Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 223-238, 2024 02 25.
Article in English | MEDLINE | ID: mdl-38143380

ABSTRACT

Glioma is characterized by rapid cell proliferation, aggressive invasion, altered apoptosis and a poor prognosis. ß-Sitosterol, a kind of phytosterol, has been shown to possess anticancer activities. Our current study aims to investigate the effects of ß-sitosterol on gliomas and reveal the underlying mechanisms. Our results show that ß-sitosterol effectively inhibits the growth of U87 cells by inhibiting proliferation and inducing G2/M phase arrest and apoptosis. In addition, ß-sitosterol inhibits migration by downregulating markers of epithelial-mesenchymal transition (EMT). Mechanistically, network pharmacology and transcriptomics approaches illustrate that the EGFR/MAPK signaling pathway may be responsible for the inhibitory effect of ß-sitosterol on glioma. Afterward, the results show that ß-sitosterol effectively suppresses the EGFR/MAPK signaling pathway. Moreover, ß-sitosterol significantly inhibits tumor growth in a U87 xenograft nude mouse model. ß-Sitosterol inhibits U87 cell proliferation and migration and induces apoptosis and cell cycle arrest in U87 cells by blocking the EGFR/MAPK signaling pathway. These results suggest that ß-sitosterol may be a promising therapeutic agent for the treatment of glioma.


Subject(s)
Glioma , Network Pharmacology , Sitosterols , Animals , Mice , Humans , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Signal Transduction , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Profiling , Apoptosis , Cell Movement
2.
Biochem Biophys Res Commun ; 665: 98-106, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37149988

ABSTRACT

Zebrafish have the ability to fully regenerate their hearts after injury since cardiomyocytes subsequently dedifferentiate, re-enter cell cycle, and proliferate to replace damaged myocardial tissue. Recent research identified the reactivation of dormant developmental pathways during cardiac regeneration in adult zebrafish, suggesting pro-proliferative pathways important for developmental heart growth to be also critical for regenerative heart growth after injury. Histone deacetylase 1 (Hdac1) was recently shown to control both, embryonic as well as adult regenerative cardiomyocyte proliferation in the zebrafish model. Nevertheless, regulatory pathways controlled by Hdac1 are not defined yet. By analyzing RNA-seq-derived transcriptional profiles of the Hdac1-deficient zebrafish mutant baldrian, we here identified DNA damage response (DDR) pathways activated in baldrian mutant embryos. Surprisingly, although the DDR signaling pathway was transcriptionally activated, we found the complete loss of protein expression of the known DDR effector and cell cycle inhibitor p21. Consequently, we observed an upregulation of the p21-downstream target Cdk2, implying elevated G1/S phase transition in Hdac1-deficient zebrafish hearts. Remarkably, Cdk1, another p21-but also Cdc25-downstream target was downregulated. Here, we found the significant downregulation of Cdc25 protein expression, explaining reduced Cdk1 levels and suggesting impaired G2/M phase progression in Hdac1-deficient zebrafish embryos. To finally prove defective cell cycle progression due to Hdac1 loss, we conducted Cytometer-based cell cycle analyses in HDAC1-deficient murine HL-1 cardiomyocytes and indeed found impaired G2/M phase transition resulting in defective cardiomyocyte proliferation. In conclusion, our results suggest a critical role of Hdac1 in maintaining both, regular G1/S and G2/M phase transition in cardiomyocytes by controlling the expression of essential cell cycle regulators such as p21 and Cdc25.


Subject(s)
Myocytes, Cardiac , Zebrafish , Animals , Mice , Cell Cycle/genetics , Cell Division , Cell Proliferation , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Myocytes, Cardiac/metabolism , Zebrafish/metabolism , cdc25 Phosphatases/metabolism , CDC2 Protein Kinase/metabolism
3.
BMC Cancer ; 23(1): 266, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959566

