Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.458
Filter
Add more filters

Publication year range
1.
Annu Rev Cell Dev Biol ; 37: 369-389, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34196570

ABSTRACT

Wnt signaling has multiple functions beyond the transcriptional effects of ß-catenin stabilization. We review recent investigations that uncover new cell physiological effects through the regulation of Wnt receptor endocytosis, Wnt-induced stabilization of proteins (Wnt-STOP), macropinocytosis, increase in lysosomal activity, and metabolic changes. Many of these growth-promoting effects of canonical Wnt occur within minutes and are independent of new protein synthesis. A key element is the sequestration of glycogen synthase kinase 3 (GSK3) inside multivesicular bodies and lysosomes. Twenty percent of human proteins contain consecutive GSK3 phosphorylation motifs, which in the absence of Wnt can form phosphodegrons for polyubiquitination and proteasomal degradation. Wnt signaling by either the pharmacological inhibition of GSK3 or the loss of tumor-suppressor proteins, such as adenomatous polyposis coli (APC) and Axin1, increases lysosomal acidification, anabolic metabolites, and macropinocytosis, which is normally repressed by the GSK3-Axin1-APC destruction complex. The combination of these cell physiological effects drives cell growth.


Subject(s)
Glycogen Synthase Kinase 3 , Wnt Signaling Pathway , Glycogen Synthase Kinase 3/metabolism , Humans , Lysosomes/metabolism , Phosphorylation , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology
2.
Mol Cell ; 82(15): 2858-2870.e8, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35732190

ABSTRACT

The tolerance of amino acid starvation is fundamental to robust cellular fitness. Asparagine depletion is lethal to some cancer cells, a vulnerability that can be exploited clinically. We report that resistance to asparagine starvation is uniquely dependent on an N-terminal low-complexity domain of GSK3α, which its paralog GSK3ß lacks. In response to depletion of specific amino acids, including asparagine, leucine, and valine, this domain mediates supramolecular assembly of GSK3α with ubiquitin-proteasome system components in spatially sequestered cytoplasmic bodies. This effect is independent of mTORC1 or GCN2. In normal cells, GSK3α promotes survival during essential amino acid starvation. In human leukemia, GSK3α body formation predicts asparaginase resistance, and sensitivity to asparaginase combined with a GSK3α inhibitor. We propose that GSK3α body formation provides a cellular mechanism to maximize the catalytic efficiency of proteasomal protein degradation in response to amino acid starvation, an adaptive response co-opted by cancer cells for asparaginase resistance.


Subject(s)
Asparaginase , Leukemia , Amino Acids/metabolism , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/pharmacology , Asparagine , Humans , Protein Serine-Threonine Kinases
3.
Mol Cell ; 81(16): 3246-3261.e11, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34352208

ABSTRACT

The Wnt/ß-catenin pathway is a highly conserved, frequently mutated developmental and cancer pathway. Its output is defined mainly by ß-catenin's phosphorylation- and ubiquitylation-dependent proteasomal degradation, initiated by the multi-protein ß-catenin destruction complex. The precise mechanisms underlying destruction complex function have remained unknown, largely because of the lack of suitable in vitro systems. Here we describe the in vitro reconstitution of an active human ß-catenin destruction complex from purified components, recapitulating complex assembly, ß-catenin modification, and degradation. We reveal that AXIN1 polymerization and APC promote ß-catenin capture, phosphorylation, and ubiquitylation. APC facilitates ß-catenin's flux through the complex by limiting ubiquitylation processivity and directly interacts with the SCFß-TrCP E3 ligase complex in a ß-TrCP-dependent manner. Oncogenic APC truncation variants, although part of the complex, are functionally impaired. Nonetheless, even the most severely truncated APC variant promotes ß-catenin recruitment. These findings exemplify the power of biochemical reconstitution to interrogate the molecular mechanisms of Wnt/ß-catenin signaling.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Axin Protein/genetics , beta Catenin/genetics , Adenomatous Polyposis Coli Protein/ultrastructure , Axin Protein/chemistry , Axin Protein/ultrastructure , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Phosphorylation/genetics , Protein Multimerization/genetics , Proteolysis , Ubiquitination/genetics , Wnt Signaling Pathway
4.
Immunity ; 48(3): 542-555.e6, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29523440

ABSTRACT

Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3ß (GSK3ß) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3ß at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Endoplasmic Reticulum/metabolism , Energy Metabolism , Immunologic Memory , Mitochondria/metabolism , Signal Transduction , Cell Respiration , Endoplasmic Reticulum/ultrastructure , Glycogen Synthase Kinase 3 beta/metabolism , Glycolysis , Intracellular Membranes/metabolism , Lymphocyte Activation , Mechanistic Target of Rapamycin Complex 2/metabolism , Mitochondria/ultrastructure , Models, Biological , Proto-Oncogene Proteins c-akt/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/deficiency
5.
Mol Cell ; 73(4): 788-802.e7, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30704899

ABSTRACT

mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.


Subject(s)
Autophagosomes/enzymology , Autophagy-Related Proteins/metabolism , Autophagy , Glycogen Synthase Kinase 3/metabolism , Lipid Metabolism , Liver/enzymology , Lysine Acetyltransferase 5/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphate-Binding Proteins/metabolism , Trans-Activators/metabolism , Acetylation , Animals , Autophagosomes/pathology , Autophagy-Related Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Glycogen Synthase Kinase 3/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Lipid Droplets/metabolism , Liver/pathology , Lysine Acetyltransferase 5/genetics , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Membrane Proteins , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphate-Binding Proteins/genetics , Phosphorylation , Protein Processing, Post-Translational , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Signal Transduction , Trans-Activators/genetics , Tumor Suppressor Proteins
6.
Mol Cell ; 70(5): 949-960.e4, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29861159

ABSTRACT

The mammalian Target of Rapamycin Complex 1 (mTORC1)-signaling system plays a critical role in the maintenance of cellular homeostasis by sensing and integrating multiple extracellular and intracellular cues. Therefore, uncovering the effectors of mTORC1 signaling is pivotal to understanding its pathophysiological effects. Here we report that the transcription factor forkhead/winged helix family k1 (Foxk1) is a mediator of mTORC1-regulated gene expression. Surprisingly, Foxk1 phosphorylation is increased upon mTORC1 suppression, which elicits a 14-3-3 interaction, a reduction of DNA binding, and nuclear exclusion. Mechanistically, this occurs by mTORC1-dependent suppression of nuclear signaling by the Foxk1 kinase, Gsk3. This pathway then regulates the expression of multiple genes associated with glycolysis and downstream anabolic pathways directly modulated by Foxk1 and/or by Foxk1-regulated expression of Hif-1α. Thus, Foxk1 mediates mTORC1-driven metabolic rewiring, and it is likely to be critical for metabolic diseases where improper mTORC1 signaling plays an important role.


Subject(s)
Cellular Reprogramming , Energy Metabolism , Forkhead Transcription Factors/metabolism , Glycogen Synthase Kinase 3/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , 14-3-3 Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Binding Sites , Cell Proliferation , Down-Regulation , Forkhead Transcription Factors/genetics , Glycogen Synthase Kinase 3/genetics , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Phosphorylation , Protein Binding , Signal Transduction
7.
Plant J ; 117(3): 747-765, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926922

ABSTRACT

Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Triazoles , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35635101

ABSTRACT

In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.


Subject(s)
Caenorhabditis elegans , Sperm Motility , Animals , Caenorhabditis elegans/metabolism , Female , Fertilization/genetics , Glycogen Synthase Kinase 3/metabolism , Male , Meiosis/genetics , Spermatozoa/physiology
9.
Exp Cell Res ; 441(2): 114195, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39098466

ABSTRACT

Chondrocyte ferroptosis induces the occurrence of osteoarthritis (OA). As a key gene of OA, C5a receptor 1 (C5AR1) is related to ferroptosis. Here, we investigated whether C5AR1 interferes with chondrocyte ferroptosis during OA occurrence. C5AR1 was downregulated in PA-treated chondrocytes. Overexpression of C5AR1 increased the cell viability and decreased ferroptosis in chondrocytes. Moreover, Tumor necrosis factor superfamily member 13B (TNFSF13B) was downregulated in PA-treated chondrocytes, and knockdown of TNFSF13B eliminated the inhibitory effect of C5AR1 on ferroptosis in chondrocytes. More importantly, the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway inhibitor LY294002 reversed the inhibition of C5AR1 or TNFSF13B on ferroptosis in chondrocytes. Finally, we found that C5AR1 alleviated joint tissue lesions and ferroptosis in rats and inhibited the progression of OA in the rat OA model constructed by anterior cruciate ligament transection (ACLT), which was reversed by interfering with TNFSF13B. This study shows that C5AR1 reduces the progression of OA by upregulating TNFSF13B to activate the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway and thereby inhibiting chondrocyte sensitivity to ferroptosis, indicating that C5AR1 may be a potential therapeutic target for ferroptosis-related diseases.


Subject(s)
Chondrocytes , Ferroptosis , Glycogen Synthase Kinase 3 beta , NF-E2-Related Factor 2 , Osteoarthritis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Receptor, Anaphylatoxin C5a , Animals , Ferroptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Rats , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Male , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Signal Transduction , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)
10.
Mol Cell ; 66(5): 648-657.e4, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575660

ABSTRACT

The glycogen synthase kinase-3 (GSK3) family kinases are central cellular regulators highly conserved in all eukaryotes. In Arabidopsis, the GSK3-like kinase BIN2 phosphorylates a range of proteins to control broad developmental processes, and BIN2 is degraded through unknown mechanism upon receptor kinase-mediated brassinosteroid (BR) signaling. Here we identify KIB1 as an F-box E3 ubiquitin ligase that promotes the degradation of BIN2 while blocking its substrate access. Loss-of-function mutations of KIB1 and its homologs abolished BR-induced BIN2 degradation and caused severe BR-insensitive phenotypes. KIB1 directly interacted with BIN2 in a BR-dependent manner and promoted BIN2 ubiquitination in vitro. Expression of an F-box-truncated KIB1 caused BIN2 accumulation but dephosphorylation of its substrate BZR1 and activation of BR responses because KIB1 blocked BIN2 binding to BZR1. Our study demonstrates that KIB1 plays an essential role in BR signaling by inhibiting BIN2 through dual mechanisms of blocking substrate access and promoting degradation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Brassinosteroids/pharmacology , F-Box Proteins/metabolism , Glycogen Synthase Kinase 3/metabolism , Plant Growth Regulators/pharmacology , Plants, Genetically Modified/drug effects , Protein Kinases/metabolism , Steroids, Heterocyclic/pharmacology , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Binding Sites , Catalytic Domain , DNA-Binding Proteins , Enzyme Activation , Enzyme Stability , F-Box Proteins/genetics , Genotype , Glycogen Synthase Kinase 3/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phenotype , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Kinases/genetics , Proteolysis , Signal Transduction/drug effects , Substrate Specificity , Ubiquitin-Protein Ligases/genetics , Ubiquitination
11.
Mol Cell Proteomics ; 22(5): 100545, 2023 05.
Article in English | MEDLINE | ID: mdl-37031867

ABSTRACT

GSK3α and GSK3ß are two GSK3 isoforms with 84% overall identity and 98% identity in their catalytic domains. GSK3ß plays important roles in the pathogenesis of cancer, while GSK3α has long been considered a functionally redundant protein of GSK3ß. Few studies have specifically investigated the functions of GSK3α. In this study, unexpectedly, we found that the expression of GSK3α, but not GSK3ß, was significantly correlated with the overall survival of colon cancer patients in 4 independent cohorts. To decipher the roles of GSK3α in colon cancer, we profiled the phosphorylation substrates of GSK3α and uncovered 156 phosphosites from 130 proteins specifically regulated by GSK3α. A number of these GSK3α-mediated phosphosites have never been reported before or have been incorrectly identified as substrates of GSK3ß. Among them, the levels of HSF1S303p, CANXS583p, MCM2S41p, POGZS425p, SRRM2T983p, and PRPF4BS431p were significantly correlated with the overall survival of colon cancer patients. Further pull-down assays identified 23 proteins, such as THRAP3, BCLAF1, and STAU1, showing strong binding affinity to GSK3α. The interaction between THRAP3 and GSK3α was verified by biochemical experiments. Notably, among the 18 phosphosites of THRAP3, phosphorylation at S248, S253, and S682 is specifically mediated by GSK3α. Mutation of S248 to D (S248D), which mimics the effect of phosphorylation, obviously increased cancer cell migration and the binding affinity to proteins related to DNA damage repair. Collectively, this work not only discloses the specific function of GSK3α as a kinase but also suggests GSK3α as a promising therapeutic target for colon cancer.


Subject(s)
Clinical Relevance , Colonic Neoplasms , Humans , Cytoskeletal Proteins , Glycogen Synthase Kinase 3 beta , Phosphorylation , Protein Isoforms , Protein Serine-Threonine Kinases , Proteomics , RNA-Binding Proteins
12.
Proc Natl Acad Sci U S A ; 119(41): e2206677119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191197

ABSTRACT

Regulation of organelle transport by molecular motors along the cytoskeletal microtubules is central to maintaining cellular functions. Here, we show that the ubiquitous tau-related microtubule-associated protein 4 (MAP4) can bias the bidirectional transport of organelles toward the microtubule minus-ends. This is concurrent with MAP4 phosphorylation, mediated by the kinase GSK3ß. We demonstrate that MAP4 achieves this bias by tethering the cargo to the microtubules, allowing it to impair the force generation of the plus-end motor kinesin-1. Consistent with this mechanism, MAP4 physically interacts with dynein and dynactin and, when phosphorylated, associates with the cargo-motor complex through its projection domain. Its phosphorylation coincides with the perinuclear accumulation of organelles, a phenotype that is rescued by abolishing the cargo-microtubule MAP4 tether or by the pharmacological inhibition of dynein, confirming the ability of kinesin to inch along, albeit inefficiently, in the presence of phosphorylated MAP4. These findings have broad biological significance because of the ubiquity of MAP4 and the involvement of GSK3ß in multiple diseases, more specifically in cancer, where the MAP4-dependent redistribution of organelles may be prevalent in cancer cells, as we demonstrate here for mitochondria in lung carcinoma epithelial cells.


Subject(s)
Dyneins , Kinesins , Dynactin Complex/metabolism , Dyneins/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Organelles/metabolism
13.
J Biol Chem ; 299(11): 105322, 2023 11.
Article in English | MEDLINE | ID: mdl-37805137

ABSTRACT

The liver is critical in maintaining metabolic homeostasis, regulating both anabolic and catabolic processes. Scaffold protein IQ motif-containing GTPase activating protein 2 (IQGAP2) is highly expressed in the liver and implicated in fatty acid uptake. However, its role in coordinating either fed or fasted responses is not well understood. Here we report that IQGAP2 is widely expressed in the liver that is pronounced in the pericentral region. Although control and IQGAP2 knockout mouse model showed comparable hepatic gene expression in the fasted state, we found significant defects in fed state responses. Glycogen levels were reduced in the periportal region when IQGAP2 was deleted. Consistently, we observed a decrease in phosphorylated glycogen synthase kinase 3α and total glycogen synthase protein in the fed IQGAP2 knockout mice which suggest inadequate glycogen synthesis. Moreover, immunoprecipitation of IQGAP2 revealed its interaction with GSK3 and GYS. Furthermore, our study demonstrated that knocking down IQGAP2 in vitro significantly decreased the phosphorylation of AKT and forkhead box O3 proteins downstream of insulin signaling. These findings suggest that IQGAP2 contributes to liver fed state metabolism by interacting with glycogen synthesis regulators and affecting the phosphorylation of insulin pathway components. Our results suggest that IQGAP2 plays a role in regulating fed state metabolism.


Subject(s)
Insulin , Liver Glycogen , Animals , Mice , Glycogen Synthase Kinase 3/metabolism , Insulin/metabolism , Liver/metabolism , Liver Glycogen/metabolism , Mice, Knockout , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
14.
J Biol Chem ; 299(3): 102982, 2023 03.
Article in English | MEDLINE | ID: mdl-36739947

ABSTRACT

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases and affects almost 1% of the population. Differentiated embryo-chondrocyte expressed gene-1 (DEC1) has been associated with both osteogenesis and osteoclastogenesis. RA condition is marked by inflammatory hyperplasia, and DEC1 is known to support inflammatory reactions and implicated in antiapoptosis and cell invasion. Here, our goal was to test the hypothesis that DEC1 enhances RA development induced by collagen-induced arthritis (CIA), a well-recognized protocol for developing RA animal models. DEC1+/+ and DEC1-/- mice were subjected to CIA protocol, and the development of RA condition was monitored. We found that CIA robustly induced RA phenotypes (e.g., synovial hyperplasia) and greatly increased the expression of proinflammatory cytokines such as TNF-α. However, these changes were detected in DEC1+/+ but not DEC1-/- mice. Interestingly, these very cytokines strongly induced DEC1, and such a dual role of DEC1, as an inducer for and being induced by proinflammatory cytokines, constitutes a DEC1-amplifying circuit for inflammation. Knockdown of DEC1 in human MH7A cells strongly decreased cell migration and invasion as well as the expression of genes related to RA phenotypes. The combination of DEC1-directed migration and invasion in vitro with synovial hyperplasia in vivo mechanistically establishes cellular bases on how DEC1 is involved in the development of RA phenotypes. In addition to inflammatory signaling, DEC1 functionally interacted with PI3KCA(p110α)/Akt/GSK3ß, Wnt/ß-catenin, and NFATc1. Such engagement in multiple signaling pathways suggests that DEC1 plays coordinated and integral roles in developing RA, one of the most common autoimmune diseases.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Basic Helix-Loop-Helix Transcription Factors , Homeodomain Proteins , Animals , Humans , Mice , Arthritis, Experimental/chemically induced , Arthritis, Experimental/genetics , Arthritis, Rheumatoid/genetics , Collagen , Cytokines/metabolism , Fibroblasts/metabolism , Hyperplasia/pathology , Inflammation/pathology , Synovial Membrane/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Homeodomain Proteins/metabolism
15.
Cancer Sci ; 115(4): 1333-1345, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320747

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. However, drug discovery for PDAC treatment has proven complicated, leading to stagnant therapeutic outcomes. Here, we identify Glycogen synthase kinase 3 (GSK3) as a therapeutic target through a whole-body genetic screening utilizing a '4-hit' Drosophila model mimicking the PDAC genotype. Reducing the gene dosage of GSK3 in a whole-body manner or knocking down GSK3 specifically in transformed cells suppressed 4-hit fly lethality, similar to Mitogen-activated protein kinase kinase (MEK), the therapeutic target in PDAC we have recently reported. Consistently, a combination of the GSK3 inhibitor CHIR99021 and the MEK inhibitor trametinib suppressed the phosphorylation of Polo-like kinase 1 (PLK1) as well as the growth of orthotopic human PDAC xenografts in mice. Additionally, reducing PLK1 genetically in 4-hit flies rescued their lethality. Our results reveal a therapeutic vulnerability in PDAC that offers a treatment opportunity for patients by inhibiting multiple targets.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Mitogen-Activated Protein Kinase Kinases , Glycogen Synthase Kinase 3/metabolism , Signal Transduction , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism
16.
Plant Cell Physiol ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38590034

ABSTRACT

Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) that serve as a key negative regulator of brassinosteroid (BR) signaling. Here we summarize the current understanding of how scaffold proteins actively shape BR signaling outputs and crosstalk in plant cells via interactions with BIN2.

17.
Mol Med ; 30(1): 39, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493090

ABSTRACT

OBJECTIVE: Anesthetics have been linked to cognitive alterations, particularly in the elderly. The current research delineates how Fibroblast Growth Factor 2 (Fgf2) modulates tau protein phosphorylation, contributing to cognitive impairments in aged rats upon sevoflurane administration. METHODS: Rats aged 3, 12, and 18 months were subjected to a 2.5% sevoflurane exposure to form a neurotoxicity model. Cognitive performance was gauged, and the GEO database was employed to identify differentially expressed genes (DEGs) in the 18-month-old cohort post sevoflurane exposure. Bioinformatics tools, inclusive of STRING and GeneCards, facilitated detailed analysis. Experimental validations, both in vivo and in vitro, examined Fgf2's effect on tau phosphorylation. RESULTS: Sevoflurane notably altered cognitive behavior in older rats. Out of 128 DEGs discerned, Fgf2 stood out as instrumental in regulating tau protein phosphorylation. Sevoflurane exposure spiked Fgf2 expression in cortical neurons, intensifying tau phosphorylation via the PI3K/AKT/Gsk3b trajectory. Diminishing Fgf2 expression correspondingly curtailed tau phosphorylation, neurofibrillary tangles, and enhanced cognitive capacities in aged rats. CONCLUSION: Sevoflurane elicits a surge in Fgf2 expression in aging rats, directing tau protein phosphorylation through the PI3K/AKT/Gsk3b route, instigating cognitive aberrations.


Subject(s)
Anesthetics, Inhalation , Cognitive Dysfunction , Methyl Ethers , Aged , Animals , Humans , Infant , Rats , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/metabolism , Cognition , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Methyl Ethers/pharmacology , Methyl Ethers/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Sevoflurane/metabolism , Sevoflurane/pharmacology , tau Proteins/metabolism , Fibroblast Growth Factor 2/metabolism
18.
Eur J Immunol ; 53(1): e2250104, 2023 01.
Article in English | MEDLINE | ID: mdl-36349527

ABSTRACT

Mast cells are granulated immune sentinels responsible for allergic inflammation. Allergen-induced FcεRI-signaling leads to rapid degranulation in the early-phase and sustained production and release of pro-inflammatory mediators in the late phase. Glycogen synthase kinase 3 (GSK3) is a constitutively active serine/threonine kinase and a central molecular convergence point for several pro-inflammatory pathways. GSK3 inhibition has been shown to reduce inflammation but has not yet been fully characterized in mast cell activation. Therefore, the objective of this study was to evaluate GSK3 as a putative therapeutic target in allergic inflammation using the GSK3 inhibitor, CHIR99021. Here, we found that GSK3 inhibition impaired ROS production and degranulation. Through modulation of MKK4-JNK, c-jun, and NF-κB signaling, GSK3 inhibition reduced the production/release of IL-6, IL-13, TNF, and CCL1, while only the release of CCL2 and CCL3 was impaired. Furthermore, CHIR99021-mediated GSK3 inhibition altered the pro-inflammatory phenotype of mast cells, reducing c-kit receptor levels. This implicated GSK3 in FcεRI signaling, reducing release of IL-6, TNF, and CCL1 when stimulated through FcεRI, while CCL2 and CCL3 remained unaffected, and were increased when stimulated with SCF only. These results identify GSK3 as a potential therapeutic target of utility warranting further consideration in contexts of pathological mast cell activation.


Subject(s)
Allergens , Glycogen Synthase Kinase 3 , Humans , Mast Cells , Interleukin-6/metabolism , Receptors, IgE , Inflammation/metabolism , Cell Degranulation
19.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38341666

ABSTRACT

To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3ß). GSK3α and GSK3ß are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3ß) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.


Subject(s)
Glycogen Synthase Kinase 3 , Serum Albumin, Bovine , Sperm Capacitation , Animals , Female , Male , Mice , Calcium/metabolism , Cyclic AMP/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mammals , Phosphorylation , Semen/metabolism , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/metabolism , Sperm Motility , Spermatozoa/metabolism
20.
IUBMB Life ; 76(7): 383-396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38230869

ABSTRACT

Wnt signaling is essential for embryonic development, influencing processes such as axis formation, cell proliferation and differentiation, cell fate decisions, and axon guidance. It also plays a role in maintaining tissue homeostasis in adult organisms. The loss of normal cell polarity and adhesion caused by Wnt signaling activation is a fundamental step for tumor progression and metastasis. Activating the canonical Wnt pathway is a driving force in many human cancers, especially colorectal, hepatocellular, and mammary carcinomas. Wnt causes the stabilization and nuclear transport of newly synthesized transcriptional regulator ß-catenin. The generally accepted view is that the canonical effects of Wnt growth factors are caused by the transcription of ß-catenin target genes. Here, we review recent findings that indicate Wnt is a regulator of many other cellular physiological activities, such as macropinocytosis, endosome trafficking, protein stability, focal adhesions, and lysosomal activity. Some of these regulatory responses occur within minutes and do not require new protein synthesis, indicating that there is much more to Wnt beyond the well-established transcriptional role of ß-catenin. The main conclusion that emerges from these studies is that in basal cell conditions, the activity of the key protein kinase GSK3, which is inhibited by Wnt pathway activation, normally represses the actin machinery that orchestrates macropinocytosis with implications in cancer. These contributions expand our understanding of the multifaceted roles of Wnt signaling in cellular processes, development, and cancer, providing insights into potential therapeutic targets and strategies.


Subject(s)
Cell Adhesion , Colonic Neoplasms , Wnt Signaling Pathway , Humans , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , Animals , beta Catenin/metabolism , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL