mutant eyes exhibited atypical coupling, Rh3/Rh6 and Rh4/Rh5, indicating that Dve activity is required for proper opsin coupling. Surprisingly, Dve activity in R1 is required for the instructive signal, whereas activity in R6 and R7 blocks the signal. Our results indicate that functional coupling of two different neurons is established through signaling pathways from adjacent neurons that are functionally different.


Subject(s)
Color Vision , Drosophila Proteins , Animals , Drosophila/genetics , Drosophila/metabolism , Opsins/genetics , Opsins/metabolism , Color Vision/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Neurons/metabolism , Signal Transduction/genetics , Photoreceptor Cells, Invertebrate/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
6.
Development ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007346

ABSTRACT

Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon usage suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.

7.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38533736

ABSTRACT

How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Pupa , Feedback , Retina , Morphogenesis/genetics
8.
Proc Natl Acad Sci U S A ; 121(17): e2403858121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635638

ABSTRACT

Functional neuroimaging studies indicate that the human brain can represent concepts and their relational structure in memory using coding schemes typical of spatial navigation. However, whether we can read out the internal representational geometries of conceptual spaces solely from human behavior remains unclear. Here, we report that the relational structure between concepts in memory might be reflected in spontaneous eye movements during verbal fluency tasks: When we asked participants to randomly generate numbers, their eye movements correlated with distances along the left-to-right one-dimensional geometry of the number space (mental number line), while they scaled with distance along the ring-like two-dimensional geometry of the color space (color wheel) when they randomly generated color names. Moreover, when participants randomly produced animal names, eye movements correlated with low-dimensional similarity in word frequencies. These results suggest that the representational geometries used to internally organize conceptual spaces might be read out from gaze behavior.


Subject(s)
Eye Movements , Spatial Navigation , Humans , Brain , Movement , Functional Neuroimaging
9.
Proc Natl Acad Sci U S A ; 121(16): e2316244121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588419

ABSTRACT

Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.


Subject(s)
Drosophila Proteins , Matrix Attachment Region Binding Proteins , Animals , Humans , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , Drosophila/genetics , Retina/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Drosophila melanogaster/metabolism , Body Patterning/genetics
10.
Proc Natl Acad Sci U S A ; 121(15): e2310291121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38564641

ABSTRACT

Humans blink their eyes frequently during normal viewing, more often than it seems necessary for keeping the cornea well lubricated. Since the closure of the eyelid disrupts the image on the retina, eye blinks are commonly assumed to be detrimental to visual processing. However, blinks also provide luminance transients rich in spatial information to neural pathways highly sensitive to temporal changes. Here, we report that the luminance modulations from blinks enhance visual sensitivity. By coupling high-resolution eye tracking in human observers with modeling of blink transients and spectral analysis of visual input signals, we show that blinking increases the power of retinal stimulation and that this effect significantly enhances visibility despite the time lost in exposure to the external scene. We further show that, as predicted from the spectral content of input signals, this enhancement is selective for stimuli at low spatial frequencies and occurs irrespective of whether the luminance transients are actively generated or passively experienced. These findings indicate that, like eye movements, blinking acts as a computational component of a visual processing strategy that uses motor behavior to reformat spatial information into the temporal domain.


Subject(s)
Blinking , Eye Movements , Humans , Photic Stimulation , Visual Perception/physiology , Vision, Ocular
11.
Proc Natl Acad Sci U S A ; 121(3): e2309906121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38198528

ABSTRACT

During free viewing, faces attract gaze and induce specific fixation patterns corresponding to the facial features. This suggests that neurons encoding the facial features are in the causal chain that steers the eyes. However, there is no physiological evidence to support a mechanistic link between face-encoding neurons in high-level visual areas and the oculomotor system. In this study, we targeted the middle face patches of the inferior temporal (IT) cortex in two macaque monkeys using an functional magnetic resonance imaging (fMRI) localizer. We then utilized muscimol microinjection to unilaterally suppress IT neural activity inside and outside the face patches and recorded eye movements while the animals free viewing natural scenes. Inactivation of the face-selective neurons altered the pattern of eye movements on faces: The monkeys found faces in the scene but neglected the eye contralateral to the inactivation hemisphere. These findings reveal the causal contribution of the high-level visual cortex in eye movements.


Subject(s)
Eye Movements , Neurons , Animals , Eye , Histological Techniques , Macaca
12.
Proc Natl Acad Sci U S A ; 121(3): e2304511121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38194453

ABSTRACT

Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses. We used pathway-selective optogenetics in rhesus macaques performing a spatial attention task to inhibit the direct input from the FEF to area MT, an area along the dorsal visual pathway specialized for the processing of visual motion information. Our results show that the optogenetic inhibition of the FEF input specifically reduces attentional modulation in MT by about a third without affecting the neurons' sensory response component. We find that the direct FEF-to-MT pathway contributes to both the enhanced processing of target stimuli and the suppression of distractors. The FEF, thus, selectively modulates firing rates in visual area MT, and it does so via its direct axonal projections.


Subject(s)
Optogenetics , Visual Cortex , Animals , Macaca mulatta , Axons , Brain
13.
J Cell Sci ; 137(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963001

ABSTRACT

Semaphorin6A (Sema6A) is a repulsive guidance molecule that plays many roles in central nervous system, heart and bone development, as well as immune system responses and cell signaling in cancer. Loss of Sema6A or its receptor PlexinA2 in zebrafish leads to smaller eyes and improper retinal patterning. Here, we investigate a potential role for the Sema6A intracellular domain in zebrafish eye development and dissect which phenotypes rely on forward signaling and which rely on reverse signaling. We performed rescue experiments on zebrafish Sema6A morphants with either full-length Sema6A (Sema6A-FL) or Sema6A lacking its intracellular domain (Sema6A-ΔC). We identified that the intracellular domain is not required for eye size and retinal patterning, however it is required for retinal integrity, the number and end feet strength of Müller glia and protecting against retinal cell death. This novel function for the intracellular domain suggests a role for Sema6A reverse signaling in zebrafish eye development.


Subject(s)
Protein Domains , Retina , Semaphorins , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/metabolism , Zebrafish/embryology , Semaphorins/metabolism , Semaphorins/genetics , Retina/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Signal Transduction , Ependymoglial Cells/metabolism , Ependymoglial Cells/cytology
14.
Development ; 150(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-36942737

ABSTRACT

Cell state transitions are often triggered by large changes in the concentrations of transcription factors and therefore large differences in their stoichiometric ratios. Whether cells can elicit transitions using modest changes in the ratios of co-expressed factors is unclear. Here, we investigate how cells in the Drosophila eye resolve state transitions by quantifying the expression dynamics of the ETS transcription factors Pnt and Yan. Eye progenitor cells maintain a relatively constant ratio of Pnt/Yan protein, despite expressing both proteins with pulsatile dynamics. A rapid and sustained twofold increase in the Pnt/Yan ratio accompanies transitions to photoreceptor fates. Genetic perturbations that modestly disrupt the Pnt/Yan ratio produce fate transition defects consistent with the hypothesis that transitions are normally driven by a twofold shift in the ratio. A biophysical model based on cooperative Yan-DNA binding coupled with non-cooperative Pnt-DNA binding illustrates how twofold ratio changes could generate ultrasensitive changes in target gene transcription to drive fate transitions. Thus, coupling cell state transitions to the Pnt/Yan ratio sensitizes the system to modest fold-changes, conferring robustness and ultrasensitivity to the developmental program.


Subject(s)
Drosophila Proteins , Transcription Factors , Animals , Transcription Factors/metabolism , Drosophila/metabolism , DNA-Binding Proteins/genetics , Repressor Proteins/metabolism , Drosophila Proteins/metabolism , Eye Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Nerve Tissue Proteins/metabolism , DNA
15.
Development ; 150(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37522516

ABSTRACT

During embryonic development, tissue-specific transcription factors and chromatin remodelers function together to ensure gradual, coordinated differentiation of multiple lineages. Here, we define this regulatory interplay in the developing retinal pigmented epithelium (RPE), a neuroectodermal lineage essential for the development, function and maintenance of the adjacent retina. We present a high-resolution spatial transcriptomic atlas of the developing mouse RPE and the adjacent ocular mesenchyme obtained by geographical position sequencing (Geo-seq) of a single developmental stage of the eye that encompasses young and more mature ocular progenitors. These transcriptomic data, available online, reveal the key transcription factors and their gene regulatory networks during RPE and ocular mesenchyme differentiation. Moreover, conditional inactivation followed by Geo-seq revealed that this differentiation program is dependent on the activity of SWI/SNF complexes, shown here to control the expression and activity of RPE transcription factors and, at the same time, inhibit neural progenitor and cell proliferation genes. The findings reveal the roles of the SWI/SNF complexes in controlling the intersection between RPE and neural cell fates and the coupling of cell-cycle exit and differentiation.


Subject(s)
Retinal Pigment Epithelium , Transcription Factors , Female , Pregnancy , Mice , Animals , Cell Differentiation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Retinal Pigment Epithelium/metabolism , Cell Proliferation/genetics , Epithelium/metabolism
16.
Development ; 150(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37306293

ABSTRACT

Specification of the eye field (EF) within the neural plate marks the earliest detectable stage of eye development. Experimental evidence, primarily from non-mammalian model systems, indicates that the stable formation of this group of cells requires the activation of a set of key transcription factors. This crucial event is challenging to probe in mammals and, quantitatively, little is known regarding the regulation of the transition of cells to this ocular fate. Using optic vesicle organoids to model the onset of the EF, we generate time-course transcriptomic data allowing us to identify dynamic gene expression programmes that characterize this cellular-state transition. Integrating this with chromatin accessibility data suggests a direct role of canonical EF transcription factors in regulating these gene expression changes, and highlights candidate cis-regulatory elements through which these transcription factors act. Finally, we begin to test a subset of these candidate enhancer elements, within the organoid system, by perturbing the underlying DNA sequence and measuring transcriptomic changes during EF activation.


Subject(s)
Eye , Transcription Factors , Animals , Eye/metabolism , Transcription Factors/metabolism , Regulatory Sequences, Nucleic Acid , Base Sequence , Organoids/metabolism , Gene Expression Regulation, Developmental , Mammals/genetics
17.
Development ; 150(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37702007

ABSTRACT

A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.


Subject(s)
Drosophila Proteins , Imaginal Discs , Animals , Drosophila Proteins/genetics , Drosophila , Genomics , Hyperplasia , Polycomb-Group Proteins/genetics
18.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37997920

ABSTRACT

Optical insulation of the unit eyes (ommatidia) is an important prerequisite of precise sight with compound eyes. Separation of the ommatidia is ensured by pigment cells that organize into a hexagonal lattice in the Drosophila eye, forming thin walls between the facets. Cell adhesion, mediated by apically and latero-basally located junctional complexes, is crucial for stable attachment of these cells to each other and the basal lamina. Whereas former studies have focused on the formation and remodelling of the cellular connections at the apical region, here, we report a specific alteration of the lateral adhesion of the lattice cells, leaving the apical junctions largely unaffected. We found that DAAM and FRL, two formin-type cytoskeleton regulatory proteins, play redundant roles in lateral adhesion of the interommatidial cells and patterning of the retinal floor. We show that formin-dependent cortical actin assembly is crucial for latero-basal sealing of the ommatidial lattice. We expect that the investigation of these previously unreported eye phenotypes will pave the way toward a better understanding of the three-dimensional aspects of compound eye development.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Formins/metabolism , Drosophila/metabolism , Cytoskeleton/metabolism , Retina/metabolism , Eye/metabolism , Adaptor Proteins, Signal Transducing/metabolism
19.
Bioessays ; 46(5): e2300240, 2024 May.
Article in English | MEDLINE | ID: mdl-38593308

ABSTRACT

The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.


Subject(s)
Biological Evolution , Insecta , Vision, Ocular , Animals , Vision, Ocular/physiology , Insecta/physiology , Insecta/genetics , Eye/anatomy & histology , Compound Eye, Arthropod/physiology , Compound Eye, Arthropod/anatomy & histology
20.
Bioessays ; 46(1): e2300054, 2024 01.
Article in English | MEDLINE | ID: mdl-38037292

ABSTRACT

The human fovea is known for its distinctive pit-like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta-analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development.


Subject(s)
Fovea Centralis , Retina , Humans , Fovea Centralis/physiology , Photoreceptor Cells
SELECTION OF CITATIONS
SEARCH DETAIL