Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.093
Filter
Add more filters

Publication year range
1.
Cell ; 187(9): 2324-2335.e19, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38599211

ABSTRACT

Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.


Subject(s)
Microbiota , Neoplasm Metastasis , Neoplasms , Humans , Neoplasms/microbiology , Neoplasms/pathology , Metagenomics/methods , Lung Neoplasms/microbiology , Lung Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Neutrophils/immunology , Tumor Microenvironment , Bacteria/genetics , Bacteria/classification
2.
FASEB J ; 38(1): e23357, 2024 01.
Article in English | MEDLINE | ID: mdl-38085169

ABSTRACT

Bacterial infection is the main cause of pulpitis. However, whether a dominant bacteria can promote the progression of pulpitis and its underlying mechanism remains unclear. We provided a comprehensive assessment of the microbiota alteration in pulpitis using 16S rRNA sequencing. Fusobacterium nucleatum was the most enriched in pulpitis and played a pathogenic role accelerating pulpitis progression in rat pulpitis model. After odontoblast-like cells cocultured with F. nucleatum, the stimulator of interferon genes (STING) pathway and autophagy were activation. There was a float of STING expression during F. nucleatum stimulation. STING was degraded by autophagy at the early stage. At the late stage, F. nucleatum stimulated mitochondrial Reactive Oxygen Species (ROS) production, mitochondrial dysfunction and then mtDNA escape into cytosol. mtDNA, which escaped into cytosol, caused more cytosolic mtDNA binds to cyclic GMP-AMP synthase (cGAS). The release of IFN-ß was dramatically reduced when mtDNA-cGAS-STING pathway inhibited. STING-/- mice showed milder periapical bone loss and lower serum IFN-ß levels compared with wildtype mice after 28 days F. nucleatum-infected pulpitis model establishment. Our data demonstrated that F. nucleatum exacerbated the progression of pulpitis, which was mediated by the STING-dependent pathway.


Subject(s)
Fusobacterium nucleatum , Pulpitis , Mice , Rats , Animals , Fusobacterium nucleatum/genetics , Fusobacterium nucleatum/metabolism , Signal Transduction , RNA, Ribosomal, 16S , Nucleotidyltransferases/metabolism , DNA, Mitochondrial/genetics
3.
Proc Natl Acad Sci U S A ; 119(40): e2201460119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161895

ABSTRACT

Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σE response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σE response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σE. In addition to the characterization of a global stress response in F. nucleatum, the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.


Subject(s)
Fusobacterium nucleatum , Gene Expression Regulation, Bacterial , Sigma Factor , Stress, Physiological , Fusobacterium nucleatum/classification , Fusobacterium nucleatum/genetics , Fusobacterium nucleatum/physiology , Genes, Reporter , Host Factor 1 Protein/genetics , Luminescent Proteins/genetics , Membrane Proteins/genetics , Oxygen , Phylogeny , RNA, Messenger/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sigma Factor/genetics , Sigma Factor/physiology , Stress, Physiological/genetics
4.
J Cell Mol Med ; 28(1): e18064, 2024 01.
Article in English | MEDLINE | ID: mdl-38031653

ABSTRACT

With the increasing incidence of oral cancer in the world, it has become a hotspot to explore the pathogenesis and prevention of oral cancer. It has been proved there is a strong link between periodontal pathogens and oral cancer. However, the specific molecular and cellular pathogenic mechanisms remain to be further elucidated. Emerging evidence suggests that periodontal pathogens-induced epithelial-mesenchymal transition (EMT) is closely related to the progression of oral cancer. Cells undergoing EMT showed increased motility, aggressiveness and stemness, which provide a pro-tumour environment and promote malignant metastasis of oral cancer. Plenty of studies proposed periodontal pathogens promote carcinogenesis via EMT. In the current review, we discussed the association between the development of oral cancer and periodontal pathogens, and summarized various mechanisms of EMT caused by periodontal pathogens, which are supposed to play an important role in oral cancer, to provide targets for future research in the fight against oral cancer.


Subject(s)
Mouth Neoplasms , Porphyromonas gingivalis , Humans , Mouth Neoplasms/pathology , Epithelial-Mesenchymal Transition , Carcinogenesis , Fusobacterium nucleatum
5.
J Biol Chem ; 299(7): 104902, 2023 07.
Article in English | MEDLINE | ID: mdl-37302554

ABSTRACT

Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/ß core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.


Subject(s)
Flavodoxin , Fusobacterium nucleatum , Heme , Tetrapyrroles , Humans , Flavin Mononucleotide/metabolism , Flavodoxin/chemistry , Flavodoxin/classification , Flavodoxin/genetics , Flavodoxin/metabolism , Fusobacterium nucleatum/chemistry , Fusobacterium nucleatum/genetics , Fusobacterium nucleatum/metabolism , Heme/metabolism , Iron/metabolism , Oxidation-Reduction , Tetrapyrroles/metabolism , Biological Transport , Genes, Bacterial , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Domains , Fusobacterium Infections/microbiology
6.
Curr Issues Mol Biol ; 46(4): 2991-3004, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38666917

ABSTRACT

Frankincense is produced by Boswellia trees, which can be found throughout the Middle East and parts of Africa and Asia. Boswellia serrata extract has been shown to have anti-cancer, anti-inflammatory, and antimicrobial effects. Periodontitis is an oral chronic inflammatory disease that affects nearly half of the US population. We investigated the antimicrobial effects of B. serrata extract on two oral pathogens associated with periodontitis. Using the minimum inhibitory concentration and crystal violet staining methods, we demonstrated that Porphyromonas gingivalis growth and biofilm formation were impaired by treatment with B. serrata extracts. However, the effects on Fusobacterium nucleatum growth and biofilm formation were not significant. Using quantification of colony-forming units and microscopy techniques, we also showed that concentrations of B. serrata that were not toxic for host cells decreased intracellular P. gingivalis infection in human gingival epithelial cells. Our results show antimicrobial activity of a natural product extracted from Boswellia trees (B. serrata) against periodontopathogens. Thus, B. serrata has the potential for preventing and/or treating periodontal diseases. Future studies will identify the molecular components of B. serrata extracts responsible for the beneficial effects.

7.
Cancer Sci ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140431

ABSTRACT

The presence of Fusobacterium nucleatum is associated with an immunosuppressive tumor immune microenvironment (TIM) in primary colorectal cancer (CRC), contributing to tumor progression. Its persistence in CRC liver metastasis tissues raises questions about its role in modulating local and systemic immune responses and influencing recurrence patterns. This retrospective cohort study of 218 patients with CRC liver metastasis investigated the association of F. nucleatum in CRC liver metastasis tissues with systemic inflammation, TIM alterations, and the number of metastatic organs involved in recurrence. Two-step polymerase chain reaction (PCR), including digital PCR, detected F. nucleatum in 42% (92/218) of fresh-frozen specimens of CRC liver metastases. Compared with the F. nucleatum-none group, the F. nucleatum-high group showed higher C-reactive protein levels (0.82 vs. 0.22 mg/dL; Ptrend = 0.02), lower numbers of CD8+ cells (33.2 vs. 65.3 cells/mm2; Ptrend = 0.04) and FOXP3+ cells (11.3 vs. 21.7 cells/mm2; Ptrend = 0.01) in the TIM, and a greater number of metastatic organs involved in recurrence (1.6 vs. 1.1; p < 0.001). The presence of F. nucleatum in CRC liver metastasis tissues was associated with increased systemic inflammation, TIM alterations, and a greater number of metastatic organs involved in recurrence. These findings suggest a potential contribution of F. nucleatum to the metastatic propensity of CRC cells and could inform future research to enhance understanding of the interaction between tumor, host, and microbes in the metastatic process.

8.
Eur J Immunol ; 53(11): e2350455, 2023 11.
Article in English | MEDLINE | ID: mdl-37471504

ABSTRACT

Caspase activation results in pyroptosis, an inflammatory cell death that contributes to several inflammatory diseases by releasing inflammatory cytokines and cellular contents. Fusobacterium nucleatum is a periodontal pathogen frequently detected in human cancer and inflammatory bowel diseases. Studies have reported that F. nucleatum infection leads to NLRP3 activation and pyroptosis, but the precise activation process and disease association remain poorly understood. This study demonstrated that F. nucleatum infection exacerbates acute colitis in mice and activates pyroptosis through caspase-11-mediated gasdermin D cleavage in macrophages. Furthermore, F. nucleatum infection in colitis mice induces the enhancement of IL-1⍺ secretion from the colon, affecting weight loss and severe disease activities. Neutralization of IL-1⍺ protects F. nucleatum infected mice from severe colitis. Therefore, F. nucleatum infection facilitates inflammation in acute colitis with IL-1⍺ from colon tissue by activating noncanonical inflammasome through gasdermin D cleavage.


Subject(s)
Colitis , Inflammasomes , Humans , Animals , Mice , Inflammasomes/metabolism , Fusobacterium nucleatum/metabolism , Gasdermins , Colitis/chemically induced , Caspases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
J Transl Med ; 22(1): 269, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38475767

ABSTRACT

BACKGROUND: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS: Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS: Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Humans , Cisplatin , Tumor Suppressor Protein p53 , Fluorouracil , Bacteria
10.
J Transl Med ; 22(1): 401, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689341

ABSTRACT

BACKGROUND: The cancer microbiota was considered the main risk factor for cancer progression. We had proved that Fusobacterium periodonticum (F.p) was higher abundance in Esophageal cancer(EC)tissues. Bioinformation analysis found that BCT was a key virulence protein of F.p. However, little is known about the role and mechanism of BCT in EC. This study aimed to recognize the key virulence protein of F.p and explore the mechanism of BCT in promoting EC. METHODS: We constructed a eukaryotic expression vector and purified the recombinant protein BCT. CCK8 used to analyzed the activity of EC after treated by different concentration of BCT. UPLC-MS/MS and ELISA used to detect the metabonomics and metabolites. The ability of migration and invasion was completed by transwell assay. RT-QPCR, WB used to analyze the expression of relevant genes. RESULTS: Our data showed that BCT was higher expression in EC tumor tissues (p < 0.05) and BCT in 20 µg/mL promoted the survival, invasion and migration of EC cells (EC109) (p < 0.05). Meanwhile, UPLC-MS/MS results suggested that BCT resulted in an augmentation of hypotaurine metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis, tryptophan metabolism, citrate cycle activity in EC109. The metabolic changes resulted in decreasing in glucose and pyruvate levels but increase in lactate dehydrogenase (LDH) activity and lactic acid (LA) as well as the expression of glucose transporter 1, Hexokinase 2, LDH which regulated the glycolysis were all changed (p < 0.05). The BCT treatment upregulated the expression of TLR4, Akt, HIF-1α (p < 0.05) which regulated the production of LA. Furthermore, LA stimulation promoted the expression of GPR81, Wnt, and ß-catenin (p < 0.05), thereby inducing EMT and metastasis in EC109 cells. CONCLUSION: Altogether, these findings identified that impact of BCT in regulation of glycolysis in EC109 and its involves the TLR4/Akt/HIF-1α pathway. Meanwhile, glycolysis increasing the release of LA and promote the EMT of EC109 by GPR81/Wnt/ß-catenin signaling pathway. In summary, our findings underscore the potential of targeting BCT as an innovative strategy to mitigate the development of EC.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Fusobacterium , Glucose , Lactic Acid , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Lactic Acid/metabolism , Cell Line, Tumor , Glucose/metabolism , Fusobacterium/metabolism , Bacterial Proteins/metabolism , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic
11.
Appl Environ Microbiol ; 90(2): e0166523, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38185820

ABSTRACT

Gene inactivation by creating in-frame deletion mutations in Fusobacterium nucleatum is time consuming, and most fusobacterial strains are genetically intractable. Addressing these problems, we introduced a riboswitch-based inducible CRISPR interference (CRISPRi) system. This system employs the nuclease-inactive Streptococcus pyogenes Cas9 protein (dCas9), specifically guided to the gene of interest by a constantly expressed single-guide RNA (sgRNA). Mechanistically, this dCas9-sgRNA complex serves as an insurmountable roadblock for RNA polymerase, thus repressing the target gene transcription. Leveraging this system, we first examined two non-essential genes, ftsX and radD, which are pivotal for fusobacterial cytokinesis and coaggregation. Upon adding the inducer, theophylline, ftsX suppression caused filamentous cell formation akin to chromosomal ftsX deletion, while targeting radD significantly reduced RadD protein levels, abolishing RadD-mediated coaggregation. The system was then extended to probe essential genes bamA and ftsZ, which are vital for outer membrane biogenesis and cell division. Impressively, bamA suppression disrupted membrane integrity and bacterial separation, stalling growth, while ftsZ targeting yielded elongated cells in broth with compromised agar growth. Further studies on F. nucleatum clinical strain CTI-2 and Fusobacterium periodonticum revealed reduced indole synthesis when targeting tnaA. Moreover, silencing clpB in F. periodonticum decreased ClpB, increasing thermal sensitivity. In summary, our CRISPRi system streamlines gene inactivation across various fusobacterial strains.IMPORTANCEHow can we effectively investigate the gene functions in Fusobacterium nucleatum, given the dual challenges of gene inactivation and the inherent genetic resistance of many strains? Traditional methods have been cumbersome and often inadequate. Addressing this, our work introduces a novel inducible CRISPR interference (CRISPRi) system in which dCas9 expression is controlled at the translation level by a theophylline-responsive riboswitch unit, and single-guide RNA expression is driven by the robust, constitutive rpsJ promoter. This approach simplifies gene inactivation in the model organism (ATCC 23726) and extends its application to previously considered genetically intractable strains like CTI-2 and Fusobacterium periodonticum. With CRISPRi's potential, it is a pivotal tool for in-depth genetic studies into fusobacterial pathogenesis, potentially unlocking targeted therapeutic strategies.


Subject(s)
Fusobacterium nucleatum , Fusobacterium , Riboswitch , RNA, Guide, CRISPR-Cas Systems , Theophylline/metabolism , Gene Silencing
12.
Cardiovasc Diabetol ; 23(1): 123, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581039

ABSTRACT

BACKGROUND: Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS: We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS: Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION: Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , Gastrointestinal Microbiome , Humans , Animals , Mice , Mice, Inbred C57BL , Fusobacterium nucleatum/physiology , Coronary Artery Disease/etiology
13.
Hum Reprod ; 39(4): 623-631, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38300227

ABSTRACT

The pathogenesis of endometriosis is a hotly debated topic, yet still cloaked in multiple layers of hypothetical theories. A recent report raises the possibility that bacterial infection, especially those of the genus Fusobacterium, may be the cause of endometriosis, at least in certain women. More importantly, the demonstration that treatment with broad-spectrum antibiotics significantly reduced the size of lesions in a mouse endometriosis model rekindles the hope for new non-hormonal treatments. The development of new therapies has been plagued by strings of unsuccessful clinical trials over the last two decades. Is this antibiotic therapy, a silver lining for the research and development of non-hormonal drugs for endometriosis?


Subject(s)
Bacterial Infections , Endometriosis , Animals , Mice , Female , Humans , Endometriosis/drug therapy , Endometriosis/pathology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy
14.
Cancer Invest ; 42(6): 469-477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38913915

ABSTRACT

We examined Fusobacterium nucreatum (F. nucleatum) and whole Fusobacterium species (Pan-fusobacterium) in non-neoplastic Barrett's esophagus (BE) from patients without cancer (n = 67; N group), with esophageal adenocarcinoma (EAC) (n = 27) and EAC tissue (n = 22). F. nucleatum was only detectable in 22.7% of EAC tissue. Pan-fusobacterium was enriched in EAC tissue and associated with aggressive clinicopathological features. Amount of Pan-fusobacterium in non-neoplastic BE was correlated with presence of hital hernia and telomere shortening. The result suggested potential association of Fusobacterium species in EAC and BE, featuring clinicpathological and molecular features.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Humans , Esophageal Neoplasms/microbiology , Esophageal Neoplasms/pathology , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Barrett Esophagus/microbiology , Barrett Esophagus/pathology , Male , Middle Aged , Female , Aged , Fusobacterium/isolation & purification , Fusobacterium/genetics , Fusobacterium nucleatum/isolation & purification , Adult
15.
Arch Microbiol ; 206(6): 244, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702412

ABSTRACT

Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.


Subject(s)
Aggregatibacter actinomycetemcomitans , Apoptosis , Cell Proliferation , Extracellular Vesicles , Mouth Neoplasms , Aggregatibacter actinomycetemcomitans/genetics , Extracellular Vesicles/metabolism , Mouth Neoplasms/microbiology , Mouth Neoplasms/pathology , Humans , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Movement , Fusobacterium nucleatum/physiology , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/pathology , Porphyromonas gingivalis/genetics
16.
Vet Res ; 55(1): 15, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317242

ABSTRACT

This study investigated the role of causative infectious agents in ulceration of the non-glandular part of the porcine stomach (pars oesophagea). In total, 150 stomachs from slaughter pigs were included, 75 from pigs that received a meal feed, 75 from pigs that received an equivalent pelleted feed with a smaller particle size. The pars oesophagea was macroscopically examined after slaughter. (q)PCR assays for H. suis, F. gastrosuis and H. pylori-like organisms were performed, as well as 16S rRNA sequencing for pars oesophagea microbiome analyses. All 150 pig stomachs showed lesions. F. gastrosuis was detected in 115 cases (77%) and H. suis in 117 cases (78%), with 92 cases (61%) of co-infection; H. pylori-like organisms were detected in one case. Higher infectious loads of H. suis increased the odds of severe gastric lesions (OR = 1.14, p = 0.038), while the presence of H. suis infection in the pyloric gland zone increased the probability of pars oesophageal erosions [16.4% (95% CI 0.6-32.2%)]. The causal effect of H. suis was mediated by decreased pars oesophageal microbiome diversity [-1.9% (95% CI - 5.0-1.2%)], increased abundances of Veillonella and Campylobacter spp., and decreased abundances of Lactobacillus, Escherichia-Shigella, and Enterobacteriaceae spp. Higher infectious loads of F. gastrosuis in the pars oesophagea decreased the odds of severe gastric lesions (OR = 0.8, p = 0.0014). Feed pelleting had no significant impact on the prevalence of severe gastric lesions (OR = 1.72, p = 0.28). H. suis infections are a risk factor for ulceration of the porcine pars oesophagea, probably mediated through alterations in pars oesophageal microbiome diversity and composition.


Subject(s)
Fusobacterium , Helicobacter Infections , Helicobacter heilmannii , Microbiota , Stomach Ulcer , Swine Diseases , Animals , Swine , Stomach Ulcer/microbiology , Stomach Ulcer/pathology , Stomach Ulcer/veterinary , RNA, Ribosomal, 16S , Swine Diseases/microbiology , Helicobacter Infections/veterinary , Helicobacter Infections/microbiology , Gastric Mucosa
17.
Eur J Clin Microbiol Infect Dis ; 43(3): 423-433, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38112966

ABSTRACT

PURPOSE: Anaerobic bacteria, existing on human skin and mucous membranes, can cause severe infections with complications or mortality. We examined the clinical characteristics of patients infected with Fusobacterium spp. and assessed their antibiotic susceptibility. METHODS: Clinical data were collated from patients diagnosed with Fusobacterium infections in a Japanese university hospital between 2014 and 2023. Antibiotic susceptibility tests were conducted following the Clinical and Laboratory Standards Institute guidelines. RESULTS: We identified 299 Fusobacterium isolates. The median age was 61 years (range, 14-95 years), with females constituting 43.1% of the patients. Most infections were community-acquired (84.6%, 253/299). Multiple bacterial strains were isolated simultaneously in 74.6% of cases. One-fourth of the patients had solid organ malignancies (25.4%, 76/299), and 14.5% (11/76) of those had colorectal cancer. The 30-day mortality rate was 1.3%. Fusobacterium species were isolated from blood cultures in 6% (18/299) of the patients. Patients, aged 75 years or older, with cerebrovascular disease or hematologic malignancy exhibited significantly higher prevalence of blood culture isolates in univariate analysis. Each Fusobacterium species had its characteristic infection site. Approximately 5% F. nucleatum and F. necrophorum isolates showed penicillin G resistance. Moxifloxacin resistance was observed in varying degrees across strains, ranging from 4.6 to 100% of isolates. All isolates were sensitive to ß-lactam/ß-lactamase inhibitors, carbapenems, and metronidazole. CONCLUSION: We show a link between Fusobacterium species and solid organ malignancies. We observed resistance to penicillin, cefmetazole, clindamycin, and moxifloxacin, warranting caution in their clinical use. This study offers valuable insights for managing Fusobacterium infections and guiding empirical treatments.


Subject(s)
Fusobacterium Infections , Neoplasms , Female , Humans , Middle Aged , Fusobacterium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Moxifloxacin , Japan/epidemiology , Microbial Sensitivity Tests , Fusobacterium Infections/epidemiology , Fusobacterium Infections/microbiology , Hospitals
18.
Eur J Clin Microbiol Infect Dis ; 43(6): 1099-1107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609699

ABSTRACT

OBJECTIVES: Fusobacterium necrophorum is a common cause of pharyngotonsillitis. However, no guidelines exist on when to diagnose or treat it. We aimed to investigate associations between clinical criteria and F. necrophorum-positivity in pharyngotonsillitis and assess the predictive potential of a simple scoring system. METHODS: Pharyngotonsillitis patients who were tested for F. necrophorum (PCR) and presented to hospitals in the Skåne Region, Sweden, between 2013-2020 were eligible. Data were retrieved from electronic chart reviews and registries. By logistic regression we investigated associations between F. necrophorum-positivity and pre-specified criteria: age 13-30 years, symptom duration ≤ 3 days, absence of viral symptoms (e.g. cough, coryza), fever, tonsillar swelling/exudate, lymphadenopathy and CRP ≥ 50 mg/L. In secondary analyses, associated variables were weighted by strength of association into a score and its predictive accuracy of F. necrophorum was assessed. RESULTS: Among 561 cases included, 184 (33%) had F. necrophorum, which was associated with the following criteria: age 13-30, symptom duration ≤ 3 days, absence of viral symptoms, tonsillar swelling/exudate and CRP ≥ 50 mg/L. Age 13-30 had the strongest association (OR5.7 95%CI 3.7-8.8). After weighting, these five variables had a sensitivity and specificity of 68% and 71% respectively to predict F. necrophorum-positivity at the proposed cut-off. CONCLUSION: Our results suggest that F. necrophorum cases presenting to hospitals might be better distinguished from other pharyngotonsillitis cases by a simple scoring system presented, with age 13-30 being the strongest predictor for F. necrophorum. Prospective studies, involving primary care settings, are needed to evaluate generalisability of findings beyond cases presenting to hospitals.


Subject(s)
Fusobacterium Infections , Fusobacterium necrophorum , Pharyngitis , Tonsillitis , Humans , Fusobacterium necrophorum/isolation & purification , Sweden/epidemiology , Fusobacterium Infections/diagnosis , Fusobacterium Infections/microbiology , Male , Adolescent , Female , Adult , Tonsillitis/microbiology , Tonsillitis/diagnosis , Young Adult , Pharyngitis/microbiology , Pharyngitis/diagnosis , Middle Aged , Hospitals , Aged
19.
BMC Infect Dis ; 24(1): 675, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971721

ABSTRACT

Pleural empyema can lead to significant morbidity and mortality despite chest drainage and antibiotic treatment, necessitating novel and minimally invasive interventions. Fusobacterium nucleatum is an obligate anaerobe found in the human oral and gut microbiota. Advances in sequencing and puncture techniques have made it common to detect anaerobic bacteria in empyema cases. In this report, we describe the case of a 65-year-old man with hypertension who presented with a left-sided encapsulated pleural effusion. Initial fluid analysis using metagenomic next-generation sequencing (mNGS) revealed the presence of Fusobacterium nucleatum and Aspergillus chevalieri. Unfortunately, the patient experienced worsening pleural effusion despite drainage and antimicrobial therapy. Ultimately, successful treatment was achieved through intrapleural metronidazole therapy in conjunction with systemic antibiotics. The present case showed that intrapleural antibiotic therapy is a promising measure for pleural empyema.


Subject(s)
Anti-Bacterial Agents , Empyema, Pleural , Fusobacterium nucleatum , Salvage Therapy , Humans , Male , Aged , Empyema, Pleural/drug therapy , Empyema, Pleural/microbiology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Fusobacterium nucleatum/drug effects , Fusobacterium nucleatum/isolation & purification , Fusobacterium nucleatum/genetics , Fusobacterium Infections/drug therapy , Fusobacterium Infections/complications , Fusobacterium Infections/microbiology , Metronidazole/therapeutic use , Metronidazole/administration & dosage , High-Throughput Nucleotide Sequencing , Treatment Outcome
20.
BMC Infect Dis ; 24(1): 225, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378498

ABSTRACT

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) belongs to the genus Fusobacterium, which is a gram-negative obligate anaerobic bacterium. Bacteremia associated with F. nucleatum is a serious complication, which is not common in clinic, especially when it is combined with other intracranial pathogenic microorganism infection. We reported for the first time a case of F. nucleatum bacteremia combined with intracranial Porphyromonas gingivalis (P. gingivalis) and herpes simplex virus type 1(HSV-1) infection. CASE PRESENTATION: A 60-year-old woman was admitted to our hospital with a headache for a week that worsened for 2 days. Combined with history, physical signs and examination, it was characterized as ischemic cerebrovascular disease (ICVD). F. nucleatum was detected in blood by matrix-assisted laser desorption/ionization time-offight mass spectrometry (MALDI-TOF-MS). Meanwhile, P. gingivalis and HSV-1 in cerebrospinal fluid (CSF) were identified by metagenome next generation sequencing (mNGS). After a quick diagnosis and a combination of antibiotics and antiviral treatment, the patient recovered and was discharged. CONCLUSION: To our knowledge, this is the first report of intracranial P. gingivalis and HSV-1 infection combined with F. nucleatum bacteremia.


Subject(s)
Bacteremia , Fusobacterium Infections , Herpes Simplex , Herpesvirus 1, Human , Female , Humans , Middle Aged , Porphyromonas gingivalis , Fusobacterium nucleatum , Herpesvirus 1, Human/genetics , Base Composition , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Herpes Simplex/complications , Herpes Simplex/diagnosis , Herpes Simplex/drug therapy , Bacteremia/complications , Bacteremia/diagnosis , Bacteremia/drug therapy , Fusobacterium Infections/complications , Fusobacterium Infections/diagnosis , Fusobacterium Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL