Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biomed Inform ; 46(6): 1044-59, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23892294

ABSTRACT

Gene expression profile classification is a pivotal research domain assisting in the transformation from traditional to personalized medicine. A major challenge associated with gene expression data classification is the small number of samples relative to the large number of genes. To address this problem, researchers have devised various feature selection algorithms to reduce the number of genes. Recent studies have been experimenting with the use of semantic similarity between genes in Gene Ontology (GO) as a method to improve feature selection. While there are few studies that discuss how to use GO for feature selection, there is no simulation study that addresses when to use GO-based feature selection. To investigate this, we developed a novel simulation, which generates binary class datasets, where the differentially expressed genes between two classes have some underlying relationship in GO. This allows us to investigate the effects of various factors such as the relative connectedness of the underlying genes in GO, the mean magnitude of separation between differentially expressed genes denoted by δ, and the number of training samples. Our simulation results suggest that the connectedness in GO of the differentially expressed genes for a biological condition is the primary factor for determining the efficacy of GO-based feature selection. In particular, as the connectedness of differentially expressed genes increases, the classification accuracy improvement increases. To quantify this notion of connectedness, we defined a measure called Biological Condition Annotation Level BCAL(G), where G is a graph of differentially expressed genes. Our main conclusions with respect to GO-based feature selection are the following: (1) it increases classification accuracy when BCAL(G) ≥ 0.696; (2) it decreases classification accuracy when BCAL(G) ≤ 0.389; (3) it provides marginal accuracy improvement when 0.389

Subject(s)
Gene Expression Profiling , Algorithms , Humans , Precision Medicine
2.
PeerJ ; 11: e15552, 2023.
Article in English | MEDLINE | ID: mdl-37404475

ABSTRACT

Respiratory diseases are among the major health problems causing a burden on hospitals. Diagnosis of infection and rapid prediction of severity without time-consuming clinical tests could be beneficial in preventing the spread and progression of the disease, especially in countries where health systems remain incapable. Personalized medicine studies involving statistics and computer technologies could help to address this need. In addition to individual studies, competitions are also held such as Dialogue for Reverse Engineering Assessment and Methods (DREAM) challenge which is a community-driven organization with a mission to research biology, bioinformatics, and biomedicine. One of these competitions was the Respiratory Viral DREAM Challenge, which aimed to develop early predictive biomarkers for respiratory virus infections. These efforts are promising, however, the prediction performance of the computational methods developed for detecting respiratory diseases still has room for improvement. In this study, we focused on improving the performance of predicting the infection and symptom severity of individuals infected with various respiratory viruses using gene expression data collected before and after exposure. The publicly available gene expression dataset in the Gene Expression Omnibus, named GSE73072, containing samples exposed to four respiratory viruses (H1N1, H3N2, human rhinovirus (HRV), and respiratory syncytial virus (RSV)) was used as input data. Various preprocessing methods and machine learning algorithms were implemented and compared to achieve the best prediction performance. The experimental results showed that the proposed approaches obtained a prediction performance of 0.9746 area under the precision-recall curve (AUPRC) for infection (i.e., shedding) prediction (SC-1), 0.9182 AUPRC for symptom class prediction (SC-2), and 0.6733 Pearson correlation for symptom score prediction (SC-3) by outperforming the best leaderboard scores of Respiratory Viral DREAM Challenge (a 4.48% improvement for SC-1, a 13.68% improvement for SC-2, and a 13.98% improvement for SC-3). Additionally, over-representation analysis (ORA), which is a statistical method for objectively determining whether certain genes are more prevalent in pre-defined sets such as pathways, was applied using the most significant genes selected by feature selection methods. The results show that pathways associated with the 'adaptive immune system' and 'immune disease' are strongly linked to pre-infection and symptom development. These findings contribute to our knowledge about predicting respiratory infections and are expected to facilitate the development of future studies that concentrate on predicting not only infections but also the associated symptoms.


Subject(s)
Influenza A Virus, H1N1 Subtype , Respiratory Syncytial Virus, Human , Virus Diseases , Humans , Influenza A Virus, H3N2 Subtype , Virus Diseases/diagnosis , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL