Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 82(6): 1123-1139.e8, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35182481

ABSTRACT

A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/ß, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.


Subject(s)
F-Box Proteins , F-Box-WD Repeat-Containing Protein 7 , Neoplasms , Animals , Cell Line, Tumor , F-Box Proteins/genetics , F-Box Proteins/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Homeodomain Proteins/genetics , Humans , Immune Evasion , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Neoplasms/genetics , Nuclear Proteins/metabolism , Phenotype , Protein Tyrosine Phosphatases/genetics , Ubiquitin/metabolism
2.
Proc Natl Acad Sci U S A ; 121(12): e2309902121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483988

ABSTRACT

FBXW7 is an E3 ubiquitin ligase that targets proteins for proteasome-mediated degradation and is mutated in various cancer types. Here, we use CRISPR base editors to introduce different FBXW7 hotspot mutations in human colon organoids. Functionally, FBXW7 mutation reduces EGF dependency of organoid growth by ~10,000-fold. Combined transcriptomic and proteomic analyses revealed increased EGFR protein stability in FBXW7 mutants. Two distinct phosphodegron motifs reside in the cytoplasmic tail of EGFR. Mutations in these phosphodegron motifs occur in human cancer. CRISPR-mediated disruption of the phosphodegron motif at T693 reduced EGFR degradation and EGF growth factor dependency. FBXW7 mutant organoids showed reduced sensitivity to EGFR-MAPK inhibitors. These observations were further strengthened in CRC-derived organoid lines and validated in a cohort of patients treated with panitumumab. Our data imply that FBXW7 mutations reduce EGF dependency by disabling EGFR turnover.


Subject(s)
F-Box Proteins , Neoplasms , Humans , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Epidermal Growth Factor/genetics , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Proteomics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , F-Box Proteins/genetics
3.
Proc Natl Acad Sci U S A ; 121(41): e2414618121, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39361641

ABSTRACT

The transcription factor E2F1 serves as a regulator of the cell cycle and promotes cell proliferation. It is highly expressed in cancer tissues and contributes to their malignant transformation. Degradation by the ubiquitin-proteasome system may help to prevent such overexpression of E2F1 and thereby to suppress carcinogenesis. A detailed understanding of the mechanisms underlying E2F1 degradation may therefore inform the development of new cancer treatments. We here identified SCFFBXW7 as a ubiquitin ligase for E2F1 by comprehensive analysis. We found that phosphorylation of E2F1 at serine-403 promotes its binding to FBXW7 (F-box/WD repeat-containing protein 7) followed by its ubiquitination and degradation. Furthermore, calcineurin, a Ca2+/calmodulin-dependent serine-threonine phosphatase, was shown to stabilize E2F1 by mediating its dephosphorylation at serine-403 and thereby preventing FBXW7 binding. Treatment of cells with Ca2+ channel blockers resulted in downregulation of both E2F1 protein and the expression of E2F1 target genes, whereas treatment with the Ca2+ ionophore ionomycin induced upregulation of E2F1. Finally, the calcineurin inhibitor FK506 attenuated xenograft tumor growth in mice in association with downregulation of E2F1 in the tumor tissue. Impairment of the balance between the opposing actions of FBXW7 and calcineurin in the regulation of E2F1 abundance may therefore play an important role in carcinogenesis.


Subject(s)
Calcineurin , E2F1 Transcription Factor , F-Box-WD Repeat-Containing Protein 7 , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Calcineurin/metabolism , Calcineurin/genetics , Humans , Phosphorylation , Animals , Mice , Ubiquitination , Protein Binding , HEK293 Cells , Tacrolimus/pharmacology , Cell Line, Tumor , Protein Stability , Proteolysis
4.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35395208

ABSTRACT

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Subject(s)
F-Box-WD Repeat-Containing Protein 7 , Neurodevelopmental Disorders , Ubiquitination , F-Box-WD Repeat-Containing Protein 7/chemistry , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Germ Cells , Germ-Line Mutation , Humans , Neurodevelopmental Disorders/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
J Virol ; 98(7): e0040524, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38874362

