ABSTRACT
BACKGROUND: Antibody and cellular memory responses following vaccination are important measures of immunogenicity. These immune markers were quantified in the framework of a vaccine trial investigating the malaria vaccine candidate GMZ2. METHODS: Fifty Gabonese adults were vaccinated with two formulations (aluminum Alhydrogel and CAF01) of GMZ2 or a control vaccine (Verorab). Vaccine efficacy was assessed using controlled human malaria infection (CHMI) by direct venous inoculation of 3200 live Plasmodium falciparum sporozoites (PfSPZ Challenge). GMZ2-stimulated T and specific B-cell responses were estimated by flow cytometry before and after vaccination. Additionally, the antibody response against 212 P. falciparum antigens was estimated before CHMI by protein microarray. RESULTS: Frequencies of pro- and anti-inflammatory CD4+ T cells stimulated with the vaccine antigen GMZ2 as well as B cell profiles did not change after vaccination. IL-10-producing CD4+ T cells and CD20+ IgG+ B cells were increased post-vaccination regardless of the intervention, thus could not be specifically attributed to any malaria vaccine regimen. In contrast, GMZ2-specific antibody response increased after the vaccination, but was not correlated to protection. Antibody responses to several P. falciparum blood and liver stage antigens (MSP1, MSP4, MSP8, PfEMP1, STARP) as well as the breadth of the malaria-specific antibody response were significantly higher in protected study participants. CONCLUSIONS: In lifelong malaria exposed adults, the main marker of protection against CHMI is a broad antibody pattern recognizing multiple stages of the plasmodial life cycle. Despite vaccination with GMZ2 using a novel formulation, expansion of the GMZ2-stimulated T cells or the GMZ2-specific B cell response was limited, and the vaccine response could not be identified as a marker of protection against malaria. Trial registration PACTR; PACTR201503001038304; Registered 17 February 2015; https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1038.
Subject(s)
Malaria Vaccines , Malaria, Falciparum , Adult , Antibodies, Protozoan , Antibody Formation , Humans , Malaria, Falciparum/prevention & control , Plasmodium falciparum , VolunteersABSTRACT
BACKGROUND: The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. METHODS: This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. RESULTS: The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. CONCLUSIONS: The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine.
Subject(s)
Antibody Formation , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Membrane Glycoproteins/immunology , Peptide Fragments/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Brazil , Female , Humans , Male , Middle Aged , Young AdultABSTRACT
BACKGROUND: Transmission of malaria from man to mosquito depends on the presence of gametocytes, the sexual stage of Plasmodium parasites in the infected host. Naturally acquired antibodies against gametocytes exist and may play a role in controlling transmission by limiting the gametocyte development in the circulation or by interrupting gamete development and fertilization in the mosquito following ingestion. So far, most studies on antibody responses to sexual stage antigens have focused on a subset of gametocyte-surface antigens, even though inhibitory Ab responses to other gametocyte antigens might also play a role in controlling gametocyte density and fertility. Limited information is available on natural antibody response to the surfaces of gametocyte-infected erythrocytes. METHODS: Ab responses to surface antigens of erythrocytes infected by in vitro differentiated Plasmodium falciparum mature gametocytes were investigated in sera of semi-immune adults and malaria-exposed children. In addition, the effect of immunization with GMZ2, a blood stage malaria vaccine candidate, and the effect of intestinal helminth infection on the development of immunity to gametocytes of P. falciparum was evaluated in malaria-exposed children and adults from Gabon. Serum samples from two Phase I clinical trials conducted in Gabon were analysed by microscopic and flow-cytometric immunofluorescence assay. RESULTS: Adults had a higher Ab response compared to children. Ab reactivity was significantly higher after fixation and permeabilization of parasitized erythrocytes. Following vaccination with the malaria vaccine candidate GMZ2, anti-gametocyte Ab concentration decreased in adults compared to baseline. Ab response to whole asexual stage antigens had a significant but weak positive correlation to anti-gametocyte Ab responses in adults, but not in children. Children infected with Ascaris lumbricoides had a significantly higher anti-gametocyte Ab response compared to non-infected children. CONCLUSION: The current data suggest that antigens exposed on the gametocyte-infected red blood cells are recognized by serum antibodies from malaria-exposed children and semi-immune adults. This anti-gametocyte immune response may be influenced by natural exposure and vaccination. Modulation of the natural immune response to gametocytes by co-infecting parasites should be investigated further and may have an important impact on malaria control strategies.
Subject(s)
Antibodies, Protozoan/blood , Erythrocytes/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adult , Child, Preschool , Female , Flow Cytometry , Gabon , Humans , Infant , Infant, Newborn , Malaria, Falciparum/parasitology , Male , Young AdultABSTRACT
BACKGROUND: GMZ2 is a hybrid protein consisting of the N-terminal region of the glutamate-rich protein fused in frame to the C-terminal region of merozoite surface protein 3 (MSP3). GMZ2 formulated in Al(OH)3 has been tested in 3 published phase 1 clinical trials. The GMZ2/alum formulation showed good safety, tolerability, and immunogenicity, but whether antibodies elicited by vaccination are functional is not known. METHODS: Serum samples prior to vaccination and 4 weeks after the last vaccination from the 3 clinical trials were used to perform a comparative assessment of biological activity against Plasmodium falciparum. RESULTS: We showed that the maximum level of immunoglobulin G (IgG) antibodies obtained by GMZ2 vaccination is independent of ethnicity, time under malaria-exposure, and vaccine dose and that GMZ2 elicits high levels of functionally active IgG antibodies. Both, malaria-naive adults and malaria-exposed preschool children elicit vaccine-specific antibodies with broad inhibitory activity against geographically diverse P. falciparum isolates. Peptide-mapping studies of IgG subclass responses identified IgG3 against a peptide derived from MSP3 as the strongest predictor of antibody-dependent cellular inhibition. CONCLUSIONS: These findings suggest that GMZ2 adjuvanted in Al(OH)3 elicits high levels of specific and functional antibodies with the capacity to control parasite multiplication.
Subject(s)
Antibodies, Protozoan/blood , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Adjuvants, Immunologic/administration & dosage , Adult , Aluminum Hydroxide/administration & dosage , Child, Preschool , Humans , Immunoglobulin G/blood , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunologyABSTRACT
The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.
ABSTRACT
GMZ2 is a malaria vaccine candidate evaluated in a phase 2b multi-centre trial. Here we assessed antibody responses and the association of naturally acquired immunity with incidence of malaria in one of the trial sites, Banfora in Burkina Faso. The analysis included 453 (GMZ2 = 230, rabies = 223) children aged 12-60 months old. Children were followed-up for clinical malaria episodes for 12 months after final vaccine administration. Antibody levels against GMZ2 and eleven non-GMZ2 antigens were measured on days 0 and 84 (one month after final vaccine dose). Vaccine efficacy (VE) differed by age group (interaction, (12-35 months compared to 36-60 months), p = 0.0615). During the twelve months of follow-up, VE was 1% (95% confidence interval [CI] -17%, 17%) and 23% ([CI] 3%, 40%) in the 12 - 35 and 36 - 60 months old children, respectively. In the GMZ2 group, day 84 anti-GMZ2 IgG levels were associated with reduced incidence of febrile malaria during the follow up periods of 1-6 months (hazard ratio (HR) = 0.87, 95%CI = (0.77, 0.98)) and 7-12 months (HR = 0.84, 95%CI = (0.71, 0.98)) in the 36-60 months old but not in 12-35 months old children. Multivariate analysis involving day 84 IgG levels to eleven non-vaccine antigens, identified MSP3-K1 and GLURP-R2 to be associated with reduced incidence of malaria during the 12 months of follow up. The inclusion of these antigens might improve GMZ2 vaccine efficacy.
Subject(s)
Malaria Vaccines , Malaria, Falciparum , Antibody Formation , Antigens, Protozoan , Child , Child, Preschool , Humans , Immunoglobulin G , Incidence , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparumABSTRACT
BACKGROUND: The GMZ2/alum candidate malaria vaccine had an efficacy of 14% (95% confidence interval [CI]: 3.6%, 23%) against clinical malaria over 6â¯months of follow-up in a phase2b multicentre trial in children 1-5â¯years of age. Here we report the extended follow up of safety and efficacy over 2â¯years. METHODS: A total of 1849 (GMZ2â¯=â¯926, rabiesâ¯=â¯923) children aged 12-60â¯months were randomized to receive intramuscularly, either 3 doses of 100⯵g GMZ2/alum or 3 doses of rabies vaccine as control 28â¯days apart. The children were followed-up for 24â¯months for clinical malaria episodes and adverse events. The primary endpoint was documented fever with parasitaemia of at least 5000/µL. RESULTS: There were 2,062 malaria episodes in the GMZ2/alum group and 2,115 in the rabies vaccine group in the intention-to-treat analysis, vaccine efficacy (VE) of 6.5% (95%: CI -1.6%, 14.0%). In children aged 1-2â¯years at enrolment, VE was 3.6% (95â¯%CI: -9.1%, 14.8%) in the first year and -4.1% (95â¯%CI: -18.7%, 87%) in the second year. In children aged 3-5â¯years at enrolment VE was 19.9% (95â¯%CI: 7.7%, 30.4%) in the first year and 6.3% (95â¯%CI: -10.2%, 20.3%) in the second year (interaction by year, Pâ¯=â¯0.025, and by age group, Pâ¯=â¯0.085). A total of 187 (GMZ2â¯=â¯91, rabiesâ¯=â¯96) serious adverse events were recorded in 167 individuals over the entire period of the study. There were no GMZ2 vaccine related serious adverse events. CONCLUSIONS: GMZ2/alum was well tolerated. Follow-up over 2â¯years confirmed a low level of vaccine efficacy with slightly higher efficacy in older children, which suggests GMZ2 may act in concert with naturally acquired immunity.
Subject(s)
Malaria Vaccines , Malaria, Falciparum , Antigens, Protozoan , Child , Double-Blind Method , Follow-Up Studies , Humans , Malaria Vaccines/adverse effects , Malaria, Falciparum/prevention & control , Plasmodium falciparumABSTRACT
BACKGROUND: Despite appreciable immunogenicity in malaria-naive populations, many candidate malaria vaccines are considerably less immunogenic in malaria-exposed populations. This could reflect induction of immune regulatory mechanisms involving Human Leukocyte Antigen G (HLA-G), regulatory T (Treg), and regulatory B (Breg) cells. Here, we addressed the question whether there is correlation between these immune regulatory pathways and both plasmablast frequencies and vaccine-specific IgG concentrations. METHODS: Fifty Gabonese adults with lifelong exposure to Plasmodium spp were randomized to receive three doses of either 30 µg or 100 µg GMZ2-CAF01, or 100 µg GMZ2-alum, or control vaccine (rabies vaccine) at 4-week intervals. Only plasma and peripheral blood mononuclear cells isolated from blood samples collected before (D0) and 28 days after the third vaccination (D84) of 35 participants were used to measure sHLA-G levels and anti-GMZ2 IgG concentrations, and to quantify Treg, Breg and plasmablast cells. Vaccine efficacy was assessed using controlled human malaria infection (CHMI) by direct venous inoculation of Plasmodium falciparum sporozoites (PfSPZ Challenge). RESULTS: The sHLA-G concentration increased from D0 to D84 in all GMZ2 vaccinated participants and in the control group, whereas Treg frequencies increased only in those receiving 30 µg or 100 µg GMZ2-CAF01. The sHLA-G level on D84 was associated with a decrease of the anti-GMZ2 IgG concentration, whereas Treg frequencies on D0 or on D84, and Breg frequency on D84 were associated with lower plasmablast frequencies. Importantly, having a D84:D0 ratio of sHLA-G above the median was associated with an increased risk of P. falciparum infection after sporozoites injection. CONCLUSION: Regulatory immune responses are induced following immunization. Stronger sHLA-G and Treg immune responses may suppress vaccine induced immune responses, and the magnitude of the sHLA-G response increased the risk of Plasmodium falciparum infection after CHMI. These findings could have implications for the design and testing of malaria vaccine candidates in semi-immune individuals.
Subject(s)
Malaria Vaccines , Malaria, Falciparum , Adult , Animals , Antibodies, Protozoan , Antigens, Protozoan , Humans , Immunization , Leukocytes, Mononuclear , Malaria, Falciparum/prevention & control , Plasmodium falciparum , VaccinationABSTRACT
INTRODUCTION: GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based on a series of immune epidemiological studies from geographically diverse malaria endemic regions; functional in vitro studies; and pre-clinical studies in rodents and New World monkeys. GMZ2 adjuvanted with alhydrogel® (alum) was well tolerated and immunogenic in three phase 1 studies. The recently concluded phase 2 trial of GMZ2/alum, involving 1849 participants 12 to 60 month of age in four countries in West, Central and Eastern Africa, showed that GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. More immunogenic formulations should be developed.
Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria Vaccines/isolation & purification , Plasmodium falciparum/immunology , Animals , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Drug Evaluation, Preclinical , Humans , Malaria Vaccines/adverse effects , Rodentia , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Vaccines, Subunit/isolation & purification , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purificationABSTRACT
BACKGROUND: GMZ2 is a recombinant protein malaria vaccine, comprising two blood-stage antigens of Plasmodium falciparum, glutamate-rich protein and merozoite surface protein 3. We assessed efficacy of GMZ2 in children in Burkina Faso, Gabon, Ghana and Uganda. METHODS: Children 12-60months old were randomized to receive three injections of either 100µg GMZ2 adjuvanted with aluminum hydroxide or a control vaccine (rabies) four weeks apart and were followed up for six months to measure the incidence of malaria defined as fever or history of fever and a parasite density ⩾5000/µL. RESULTS: A cohort of 1849 children were randomized, 1735 received three doses of vaccine (868 GMZ2, 867 control-vaccine). There were 641 malaria episodes in the GMZ2/Alum group and 720 in the control group. In the ATP analysis, vaccine efficacy (VE), adjusted for age and site was 14% (95% confidence interval [CI]: 3.6%, 23%, p-value=0.009). In the ITT analysis, age-adjusted VE was 11.3% (95% CI 2.5%, 19%, p-value=0.013). VE was higher in older children. In GMZ2-vaccinated children, the incidence of malaria decreased with increasing vaccine-induced anti-GMZ2 IgG concentration. There were 32 cases of severe malaria (18 in the rabies vaccine group and 14 in the GMZ2 group), VE 27% (95% CI -44%, 63%). CONCLUSIONS: GMZ2 is the first blood-stage malaria vaccine to be evaluated in a large multicenter trial. GMZ2 was well tolerated and immunogenic, and reduced the incidence of malaria, but efficacy would need to be substantially improved, using a more immunogenic formulation, for the vaccine to have a public health role.
Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Antibodies, Protozoan/blood , Burkina Faso , Child, Preschool , Female , Gabon , Ghana , Humans , Immunoglobulin G/blood , Infant , Male , Plasmodium falciparum , Recombinant Fusion Proteins/immunology , UgandaABSTRACT
A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions, liposomes, and alum) in C57BL/6 mice. Some, but not all, formulations containing either the synthetic TLR4 agonist GLA or SLA elicited the highest parasite-specific antibody titers, the greatest IFN-γ responses in CD4+ TH1 cells, and the highest percentage of multifunctional CD4+ T cells expressing IFN-γ and TNF in response to GMZ2.6C. Both of these agonists have good safety records in humans.