ABSTRACT

BACKGROUND: Our previous studies have identified CA916798 as a chemotherapy resistance-associated gene in lung cancer. However, the histopathological relevance and biological function of CA916798 in lung adenocarcinoma (LUAD) remains to be delineated. In this study, we further investigated and explored the clinical and biological significance of CA916798 in LUAD. METHODS: The relationship between CA916798 and clinical features of LUAD was analyzed by tissue array and online database. CCK8 and flow cytometry were used to measure cell proliferation and cell cycle of LUAD after knockdown of CA916798 gene. qRT-PCR and western blotting were used to detect the changes of cell cycle-related genes after knockdown or overexpression of CA916798. The tumorigenesis of LUAD cells was evaluated with or without engineering manipulation of CA916798 gene expression. Response to Gefitinib was evaluated using LUAD cells with forced expression or knockdown of CA916798. RESULTS: The analysis on LUAD samples showed that high expression of CA916798 was tightly correlated with pathological progression and poor prognosis of LUAD patients. A critical methylation site in promoter region of CA916798 gene was identified to be related with CA916798 gene expression. Forced expression of CA916798 relieved the inhibitory effects of WEE1 on CDK1 and facilitated cell cycle progression from G2 phase to M phase. However, knockdown of CA916798 enhanced WEE1 function and resulted in G2/M phase arrest. Consistently, chemical suppression of CDK1 dramatically inhibited G2/M phase transition in LUAD cells with high expression of CA916798. Finally, we found that CA916798 was highly expressed in Gefitinib-resistant LUAD cells. Exogenous expression of CA916798 was sufficient to endow Gefitinib resistance with tumor cells, but interference of CA916798 expression largely rescued response of tumor cells to Gefitinib. CONCLUSIONS: CA916798 played oncogenic roles and was correlated with the development of Gefitinib resistance in LUAD cells. Therefore, CA916798 could be considered as a promising prognostic marker and a therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Gefitinib/pharmacology , Gefitinib/therapeutic use , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Blotting, Western , Cell Proliferation , Prognosis , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
4.
Molecules ; 28(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36838936

ABSTRACT

In this study, 2-benzyl-10a-(1H-pyrrol-2-yl)-2,3-dihydropyrazino[1,2-a]indole-1,4,10(10aH)-trione (DHPITO), a previously identified inhibitor against hepatocellular carcinoma cells, is shown to exert its cytotoxic effects by suppressing the proliferation and growth of CRC cells. An investigation of its molecular mechanism confirmed that the cytotoxic activity of DHPITO is mediated through the targeting of microtubules with the promotion of subsequent microtubule polymerisation. With its microtubule-stabilising ability, DHPITO also consistently arrested the cell cycle of the CRC cells at the G2/M phase by promoting the phosphorylation of histone 3 and the accumulation of EB1 at the cell equator, reduced the levels of CRC cell migration and invasion, and induced cellular apoptosis. Furthermore, the compound could suppress both tumour size and tumour weight in a CRC xenograft model without any obvious side effects. Taken together, the findings of the present study reveal the antiproliferative and antitumour mechanisms through which DHPITO exerts its activity, indicating its potential as a putative chemotherapeutic agent and lead compound with a novel structure.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Cell Line, Tumor , Tubulin/metabolism , Cell Cycle Checkpoints , Apoptosis , Tubulin Modulators/pharmacology , Microtubules , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/metabolism , Cell Proliferation
5.
Molecules ; 27(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35268683

ABSTRACT

The effective treatment of cervical intraepithelial neoplasia (CIN) can prevent cervical cancer. Salvia miltiorrhiza is a medicinal and health-promoting plant. To identify a potential treatment for CIN, the effect of S. miltiorrhiza extract and its active components on immortalized cervical epithelial cells was studied in vitro. The H8 cell was used as a CIN model. We found that S. miltiorrhiza extract effectively inhibited H8 cells through the CCK8 method. An HPLC-MS analysis revealed that S. miltiorrhiza extract contained salvianolic acid H, salvianolic acid A, salvianolic acid B, monomethyl lithospermate, 9‴-methyl lithospermate B, and 9‴-methyl lithospermate B/isomer. Salvianolic acid A had the best inhibitory effect on H8 cells with an IC50 value of 5.74 ± 0.63 µM. We also found that the combination of salvianolic acid A and oxysophoridine had a synergistic inhibitory effect on H8 cells at molar ratios of 4:1, 2:1, 1:1, 1:2, and 1:4, with salvianolic acid A/oxysophoridine = 1:2 having the best synergistic effect. Using Hoechst33342, flow cytometry, and Western blotting analysis, we found that the combination of salvianolic acid A and oxysophoridine can induce programmed apoptosis of H8 cells and block the cell cycle in the G2/M phase, which was correlated with decreased cyclinB1 and CDK1 protein levels. In conclusion, S. miltiorrhiza extract can inhibit the growth of H8 cells, and the combination of salvianolic acid A (its active component) and oxysophoridine has a synergistic inhibitory effect on H8 cells and may be a potential treatment for cervical intraepithelial neoplasia.


Subject(s)
Salvia miltiorrhiza
6.
Molecules ; 27(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35056723

ABSTRACT

Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and ß-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7-9 expression and downregulation of Bcl-2 and full-length caspase-7-9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.


Subject(s)
Triple Negative Breast Neoplasms
7.
Biochem Biophys Res Commun ; 546: 178-184, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33592502

ABSTRACT

APOBEC3B (A3B) is a cytosine deaminase that converts cytosine to uracil in single-stranded DNA. Cytosine-to-thymine and cytosine-to-guanine base substitution mutations in trinucleotide motifs (APOBEC mutational signatures) were found in various cancers including lymphoid hematological malignancies such as multiple myeloma and A3B has been shown to be an enzymatic source of mutations in those cancers. Although the importance of A3B is being increasingly recognized, it is unclear how A3B expression is regulated in cancer cells as well as normal cells. To answer these fundamental questions, we analyzed 1276 primary myeloma cells using single-cell RNA-sequencing (scRNA-seq) and found that A3B was preferentially expressed at the G2/M phase, in sharp contrast to the expression patterns of other APOBEC3 genes. Consistently, we demonstrated that A3B protein was preferentially expressed at the G2/M phase in myeloma cells by cell sorting. We also demonstrated that normal blood cells expressing A3B were also enriched in G2/M-phase cells by analyzing scRNA-seq data from 86,493 normal bone marrow mononuclear cells. Furthermore, we revealed that A3B was expressed mainly in plasma cells, CD10+ B cells and erythroid cells, but not in granulocyte-macrophage progenitors. A3B expression profiling in normal blood cells may contribute to understanding the defense mechanism of A3B against viruses, and partially explain the bias of APOBEC mutational signatures in lymphoid but not myeloid malignancies. This study identified the cells and cellular phase in which A3B is highly expressed, which may help reveal the mechanisms behind carcinogenesis and cancer heterogeneity, as well as the biological functions of A3B in normal blood cells.


Subject(s)
Cell Division/genetics , Cytidine Deaminase/genetics , G2 Phase/genetics , Minor Histocompatibility Antigens/genetics , B-Lymphocytes/metabolism , Cells, Cultured , Erythroid Cells/metabolism , G1 Phase/genetics , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neprilysin/metabolism , Plasma Cells/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA-Seq , S Phase/genetics , Single-Cell Analysis
8.
Bioorg Med Chem Lett ; 51: 128371, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34534673

ABSTRACT

Malignant gliomas are the most common brain tumors, with generally dismal prognosis, early clinical deterioration and high mortality. Recently, 2-aminoquinoline scaffold derivatives have shown pronounced activity in central nervous system disorders. We herein reported a series of 2-aminoquinoline-3-carboxamides as novel non-alkylator anti-glioblastoma agents. The synthesized compounds showed comparable activity to cisplatin against glioblastoma cell line U87 MG in vitro. Among them, we found that 6a displayed good inhibitory activity against A172 and U118 MG glioblastoma cell lines and induced cell cycle arrest in the G2/M phase and apoptosis in U87 MG by flow cytometry analysis. Additionally, 6a displayed low cytotoxicity to several normal human cell lines. In silico study showed 6a had promising physicochemical properties and was predicted to cross the blood-brain barrier. Moreover, preliminary structure-activity relationships are also investigated, shedding light on further modifications towards more potent agents on this series of compounds. Our results suggest this compound has a promising potential as an anti-glioblastoma agent with a differential effect between tumor and non-malignant cells.


Subject(s)
Aminoquinolines/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Drug Design , Glioblastoma/drug therapy , Aminoquinolines/chemical synthesis , Aminoquinolines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
9.
Bioorg Med Chem ; 46: 116346, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34403956

ABSTRACT

Abnormal activation of the PI3K/Akt pathway is demonstrated in most of human malignant tumors via regulation of proliferation, cell cycle, and apoptosis. Therefore, drug discovery and development of targeting the PI3K/Akt pathway has attracted great interest of researchers in the development of anticancer drugs. In this study, fifteen 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives were designed and synthesized. Anticancer activities of the synthetic compounds were evaluated and the potential mechanisms were explored. Several compounds showed certain proliferation inhibitory activity against the tested cancer cells including human non-small cell lung cancer (NSCLC) HCC827, human neuroblastoma SH-SY5Y and hepatocellular carcinoma LM3 cells. Among them, compound 7i and 7m showed the best inhibitory activity against all the cancer cell lines and more active against HCC827 cells with IC50 values of 1.12 µM and 1.20 µM, respectively. In addition, 7i and 7m showed lower inhibitory activity against H7702 cells (human normal liver cells) with IC50 values of 8.66 µM and 10.89 µM, respectively, nearly 8-fold lower than that in HCC827 cells. These results suggested that compounds 7i and 7m had certain selectivity to tumor cells, compared to human normal cells. Further biological studies indicated 7i induced G2/M phase arrests and cell apoptosis of HCC827 cells via PI3K/Akt and caspase dependent pathway. Together, these novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives such as compound 7i and 7m might be lead compounds for development of potential anti-cancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Quinazolinones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Structure-Activity Relationship
10.
Biometals ; 34(3): 557-571, 2021 06.
Article in English | MEDLINE | ID: mdl-33689084

ABSTRACT

Sodium metavanadate (NaVO3) exhibits important physiological effects including insulin-like, chemoprevention and anticancer activity. However, the effects of NaVO3 on breast cancer and underlying mechanisms are still unclear. In this study, our results revealed that NaVO3 was able to inhibit proliferation of murine breast cancer cells 4T1 with IC50 value of 8.19 µM and 1.92 µM at 24 h and 48 h, respectively. The mechanisms underlying the inhibition activity were that NaVO3 could increase reactive oxygen species (ROS) level in a concentration-dependent way, arrest cells at G2/M phase, diminish the mitochondrial membrane potential (MMP), finally promote the progress of apoptosis. Furthermore, NaVO3 also exhibited a dose-dependent anticancer activity in breast cancer-bearing mice that led to the shrinkage of tumor volume (about 50%), lower microvessel density, less propagating cells and more apoptotic cells in vivo, as compared to the saline group. Therefore, NaVO3 may act as a potential chemotherapeutic agent in breast cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Sodium/pharmacology , Vanadates/pharmacology , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Mice , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Sodium/chemistry , Tumor Cells, Cultured , Vanadates/chemistry
11.
J Plant Res ; 134(6): 1301-1310, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34338916

ABSTRACT

M-specific activator (MSA) cis-acting elements have been determined to be involved in the regulation of G2/M-phase-specific transcription in spermatophytes. In this study, the involvement of MSA-core elements in G2/M-phase-specific transcription was examined in the unicellular red alga Cyanidioschyzon merolae. In the C. merolae genome, MSA-core elements do not accumulate specifically in the upstream of mitosis-specific transcriptional genes. Mutations of the four MSA-core elements of the cyclin B gene, which encodes a central factor of the G2-to-M-phase transition, have resulted in the abolishment of transcription or permission of transcription even in the G1 phase. These results suggest that all four MSA-core elements located in the upstream region of cyclin B are involved in G2/M-phase-specific transcription in C. merolae; however, the nature of the involvement of MSA-core elements in G2/M-phase-specific transcription differed among the four elements. Thus, MSA-core-element-mediated G2/M-phase-specific transcription in C. merolae seems to be regulated by a complex mechanism.


Subject(s)
Regulatory Elements, Transcriptional , Rhodophyta , Transcription, Genetic , Cell Division , Cyclin B/genetics , Rhodophyta/genetics
12.
Bioorg Med Chem ; 28(8): 115405, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32156499

ABSTRACT

In this study, we synthesized a series of double-component O2-aryl diazeniumdiolate (DDNO) derivatives, of which each molecule can release up to four nitric oxide molecules. These compounds showed cytotoxic activities to cancer cells, such as human leukemia, breast cancer and lung cancer. Among them, compound 1 (DDNO-1) showed the highest specific activity to human leukemia cells. It induced cell apopotosis and arrest cell cycle of G2/M phase. The JNK and p38 protein kinases were activated by compound 1 to induce cancer cell apoptosis. Compound 1 also increased pro-apoptotic Bax level, which is a same function compared to a reported NO donor, JS-K. More interestingly, it decreased the level of an anti-apoptotic member Bcl-2, which is an opposite effect compared to JS-K. Compound 1 could be developed as a new anti-cancer agent since it increases the Bax/Bcl-2 ratio to overcome the drug resistance.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Azo Compounds/chemistry , Cell Cycle Checkpoints/drug effects , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Drug Design , Humans , Molecular Structure
13.
Acta Pharmacol Sin ; 41(2): 249-259, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31316178

ABSTRACT

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell neoplasm characterized by an uncontrolled proliferation of moderately and well differentiated cells of the granulocytic lineage. LW-213, a newly synthesized flavonoid compound, was found to exert antitumor effects against breast cancer through inducing G2/M phase arrest. We investigated whether LW-213 exerted anti-CML effects and the underlying mechanisms. We showed that LW-213 inhibited the growth of human CML cell lines K562 and imatinid-resistant K562 (K562r) in dose- and time-dependent manners with IC50 values at the low µmol/L levels. LW-213 (5, 10, 15 µM) caused G2/M phase arrest of K562 and K562r cells via reducing the activity of G2/M phase transition-related proteins Cyclin B1/CDC2 complex. LW-213 treatment induced apoptosis of K562 and K562r cells via inhibiting the expression of CDK9 through lysosome degradation, thus leading to the suppression of RNAPII phosphorylation, down-regulation of a short-lived anti-apoptic protein MCL-1. The lysosome inhibitor, NH4Cl, could reverse the anti-CML effects of LW-213 including CDK9 degradation and apoptosis. LW-213 treatment also degraded the downstream proteins of BCR-ABL1, such as oncoproteins AKT, STAT3/5 in CML cells, which was blocked by NH4Cl. In primary CML cells and CD34+ stem cells, LW-213 maintained its pro-apoptotic activity. In a K562 cells-bearing mice model, administration of LW-213 (2.5, 5.0 mg/kg, ip, every other day for 4 weeks) dose-dependently prolonged the survival duration, and significantly suppressed huCD45+ cell infiltration and expression of MCL-1 in spleens. Taken together, our results demonstrate that LW-213 may be an efficient agent for CML treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Flavonoids/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Female , Flavonoids/administration & dosage , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Imatinib Mesylate/pharmacology , Inhibitory Concentration 50 , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , M Phase Cell Cycle Checkpoints/drug effects , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Time Factors
14.
Cell Biochem Funct ; 38(4): 362-372, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31885098

ABSTRACT

This study has been performed to determine the mechanism of activation of the myeloid related S100A proteins by inflammatory cytokines in myeloproliferative neoplasm (MPN). Besides microarray analysis of MPN-derived CD34+ cells, we analysed the pro-inflammatory IL6 and anti-inflammatory IL10 dependence of NF-κB, PI3K-AKT, and JAK-STAT signalling during induction of S100A proteins in mononuclear cells of MPN, by immunoblotting and flow cytometry. We observed the reduced gene expression linked to NF-κB and inflammation signalling in MPN-derived CD34+ cells. Both IL6 and IL10 reduced S100A8 and 100A9 protein levels mediated via NF-κB and PI3K signalling, respectively, in mononuclear cells of essential thrombocythemia (ET). We also determined the increased percentage of S100A8 and S100A9 positive granulocytes in ET and primary myelofibrosis, upgraded by the JAK2V617F mutant allele burden. S100A8/9 heterodimer induced JAK1/2-dependent mitotic arrest of the ET-derived granulocytes. SIGNIFICANCE OF THE STUDY: We demonstrated that inflammation reduced the myeloid related S100A8/9 proteins by negative feedback mechanism in ET. S100A8/9 can be a diagnostic marker of inflammation in MPN, supported by the concomitant NF-κB and JAK1/2 signalling inhibition in regulation of myeloproliferation and therapy of MPN.


Subject(s)
Calgranulin A/metabolism , Calgranulin B/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , NF-kappa B/metabolism , Signal Transduction , Thrombocythemia, Essential/metabolism , Amino Acid Substitution , Calgranulin A/genetics , Calgranulin B/genetics , Female , Humans , Interleukin-6/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukocytes, Mononuclear/pathology , Male , Mutation, Missense , NF-kappa B/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/pathology
15.
Molecules ; 25(3)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979361

ABSTRACT

Oxypeucedanin (OPD), a furocoumarin compound from Angelica dahurica (Umbelliferae), exhibits potential antiproliferative activities in human cancer cells. However, the underlying molecular mechanisms of OPD as an anticancer agent in human hepatocellular cancer cells have not been fully elucidated. Therefore, the present study investigated the antiproliferative effect of OPD in SK-Hep-1 human hepatoma cells. OPD effectively inhibited the growth of SK-Hep-1 cells. Flow cytometric analysis revealed that OPD was able to induce G2/M phase cell cycle arrest in cells. The G2/M phase cell cycle arrest by OPD was associated with the downregulation of the checkpoint proteins cyclin B1, cyclin E, cdc2, and cdc25c, and the up-regulation of p-chk1 (Ser345) expression. The growth-inhibitory activity of OPD against hepatoma cells was found to be p53-dependent. The p53-expressing cells (SK-Hep-1 and HepG2) were sensitive, but p53-null cells (Hep3B) were insensitive to the antiproliferative activity of OPD. OPD also activated the expression of p53, and thus leading to the induction of MDM2 and p21, which indicates that the antiproliferative activity of OPD is in part correlated with the modulation of p53 in cancer cells. In addition, the combination of OPD with gemcitabine showed synergistic growth-inhibitory activity in SK-Hep-1 cells. These findings suggest that the anti-proliferative activity of OPD may be highly associated with the induction of G2/M phase cell cycle arrest and upregulation of the p53/MDM2/p21 axis in SK-HEP-1 hepatoma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Furocoumarins/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Liver Neoplasms/drug therapy , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Angelica/chemistry , Antineoplastic Combined Chemotherapy Protocols , CDC2 Protein Kinase/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Checkpoint Kinase 1/metabolism , Cyclin B1/metabolism , Cyclin E/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Synergism , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Signal Transduction/drug effects , cdc25 Phosphatases/metabolism , Gemcitabine
16.
J Cell Mol Med ; 23(8): 5037-5047, 2019 08.
Article in English | MEDLINE | ID: mdl-31207037

ABSTRACT

MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR-301b-3p functions as a driver in various types of human cancer. However, the expression pattern of miR-301b-3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR-301b-3p expression was significantly up-regulated in HCC tissues compared to adjacent non-tumour tissues. Clinical association analysis revealed that the high level of miR-301b-3p closely correlated with large tumour size and advanced tumour-node-metastasis stages. Importantly, the high miR-301b-3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR-301b-3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR-301b-3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR-301b-3p directly bond to 3'UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down-regulated and inversely correlated with miR-301b-3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR-301b-3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR-301b-3p is highly expressed in HCC. miR-301b-3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Proliferation/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Liver Neoplasms/genetics , Lymphatic Metastasis/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , 3' Untranslated Regions , Animals , Apoptosis/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/secondary , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Gene Silencing , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Middle Aged , Prognosis , Transcription Factors/genetics , Transplantation, Heterologous
17.
J Cell Physiol ; 234(7): 11871-11881, 2019 07.
Article in English | MEDLINE | ID: mdl-30478995

ABSTRACT

Acquired resistance to cytotoxic antineoplastic agents is a major clinical challenge in tumor therapy; however, the mechanisms involved are still poorly understood. In this study, we show that knockdown of CtIP, a corepressor of CtBP, promotes cell proliferation and alleviates G2/M phase arrest in etoposide (Eto)-treated HCT116 cells. Although the expression of p21 and growth arrest and DNA damage inducible α (GADD45a), which are important targets of p53, was downregulated in CtIP-deficient HCT116 cells, p53 deletion did not affect G2/M arrest after Eto treatment. In addition, the phosphorylation levels of Ser317 and Ser345 in Chk1 and of Ser216 in CDC25C were lower in CtIP-deficient HCT116 cells than in control cells after Eto treatment. Our results indicate that CtIP may enhance cell sensitivity to Eto by promoting G2/M phase arrest, mainly through the ATR-Chk1-CDC25C pathway rather than the p53-p21/GADD45a pathway. The expression of CtIP may be a useful biomarker for predicting the drug sensitivity of colorectal cancer cells.


Subject(s)
Endodeoxyribonucleases/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects , Tumor Suppressor Protein p53/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage/drug effects , Etoposide/pharmacology , HCT116 Cells , Humans , M Phase Cell Cycle Checkpoints/drug effects , Tumor Suppressor Protein p53/genetics
18.
EMBO J ; 34(15): 1992-2007, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26069325

ABSTRACT

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.


Subject(s)
Arabidopsis/physiology , Cell Cycle/physiology , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology , Organogenesis/physiology , Transcription Factors/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Base Sequence , Chromatin Immunoprecipitation , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Mass Spectrometry , Microarray Analysis , Microscopy, Electron, Scanning , Molecular Sequence Data , Multiprotein Complexes/metabolism , Real-Time Polymerase Chain Reaction , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
19.
J Pathol ; 245(2): 160-171, 2018 06.
Article in English | MEDLINE | ID: mdl-29473166

ABSTRACT

Capillary morphogenesis protein 2 (CMG2) was originally identified through its participation in capillary morphogenesis, and subsequently identified as the second receptor for anthrax toxin (ANTXR2). Although tumor-associated functions of CMG2 have also been reported, the clinical significance and functional mechanism of CMG2 in glioma remain to be elucidated. We assessed the clinicopathological relevance of CMG2 in a cohort of 48 glioma patients as well as through public glioma databases, and explored the function of CMG2 using glioblastoma (GBM) models in vitro and in vivo. CMG2 overexpression was associated with increased tumor grade and poor patient survival. CMG2 promoted G2/M-phase transition during the cell cycle of GBM cells in vitro and contributed to tumor growth in vivo. We also observed that CMG2 is implicated in the activation of extracellular signal-regulated kinases (ERKs), epithelial-mesenchymal transition (EMT), migration, and invasion in GBM cells. Transcriptomic analysis of GBM cells with or without CMG2 overexpression indicated that a panel of oncogenic signaling pathways was altered with CMG2 upregulation, implying that CMG2 might orchestrate these signaling pathways to regulate the growth of GBM cells. Yes-associated protein 1 (YAP1) activity was enhanced by CMG2 overexpression but suppressed with CMG2 deficiency. Since YAP1 is critically implicated in GBM, the oncogenic roles of CMG2 in GBM cells might thus be mediated, at least partially, by YAP1. Altogether, CMG2 functioned as an oncogene in glioma cells and is a potential prognostic biomarker or therapeutic target for the clinical treatment of glioma. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Glioma/metabolism , Receptors, Peptide/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Databases, Genetic , G2 Phase Cell Cycle Checkpoints , Glioma/genetics , Glioma/pathology , HEK293 Cells , Humans , Male , Mice, SCID , Neoplasm Invasiveness , Phosphoproteins/metabolism , Prognosis , Receptors, Peptide/genetics , Signal Transduction , Transcription Factors , Tumor Burden , Tumor Cells, Cultured , YAP-Signaling Proteins
20.
Cell Mol Biol Lett ; 24: 4, 2019.
Article in English | MEDLINE | ID: mdl-30766610

ABSTRACT

BACKGROUND: We investigated the potential regulatory role of miR-219-5p in esophageal squamous cell carcinoma (ESCC) and looked at the underlying mechanisms in ESCC. METHODS: Real-time PCR was used to determine the levels of miR-219-5p in ESCC tissues and cell lines. The effects of miR-219-5p and cyclin A2 (CCNA2) on cell proliferation and cell cycle progression were evaluated using MTT, colony formation and flow cytometry assays with ESCC cell lines EC9706 and TE-9. Bioinformatics techniques and the luciferase reporter assay were applied to validate CCNA2 as the miR-219-5p target in ESCC cells. The mRNA and protein levels of CCNA2 were measured using real-time PCR and western blotting. RESULTS: MiR-219-5p expression was significantly lower in ESCC tissues and cells than in healthy tissues. Upregulation of miR-219-5p repressed cell proliferation and induced cell cycle arrest at the G2/M phase. CCNA2 was identified and confirmed as a direct downstream target of miR-219-5p and its expression negatively correlated with miR-219-5p profiles in ESCC tissues. Knockdown of CCNA2 potentiated the effects of miR-219-5p on cell proliferation and cell cycle distribution. CONCLUSIONS: Our results demonstrate that miR-219-5p might function as a tumor suppressor by directly targeting CCNA2 expression. It could serve as a new therapeutic target for ESCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cell Cycle Checkpoints , Cell Proliferation , Cyclin A2/genetics , MicroRNAs/metabolism , Mouth Neoplasms/genetics , Aged , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/physiopathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Male , MicroRNAs/genetics , MicroRNAs/physiology , Middle Aged , Mouth Neoplasms/metabolism , Mouth Neoplasms/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL