Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 170(5): 875-888.e20, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28757253

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Models, Animal , Epigenomics , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Organoids/metabolism , Pancreas/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
2.
Mol Cell ; 84(2): 244-260.e7, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38101414

ABSTRACT

Eukaryotic DNA is packaged into chromatin in the nucleus, restricting the binding of transcription factors (TFs) to their target DNA sites. FOXA1 functions as a pioneer TF to bind condensed chromatin and initiate the opening of local chromatin for gene expression. However, the principles of FOXA1 recruitment and how it subsequently unpacks the condensed chromatin remain elusive. Here, we revealed that FOXA1 intrinsically forms submicron-sized condensates through its N- and C-terminal intrinsically disordered regions (IDRs). Notably, both IDRs enable FOXA1 to dissolve the condensed chromatin. In addition, the DNA-binding capacity of FOXA1 contributes to its ability to both form condensates and dissolve condensed chromatin. Further genome-wide investigation showed that IDRs enable FOXA1 to bind and unpack the condensed chromatin to regulate the proliferation and migration of breast cancer cells. This work provides a principle of how pioneer TFs function to initiate competent chromatin states using their IDRs.


Subject(s)
Biomolecular Condensates , Chromatin , Hepatocyte Nuclear Factor 3-alpha , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Heterochromatin , Humans
3.
Mol Cell ; 84(16): 3061-3079.e10, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39121853

ABSTRACT

Mouse FOXA1 and GATA4 are prototypes of pioneer factors, initiating liver cell development by binding to the N1 nucleosome in the enhancer of the ALB1 gene. Using cryoelectron microscopy (cryo-EM), we determined the structures of the free N1 nucleosome and its complexes with FOXA1 and GATA4, both individually and in combination. We found that the DNA-binding domains of FOXA1 and GATA4 mainly recognize the linker DNA and an internal site in the nucleosome, respectively, whereas their intrinsically disordered regions interact with the acidic patch on histone H2A-H2B. FOXA1 efficiently enhances GATA4 binding by repositioning the N1 nucleosome. In vivo DNA editing and bioinformatics analyses suggest that the co-binding mode of FOXA1 and GATA4 plays important roles in regulating genes involved in liver cell functions. Our results reveal the mechanism whereby FOXA1 and GATA4 cooperatively bind to the nucleosome through nucleosome repositioning, opening chromatin by bending linker DNA and obstructing nucleosome packing.


Subject(s)
Cryoelectron Microscopy , GATA4 Transcription Factor , Hepatocyte Nuclear Factor 3-alpha , Nucleosomes , Protein Binding , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Nucleosomes/metabolism , Nucleosomes/genetics , Nucleosomes/ultrastructure , Animals , GATA4 Transcription Factor/metabolism , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/chemistry , Mice , Chromatin/metabolism , Chromatin/genetics , Histones/metabolism , Histones/genetics , Histones/chemistry , Binding Sites , DNA/metabolism , DNA/genetics , DNA/chemistry , Chromatin Assembly and Disassembly , Humans
4.
Mol Cell ; 75(1): 154-171.e5, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31056445

ABSTRACT

The epigenetic information present in mammalian gametes and whether it is transmitted to the progeny are relatively unknown. We find that many promoters in mouse sperm are occupied by RNA polymerase II (Pol II) and Mediator. The same promoters are accessible in GV and MII oocytes and preimplantation embryos. Sperm distal ATAC-seq sites containing motifs for various transcription factors are conserved in monkeys and humans. ChIP-seq analyses confirm that Foxa1, ERα, and AR occupy distal enhancers in sperm. Accessible sperm enhancers containing H3.3 and H2A.Z are also accessible in oocytes and preimplantation embryos. Furthermore, their interactions with promoters in the gametes persist during early development. Sperm- or oocyte-specific interactions mediated by CTCF and cohesin are only present in the paternal or maternal chromosomes, respectively, in the zygote and 2-cell stages. These interactions converge in both chromosomes by the 8-cell stage. Thus, mammalian gametes contain complex patterns of 3D interactions that can be transmitted to the zygote after fertilization.


Subject(s)
CCCTC-Binding Factor/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Oocytes/metabolism , Spermatozoa/metabolism , Zygote/metabolism , Animals , Base Sequence , CCCTC-Binding Factor/metabolism , Chromatin/chemistry , Chromatin/metabolism , Conserved Sequence , Embryo, Mammalian , Embryonic Development/genetics , Enhancer Elements, Genetic , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Female , Gene Expression Regulation, Developmental , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Macaca mulatta , Male , Mice , Oocytes/cytology , Oocytes/growth & development , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Sequence Homology, Nucleic Acid , Spermatozoa/cytology , Spermatozoa/growth & development , Zinc Fingers/genetics , Zygote/cytology , Zygote/growth & development
5.
Proc Natl Acad Sci U S A ; 120(33): e2220472120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549269

ABSTRACT

Dysregulation of histone lysine methyltransferases and demethylases is one of the major mechanisms driving the epigenetic reprogramming of transcriptional networks in castration-resistant prostate cancer (CRPC). In addition to their canonical histone targets, some of these factors can modify critical transcription factors, further impacting oncogenic transcription programs. Our recent report demonstrated that LSD1 can demethylate the lysine 270 of FOXA1 in prostate cancer (PCa) cells, leading to the stabilization of FOXA1 chromatin binding. This process enhances the activities of the androgen receptor and other transcription factors that rely on FOXA1 as a pioneer factor. However, the identity of the methyltransferase responsible for FOXA1 methylation and negative regulation of the FOXA1-LSD1 oncogenic axis remains unknown. SETD7 was initially identified as a transcriptional activator through its methylation of histone 3 lysine 4, but its function as a methyltransferase on nonhistone substrates remains poorly understood, particularly in the context of PCa progression. In this study, we reveal that SETD7 primarily acts as a transcriptional repressor in CRPC cells by functioning as the major methyltransferase targeting FOXA1-K270. This methylation disrupts FOXA1-mediated transcription. Consistent with its molecular function, we found that SETD7 confers tumor suppressor activity in PCa cells. Moreover, loss of SETD7 expression is significantly associated with PCa progression and tumor aggressiveness. Overall, our study provides mechanistic insights into the tumor-suppressive and transcriptional repression activities of SETD7 in mediating PCa progression and therapy resistance.


Subject(s)
Histones , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Histones/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Lysine/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Methyltransferases/metabolism , Histone Demethylases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism
6.
Cell Mol Life Sci ; 81(1): 160, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564048

ABSTRACT

The androgen receptor (AR) is a primary target for treating prostate cancer (PCa), forming the bedrock of its clinical management. Despite their efficacy, resistance often hampers AR-targeted therapies, necessitating new strategies against therapy-resistant PCa. These resistances involve various mechanisms, including AR splice variant overexpression and altered activities of transcription factors like the glucocorticoid receptor (GR) and FOXA1. These factors rely on common coregulators, such as EP300/CREBBP, suggesting a rationale for coregulator-targeted therapies. Our study explores EP300/CREBBP acetyltransferase inhibition's impact on steroid receptor and FOXA1 signaling in PCa cells using genome-wide techniques. Results reveal that EP300/CREBBP inhibition significantly disrupts the AR-regulated transcriptome and receptor chromatin binding by reducing the AR-gene expression. Similarly, GR's regulated transcriptome and receptor binding were hindered, not linked to reduced GR expression but to diminished FOXA1 chromatin binding, restricting GR signaling. Overall, our findings highlight how EP300/CREBBP inhibition distinctively curtails oncogenic transcription factors' signaling, suggesting the potential of coregulatory-targeted therapies in PCa.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Receptors, Glucocorticoid/genetics , Transcription Factors , Chromatin , Acetyltransferases , Hepatocyte Nuclear Factor 3-alpha/genetics , E1A-Associated p300 Protein/genetics , CREB-Binding Protein/genetics
7.
Prostate ; 84(10): 967-976, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38632701

ABSTRACT

BACKGROUND: Ribosome biogenesis is excessively activated in tumor cells, yet it is little known whether oncogenic transcription factors (TFs) are involved in the ribosomal RNA (rRNA) transactivation. METHODS: Nucleolar proteomics data and large-scale immunofluorescence were re-analyzed to jointly identify the proteins localized at nucleolus. RNA-Seq data of five prostate cancer (PCa) cohorts were combined and integrated with multi-dimensional data to define the upregulated nucleolar TFs in PCa tissues. Then, ChIP-Seq data of PCa cell lines and two PCa clinical cohorts were re-analyzed to reveal the TF binding patterns at ribosomal DNA (rDNA) repeats. The TF binding at rDNA was validated by ChIP-qPCR. The effect of the TF on rRNA transcription was determined by rDNA luciferase reporter, nascent RNA synthesis, and global protein translation assays. RESULTS: In this study, we reveal the role of oncogenic TF FOXA1 in regulating rRNA transcription within nucleolar organization regions. By analyzing human TFs in prostate cancer clinical datasets and nucleolar proteomics data, we identified that FOXA1 is partially localized in the nucleolus and correlated with global protein translation. Our extensive FOXA1 ChIP-Seq analysis provides robust evidence of FOXA1 binding across rDNA repeats in prostate cancer cell lines, primary tumors, and castration-resistant variants. Notably, FOXA1 occupancy at rDNA repeats correlates with histone modifications associated with active transcription, namely H3K27ac and H3K4me3. Reducing FOXA1 expression results in decreased transactivation at rDNA, subsequently diminishing global protein synthesis. CONCLUSIONS: Our results suggest FOXA1 regulates aberrant ribosome biogenesis downstream of oncogenic signaling in prostate cancer.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha , Prostatic Neoplasms , RNA, Ribosomal , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal/biosynthesis , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Cell Line, Tumor , Transcription, Genetic , Gene Expression Regulation, Neoplastic , Cell Nucleolus/metabolism
8.
Development ; 148(15)2021 08 01.
Article in English | MEDLINE | ID: mdl-34323272

ABSTRACT

During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.


Subject(s)
Alternative Splicing/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , RNA Splicing/genetics , Thymocytes/physiology , Animals , Exons/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA Splicing Factors/genetics , T-Lymphocytes/physiology , Thymus Gland/physiology
9.
Development ; 148(6)2021 03 24.
Article in English | MEDLINE | ID: mdl-33658226

ABSTRACT

Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for ß cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential ß cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced ß cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Co-Repressor Proteins/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Pancreas/growth & development , Repressor Proteins/genetics , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Developmental/genetics , Insulin-Secreting Cells/metabolism , Liver/growth & development , Liver/metabolism , Mice , Mutation/genetics , Organogenesis/genetics , Pancreas/metabolism
10.
Ann Surg Oncol ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269634

ABSTRACT

BACKGROUND: Whether radiation should be added to neoadjuvant treatment remains controversial, and liquid biopsy has not been reported to predict radioresistance in pancreatic cancer (PC). We aimed to identify microRNAs (miRNAs) governing radioresistance in PC by utilizing peripheral plasma exosome samples and to verify their usefulness as biomarkers. METHODS: miRNA microarray analysis was conducted using pretreatment peripheral plasma exosomes from 10 patients with PC receiving neoadjuvant chemoradiotherapy (NACRT) in the discovery cohort. Patients were categorized into two groups (good and poor responders) based on treatment responses, and candidate miRNAs exhibiting differential expression between the two groups were identified. The radiosensitivity of PC cells was examined after miR-6855-5p overexpression. Next-generation sequencing (NGS) and TargetScan were used to explore the mechanisms of radioresistance. We investigated the correlation between miR-6855-5p expression levels in the pretreatment peripheral plasma exosomes of 28 patients in the validation cohort and the response to NACRT. RESULTS: miR-6855-5p expression was higher in poor responders than in good responders. miR-6855-5p induces radioresistance in PC cells. NGS showed that epithelial-mesenchymal transition (EMT) was involved in miR-6855-5p-related radioresistance. Forkhead box protein A1 (FOXA1) was identified as a direct target of miR-6855-5p using NGS and TargetScan. Clinical examination of samples from the validation cohort revealed a tendency for patients with higher expression of miR-6855-5p in peripheral plasma exosomes to exhibit increased radioresistance (r = -0.5964). CONCLUSIONS: miR-6855-5p regulates the radioresistance of PC by inducing EMT via suppressing FOXA1, and miR-6855-5p in peripheral plasma exosomes may be a biomarker for radioresistance of PC.

SELECTION OF CITATIONS
SEARCH DETAIL