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions. Here, we report that the viral oncoprotein Tax represses FBXW7 activity, resulting in the stabilization of activated Notch intracellular domain, c-MYC, Cyclin E, and myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1). Mechanistically, we demonstrate that Tax directly binds to FBXW7 in the nucleus, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 substrates. In support of the nuclear role of Tax, a non-degradable form of the nuclear factor kappa B subunit 2 (NFκB2/p100) was found to delocalize Tax to the cytoplasm, thereby preventing Tax interactions with FBXW7 and Tax-mediated inhibition of FBXW7. Finally, we characterize a Tax mutant that is unable to interact with FBXW7, unable to block FBXW7 tumor suppressor functions, and unable to effectively transform fibroblasts. These results demonstrate that HTLV-I Tax can inhibit FBXW7 functions without genetic mutations to promote an oncogenic state. These results suggest that Tax-mediated inhibition of FBXW7 is likely critical during the early stages of the cellular transformation process. IMPORTANCE: F-box and WD repeat domain containing 7 (FBXW7), a critical tumor suppressor of human cancers, is frequently mutated or epigenetically suppressed. Loss of FBXW7 functions is associated with stabilization and increased expression of oncogenic factors such as Cyclin E, c-Myc, Mcl-1, mTOR, Jun, and Notch. In this study, we demonstrate that the human retrovirus human T-cell leukemia virus type 1 oncoprotein Tax directly interacts with FBXW7, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 cellular substrates. We further demonstrate that a Tax mutant unable to interact with and inactivate FBXW7 loses its ability to transform primary fibroblasts. Collectively, our results describe a novel mechanism used by a human tumor virus to promote cellular transformation.


Subject(s)
Cell Cycle Proteins , F-Box Proteins , F-Box-WD Repeat-Containing Protein 7 , Gene Products, tax , Human T-lymphotropic virus 1 , Ubiquitin-Protein Ligases , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Humans , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Gene Products, tax/metabolism , Gene Products, tax/genetics , F-Box Proteins/metabolism , F-Box Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Binding
6.
Exp Cell Res ; 442(2): 114252, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260674

ABSTRACT

The present study aimed to explore the expression and regulatory role of FAM83D in the different developmental stages of esophageal squamous cell carcinoma (ESCC) to determine the effect of FAM83D on the proliferation, migration, and invasion of ESCC cells and to elucidate its underlying molecular mechanism. Immunohistochemistry (IHC) analysis revealed that the expression of FAM83D was obviously elevated in ESCC tissues compared to adjacent normal tissues. Furthermore, the FAM83D levels was positively correlated with tumor size, TNM stage, T stage, and N stage, while it was negatively correlated with FBXW7 expression, Karnofsky Performance Status (KPS) score, and survival rate. Subsequently, ESCC cell lines with low FAM83D expression were constructed using RNA interference technology to investigate the impact of FAM83D on the biological behavior of ESCC cells. Silencing of FAM83D inhibited the proliferation and migration of ESCC cells but promoted apoptosis. Furthermore, a reduction in FAM83D expression may also induce cell cycle arrest at the G0/G1 phase and regulate the expression of proteins related to epithelial-mesenchymal transition (EMT), the cell cycle, and apoptosis. Further research indicated that silencing FAM83D led to the upregulation of FBXW7 expression. These results suggested that FAM83D may exert its effects on ESCC by downregulating FBXW7. Additionally, using a 4NQO solution in the drinking water to establish an ESCC mouse model, IHC analysis revealed that FAM83D expression levels were positively correlated with the pathological grade of esophageal lesions in the mice and negatively correlated with the expression levels of FBXW7 and E-cadherin. The above results demonstrated that FAM83D may facilitate the progression of ESCC by negatively regulating FBXW7 expression and that FAM83D could represent a promising therapeutic target for ESCC.

7.
Am J Physiol Cell Physiol ; 327(4): C884-C900, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39140602

ABSTRACT

Chemotherapy resistance to colon cancer is an unavoidable obstacle in the clinical management of the disease. Clitocine, an adenosine analog, played a significant role in the chemosensitivity of human colon cancer cells by promoting myeloid cell leukemia 1 (MCL-1) protein degradation. However, the detailed mechanism remains to be further elucidated. We found that clitocine upregulates the expression of F-box and WD repeat domain containing 7 (FBXW7), a ubiquitin ligase involved in the MCL-1 degradation. Transcriptome sequencing analysis revealed that clitocine significantly inhibits the cyclic adenosine monophosphate (cAMP) and extracellular regulated protein kinases (ERK) downstream signaling pathways in colon cancer cells, thereby enhancing FBXW7 expression and subsequently promoting the ubiquitination degradation of MCL-1 protein. We verified that clitocine regulated intracellular cAMP levels by competitive binding with the adenosine receptor A2B. A molecular docking assay also verified the binding relationship. By decreasing intracellular cAMP levels, clitocine blocks the activation of downstream signaling pathways, which ultimately enhances the drug sensitivity of colon cancer cells through increased FBXW7 expression due to the inhibition of its promoter DNA methylation. Both knockout of the adenosine receptor A2B and Br-cAMP treatment can effectively attenuate the function of clitocine in vitro and in vivo. This study clarified that clitocine enhanced the drug sensitivity of colon cancer cells by promoting FBXW7-mediated MCL-1 degradation via inhibiting the A2B/cAMP/ERK axis, providing further knowledge of the clinical application for clitocine.NEW & NOTEWORTHY Our study found that clitocine enhances the drug sensitivity of colon cancer cells by promoting FBXW7-mediated MCL-1 degradation via inhibiting the A2B/cAMP/ERK axis.


Subject(s)
Colonic Neoplasms , Cyclic AMP , F-Box-WD Repeat-Containing Protein 7 , Myeloid Cell Leukemia Sequence 1 Protein , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Cyclic AMP/metabolism , Animals , Drug Resistance, Neoplasm/drug effects , Mice , Cell Line, Tumor , Mice, Nude , MAP Kinase Signaling System/drug effects , Proteolysis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Mice, Inbred BALB C
8.
J Cell Mol Med ; 28(12): e18487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031722

ABSTRACT

Premature ovarian insufficiency (POI) is one of the important causes of female infertility. Yet the aetiology for POI is still elusive. FBXW7 (F-box with 7 tandem WD) is one of the important components of the Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase. FBXW7 can regulate cell growth, survival and pluripotency through mediating ubiquitylation and degradation of target proteins via triggering the ubiquitin-proteasome system, and is associated with tumorigenesis, haematopoiesis and testis development. However, evidence establishing the function of FBXW7 in ovary is still lacking. Here, we showed that FBXW7 protein level was significantly decreased in the ovaries of the cisplatin-induced POI mouse model. We further showed that mice with oocyte-specific deletion of Fbxw7 demonstrated POI, characterized with folliculogenic defects, early depletion of follicle reserve, disordered hormonal secretion, ovarian dysfunction and female infertility. Impaired oocyte-GCs communication, manifested as down-regulation of connexin 37, may contribute to follicular development failure in the Fbxw7-mutant mice. Furthermore, single-cell RNA sequencing and in situ hybridization results indicated an accumulation of Clu and Ccl2 transcripts, which may alter follicle microenvironment deleterious to oocyte development and accelerate POI. Our results establish the important role of Fbxw7 in folliculogenesis and ovarian function, and might provide valuable information for understanding POI and female infertility.


Subject(s)
F-Box-WD Repeat-Containing Protein 7 , Oocytes , Ovarian Follicle , Primary Ovarian Insufficiency , Animals , Female , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/pathology , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Oocytes/metabolism , Mice , Ovarian Follicle/metabolism , Ovarian Follicle/growth & development , Ovarian Follicle/pathology , Disease Models, Animal , Gene Deletion , Mice, Knockout , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Cisplatin/adverse effects
9.
Breast Cancer Res ; 26(1): 37, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454442

ABSTRACT

Increasing evidence shows the oncogenic function of FAM83D in human cancer, but how FAM83D exerts its oncogenic function remains largely unclear. Here, we investigated the importance of FAM83D/FBXW7 interaction in breast cancer (BC). We systematically mapped the FBXW7-binding sites on FAM83D through a comprehensive mutational analysis together with co-immunoprecipitation assay. Mutations at the FBXW7-binding sites on FAM83D led to that FAM83D lost its capability to promote the ubiquitination and proteasomal degradation of FBXW7; cell proliferation, migration, and invasion in vitro; and tumor growth and metastasis in vivo, indicating that the FBXW7-binding sites on FAM83D are essential for its oncogenic functions. A meta-evaluation of FAM83D revealed that the prognostic impact of FAM83D was independent on molecular subtypes. The higher expression of FAM83D has poorer prognosis. Moreover, high expression of FAM83D confers resistance to chemotherapy in BCs, which is experimentally validated in vitro. We conclude that identification of FBXW7-binding sites on FAM83D not only reveals the importance for FAM83D oncogenic function, but also provides valuable insights for drug target.


Subject(s)
Breast Neoplasms , Cell Cycle Proteins , Humans , Female , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Prognosis , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
10.
J Transl Med ; 22(1): 99, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38268032

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) are a small population of cells in tumor tissues that can drive tumor initiation and promote tumor progression. A small number of previous studies indirectly mentioned the role of F-box and WD repeat domain-containing 7 (FBXW7) as a tumor suppressor in Triple-negative breast cancer (TNBC). However, few studies have focused on the function of FBXW7 in cancer stemness in TNBC and the related mechanism. METHODS: We detected FBXW7 by immunohistochemistry (IHC) in 80 TNBC patients. FBXW7 knockdown and overexpression in MD-MBA-231 and HCC1937 cell models were constructed. The effect of FBXW7 on malignant phenotype and stemness was assessed by colony assays, flow cytometry, transwell assays, western blot, and sphere formation assays. Immunoprecipitation-Mass Spectrometry (IP-MS) and ubiquitination experiments were used to find and verify potential downstream substrate proteins of FBXW7. Animal experiments were constructed to examine the effect of FBXW7 on tumorigenic potential and cancer stemness of TNBC cells in vivo. RESULTS: The results showed that FBXW7 was expressed at low levels in TNBC tissues and positively correlated with prognosis of TNBC patients. In vitro, FBXW7 significantly inhibited colony formation, cell cycle progression, cell migration, EMT process, cancer stemness and promotes apoptosis. Further experiments confirmed that chromodomain-helicase-DNA-binding protein 4 (CHD4) is a novel downstream target of FBXW7 and is downregulated by FBXW7 via proteasomal degradation. Moreover, CHD4 could promote the nuclear translocation of ß-catenin and reverse the inhibitory effect of FBXW7 on ß-catenin, and ultimately activate the Wnt/ß-catenin pathway. Rescue experiments confirmed that the FBXW7-CHD4-Wnt/ß-catenin axis was involved in regulating the maintenance of CSC in TNBC cells. In animal experiments, FBXW7 reduced CSC marker expression and suppressed TNBC cell tumorigenesis in vivo. CONCLUSIONS: Taken together, these results highlight that FBXW7 degrades CHD4 protein through ubiquitination, thereby blocking the activation of the Wnt/ß-catenin pathway to inhibit the stemness of TNBC cells. Thus, targeting FBXW7 may be a promising strategy for therapeutic intervention against TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Humans , beta Catenin , Carcinogenesis , Cell Transformation, Neoplastic , F-Box-WD Repeat-Containing Protein 7/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Triple Negative Breast Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL