ABSTRACT
BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance that is frequently caused by reactivation of the mitogen activated protein kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor vorinostat suppresses SLC7A11, leading to a lethal increase in the already-elevated levels of ROS in drug-resistant cells. This causes selective apoptotic death of only the drug-resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice results in dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor-resistant melanoma, we find that vorinostat can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here.
Subject(s)
Drug Resistance, Neoplasm , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Amino Acid Transport System y+/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , MAP Kinase Kinase 1/metabolism , MAP Kinase Signaling System , Melanoma/genetics , Mice , Mutation , Neoplasm Transplantation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Reactive Oxygen Species/metabolism , Skin Neoplasms/genetics , Treatment Outcome , Vorinostat/pharmacologyABSTRACT
BACKGROUND: Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare neoplasms with an increasing annual incidence and prevalence. Many are metastatic at presentation or recur following surgical resection and require systemic therapy, for which somatostatin analogs such as octreotide or lanreotide comprise typical first-line therapies. Nonetheless, treatment options remain limited. Epigenetic processes such as histone modifications have been implicated in malignant transformation and progression. In this study, we evaluated the anti-proliferative effects of a histone deacetylase (HDAC) inhibitor, entinostat, which was computationally predicted to show anti-cancer activity, as confirmed in in vitro and in vivo models of GEP-NETs. METHODS: This was a phase II study to evaluate the efficacy and safety of entinostat in patients with relapsed or refractory abdominal NETs. The primary objective was to estimate the objective response rate to entinostat. Additionally, with each patient as his/her own control we estimated the rates of tumor growth prior to enrollment on study and while receiving entinostat. Patients received 5 mg entinostat weekly until disease progression or intolerable toxicity. The dose could be changed to 10 mg biweekly for patients who did not experience gradeâ ≥â 2 treatment-related adverse events (AEs) in cycle 1, but was primarily administered at the starting 5 mg weekly dose. RESULTS: The study enrolled only 5 patients due to early termination by the drug sponsor. The first patient that enrolled had advanced disease and died within days of enrollment before follow-up imaging due to a grade 5 AE unrelated to study treatment and was considered non-evaluable. Best RECIST response for the remaining 4 patients was stable disease (SD) with time on study of 154+, 243, 574, and 741 days. With each patient as his/her own control, rates of tumor growth on entinostat were markedly reduced with rates 17%, 20%, 33%, and 68% of the rates prior to enrollment on study. Toxicities possibly or definitely related to entinostat included grade 2/3 neutrophil count decrease [2/4 (50%)/ 2/4 (50%)], grade 3 hypophosphatemia [1/4, (25%)], grade 1/2 fatigue [1/4 (25%)/ 2/4 (50%)], and other self-limiting grade 1/2 AEs. CONCLUSION: In the treatment of relapsed or refractory abdominal NETs, entinostat 5 mg weekly led to prolonged SD and reduced the rate of tumor growth by 32% to 83% with an acceptable safety profile (ClinicalTrials.gov Identifier: NCT03211988).
Subject(s)
Benzamides , Neuroendocrine Tumors , Pyridines , Humans , Pyridines/pharmacology , Pyridines/therapeutic use , Pyridines/adverse effects , Pyridines/administration & dosage , Benzamides/therapeutic use , Benzamides/pharmacology , Benzamides/adverse effects , Benzamides/administration & dosage , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/pathology , Female , Male , Middle Aged , Aged , Adult , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Intestinal Neoplasms/drug therapy , Intestinal Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Abdominal Neoplasms/drug therapy , Abdominal Neoplasms/pathology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/adverse effectsABSTRACT
Extensive exploration of the molecular subtypes of triple-negative breast cancer (TNBC) is critical for advancing precision medicine. Notably, the luminal androgen receptor (LAR) subtype has attracted attention for targeted treatment combining androgen receptor antagonists and CDK4/6 inhibitors. Unfortunately, this strategy has proven to be of limited efficacy, highlighting the need for further optimization. Using our center's comprehensive multiomics dataset (n = 465), we identified novel therapeutic targets and evaluated their efficacy through multiple models, including in vitro LAR cell lines, in vivo cell-derived allograft models and ex vivo patient-derived organoids. Moreover, we conducted flow cytometry and RNA-seq analysis to unveil potential mechanisms underlying the regulation of tumor progression by these therapeutic strategies. LAR breast cancer cells exhibited sensitivity to chidamide and enzalutamide individually, with a drug combination assay revealing their synergistic effect. Crucially, this synergistic effect was verified through in vivo allograft models and patient-derived organoids. Furthermore, transcriptomic analysis demonstrated that the combination therapeutic strategy could inhibit tumor progression by regulating metabolism and autophagy. This study confirmed that the combination of histone deacetylase (HDAC) inhibitors and androgen receptor (AR) antagonists possessed greater therapeutic efficacy than monotherapy in LAR TNBC. This finding significantly bolsters the theoretical basis for the clinical translation of this combination therapy and provides an innovative strategy for the targeted treatment of LAR TNBC.
ABSTRACT
Histone deacetylases (HDACs) are validated drug targets for various therapeutic applications. A series of Tetrahydro-ß-carboline-based hydroxamate derivatives, designed as HDAC inhibitors (HDACis), were synthesized. Compound 11g exhibited strong inhibitory activity against HDAC1 and the A549 cancer cell line. Additionally, this compound increased the levels of acetylated histone H3 and H4. Notably, 11g effectively arrested A549 cells in the G2/M phase and also increased ROS production and DNA damage, thereby inducing apoptosis. Further molecular docking experiments illustrated the potential interactions between compound 11g and HDAC1. These findings suggested that the novel Tetrahydro-ß-carboline-based HDACis could serve as a promising framework for further optimization as anticancer agents.
ABSTRACT
Cancer has been a leading cause of death over the last few decades in western countries as well as in Taiwan. However, traditional therapies are limited by the adverse effects of chemotherapy and radiotherapy, and tumor recurrence may occur. Therefore, it is critical to develop novel therapeutic drugs. In the field of HDAC inhibitor development, apart from the hydroxamic acid moiety, 2-aminobenzamide also functions as a zinc-binding domain, which is shown in well-known HDAC inhibitors such as Entinostat and Chidamide. With recent successful experiences in synthesizing 1-(phenylsulfonyl)indole-based compounds, in this study, we further combined two features of the above chemical compounds and generated indolyl benzamides. Compounds were screened in different cancer cell lines, and enzyme activity was examined to demonstrate their potential for anti-HDAC activity. Various biological functional assays evidenced that two of these compounds could suppress cancer growth and migration capacity, through regulating epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis mechanisms. Data from 3D cancer cells and the in vivo zebrafish model suggested the potential of these compounds in cancer therapy in the future.
Subject(s)
Antineoplastic Agents , Apoptosis , Cell Cycle , Cell Proliferation , Drug Screening Assays, Antitumor , Epithelial-Mesenchymal Transition , Histone Deacetylase Inhibitors , Zebrafish , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Epithelial-Mesenchymal Transition/drug effects , Animals , Cell Cycle/drug effects , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Cell Line, Tumor , Histone Deacetylases/metabolismABSTRACT
BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for the treatment of various malignancies; however, its therapeutic potential is limited because of the frequent occurrence of tumor cell resistance. In this study, we determined whether TRAIL resistance acquired by repeated administration could be overcome by HDAC inhibition in human colorectal cancer cells. METHODS: TRAIL-resistant HCT116 human colorectal cancer cells (HCT116-TR) were generated by repeated treatment with 10 and 25 ng/mL TRAIL twice weekly for 28 days. RESULTS: The resulting TRAIL-resistant cells were noncross-resistant to other chemotherapeutic agents. The levels of histone acetylation-related proteins, such as ac-histone H4 and HDAC1, were altered in HCT116-TR cells compared with the parental HCT116 cell line. The combined treatment with TRAIL and HDAC inhibitors significantly increased apoptosis in HCT116-TR cells and indicated a synergistic effect. The mechanism by which HDAC inhibition sensitizes HCT116-TR cells to TRAIL is dependent on the intrinsic pathway. In addition, we found that HDAC inhibition enhanced the sensitivity of cells to TRAIL through mitogen-activated protein kinases/CCAAT/enhancer-binding protein homologs of protein-dependent upregulation of death receptor 5. CONCLUSION: These results suggest that histone acetylation is responsible for acquired TRAIL resistance after repeated exposure and acquired resistance to TRAIL may be overcome by combination therapies with HDAC inhibitors.
Subject(s)
Apoptosis , Colorectal Neoplasms , Drug Resistance, Neoplasm , Drug Synergism , Histone Deacetylase Inhibitors , Histones , TNF-Related Apoptosis-Inducing Ligand , Humans , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Acetylation , Drug Resistance, Neoplasm/drug effects , HCT116 Cells , Histones/metabolism , Apoptosis/drug effectsABSTRACT
Scientists are making efforts to search for new metabolites as they are essential lead molecules for the drug discovery, much required due to the evolution of multi drug resistance and new diseases. Moreover, higher production of known drugs is required because of the ever growing population. Microorganisms offer a vast collection of chemically distinct compounds that exhibit various biological functions. They play a crucial role in safeguarding crops, agriculture, and combating several infectious ailments and cancer. Research on fungi have grabbed a lot of attention after the discovery of penicillin, most of the compounds produced by fungi under normal cultivation conditions are discovered and now rarely new compounds are discovered. Treatment of fungi with the epigenetic modifiers has been becoming very popular since the last few years to boost the discovery of new molecules and enhance the production of already known molecules. Epigenetic literally means above genetics that actually does not alter the genome but alter its expression by altering the state of chromatin from heterochromatin to euchromatin. Chromatin in heterochromatin state usually doesn't express because it is closely packed by histones in this state. Epigenetic modifiers loosen the packing of chromatin by inhibiting DNA methylation and histone deacetylation and thus permit the expression of genes that usually remain dormant. This study delves into the possibility of utilizing epigenetic modifying agents to generate pharmacologically significant secondary metabolites from fungi.
Subject(s)
Epigenesis, Genetic , Fungi , Secondary Metabolism , Fungi/genetics , Fungi/metabolism , Fungi/drug effects , Secondary Metabolism/genetics , DNA MethylationABSTRACT
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by infiltration of the blood and bone marrow, exhibiting a low remission rate and high recurrence rate. Current research has demonstrated that class I HDAC inhibitors can downregulate anti-apoptotic proteins, leading to apoptosis of AML cells. In the present investigation, we conducted structural modifications of marine cytotoxin Santacruzamate A (SCA), a compound known for its inhibitory activity towards HDACs, resulting in the development of a novel series of potent class I HDACs hydrazide inhibitors. Representative hydrazide-based compound 25c exhibited concentration-dependent induction of apoptosis in AML cells as a single agent. Moreover, 25c exhibited a synergistic anti-AML effect when combined with Venetoclax, a clinical Bcl-2 inhibitor employed in AML therapy. This combination resulted in a more pronounced downregulation of anti-apoptotic proteins Mcl-1 and Bcl-xL, along with a significant upregulation of the pro-apoptotic protein cleaved-caspase3 and the DNA double-strand break biomarker γ-H2AX compared to monotherapy. These results highlighted the potential of 25c as a promising lead compound for AML treatment, particularly when used in combination with Venetoclax.
Subject(s)
Antineoplastic Agents , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Drug Synergism , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Sulfonamides/pharmacology , Sulfonamides/chemistry , Leukemia, Myeloid, Acute/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylases/metabolism , Animals , Caspase 3/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitorsABSTRACT
Over the past decades, cancer has been a challenging domain for medicinal chemists as it is an international health concern. In association, small molecules such as 2-aminothiophenes and their derivatives showed significant antitumor activity through variable modes of action. Therefore, this article aims to review the advances regarding these core scaffolds over the past 10 years, where 2-aminothiophenes and their fused analogs are classified and discussed according to their biological activity and mode of action, in the interest of boosting new design pathways for medicinal chemists to develop targeted antitumor candidates.
Subject(s)
Antineoplastic Agents , Thiophenes , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Humans , Thiophenes/pharmacology , Thiophenes/chemical synthesis , Thiophenes/chemistry , Structure-Activity Relationship , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Molecular StructureABSTRACT
An imbalance in estrogen signaling is a critical event in breast tumorigenesis. The majority of breast cancers (BCs) are hormone-sensitive; they majorly express the estrogen receptor (ER+) and are activated by 17ß-estradiol (E2). The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in steroid biosynthesis. The dysregulation of the epigenetic machinery, modulating E2 levels, is a primary occurrence for promoting breast tumorigenesis. StAR expression, concomitant with E2 synthesis, was reported to be aberrantly high in human and mouse hormone-dependent BC cells compared with their non-cancerous counterparts. However, the mechanism of action of StAR remains poorly understood. We discovered StAR as an acetylated protein and have identified a number of lysine (K) residues that are putatively acetylated in malignant and non-malignant breast cells, using LC-MS/MS (liquid chromatography-tandem mass spectrometry), suggesting they differently influence E2 synthesis in mammary tissue. The treatment of hormone-sensitive MCF7 cells with a variety of histone deacetylase inhibitors (HDACIs), at therapeutically and clinically relevant doses, identified a few additional StAR acetylated lysine residues. Among a total of fourteen StAR acetylomes undergoing acetylation and deacetylation, K111 and K253 were frequently recognized either endogenously or in response to HDACIs. Site-directed mutagenesis studies of these two StAR acetylomes, pertaining to K111Q and K253Q acetylation mimetic states, resulted in increases in E2 levels in ER+ MCF7 and triple negative MB-231 BC cells, compared with their values seen with human StAR. Conversely, these cells carrying K111R and K253R deacetylation mutants diminished E2 biosynthesis. These findings provide novel and mechanistic insights into intra-tumoral E2 regulation by elucidating the functional importance of this uncovered StAR post-translational modification (PTM), involving acetylation and deacetylation events, underscoring the potential of StAR as a therapeutic target for hormone-sensitive BC.
Subject(s)
Breast Neoplasms , Estradiol , Phosphoproteins , Humans , Acetylation/drug effects , Estradiol/pharmacology , Estradiol/metabolism , Female , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Phosphoproteins/metabolism , Phosphoproteins/genetics , MCF-7 Cells , Histone Deacetylase Inhibitors/pharmacology , Protein Processing, Post-Translational , Lysine/metabolism , Cell Line, TumorABSTRACT
Breast and ovarian cancers pose significant therapeutic challenges. We explored the synergistic cytotoxicity of histone deacetylase inhibitors (HDACis), poly(ADP-ribose) polymerase inhibitors (PARPis), and decitabine in breast (MDA-MB-231 and MCF-7) and ovarian (HEY-T30 and SKOV-3) cancer cell lines that were exposed to HDACi (panobinostat or vorinostat), PARPi (talazoparib or olaparib), decitabine, or their combinations. HDACi, PARPi, and decitabine combinations had synergistic cytotoxicity (assessed by MTT and clonogenic assays) in all cell lines (combination index < 1). Clonogenic assays confirmed the sensitivity of breast and ovarian cancer cell lines to the three-drug combinations (panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine; vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine). Cell proliferation was inhibited by 48-70%, and Annexin V positivity was 42-59% in all cell lines exposed to the three-drug combinations. Western blot analysis showed protein PARylation inhibition, caspase 3 and PARP1 cleavage, and c-MYC down-regulation. The three-drug combinations induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs, impaired the DNA repair pathways, and altered the epigenetic regulation of gene expression. These results indicate that HDACi, PARPi, and decitabine combinations should be further explored in these tumor types. Further clinical validation is warranted to assess their safety and efficacy.
Subject(s)
Breast Neoplasms , Cell Proliferation , Decitabine , Drug Synergism , Histone Deacetylase Inhibitors , Ovarian Neoplasms , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Decitabine/pharmacology , Female , Histone Deacetylase Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Piperazines/pharmacology , Vorinostat/pharmacology , Panobinostat/pharmacology , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Hydroxamic Acids/pharmacology , MCF-7 CellsABSTRACT
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap by utilizing the pharmacophore fusion strategy. Among them, compound 20 exhibited potential inhibitory activity on HDAC1, and demonstrated notable potency against RPMI-8226 cells with an IC50 value of 2.89 ± 0.43 µM, which was better than chidamide (IC50 = 10.23 ± 1.02 µM). Western blot analysis and Annexin V-FTIC/propidium iodide (PI) staining showed that 20 could enhance the acetylation of histone H3, as well as remarkably induce apoptosis of RPMI-8226 cancer cells. The docking study highlighted the presence of a hydrogen bond between the carbonyl oxygen of the 2-acetylpyrrole cap group and Phe198 of the HDAC1 enzyme in 20, emphasizing the crucial role of introducing this natural product-inspired cap group. Molecular dynamics simulations showed that the docked complex had good conformational stability. The ADME parameters calculation showed that 20 possesses remarkable theoretical drug-likeness properties. Taken together, these results suggested that 20 is worthy of further exploration as a potential HDAC-targeted anticancer drug candidate.
Subject(s)
Apoptosis , Biological Products , Drug Design , Histone Deacetylase Inhibitors , Molecular Docking Simulation , Pyrroles , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/chemical synthesis , Cell Line, Tumor , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/chemistry , Molecular StructureABSTRACT
Histone deacetylases (HDACs) are epigenetic regulators of chromatin condensation and decondensation and exert effects on the proliferation and spread of cancer. Thus, HDAC enzymes are promising drug targets for the treatment of cancer. Some HDAC inhibitors such as the hydroxamic acid derivatives vorinostat or panobinostat were already approved for the treatment of hematologic cancer diseases, and are under intensive investigation for their use in solid tumors. But there are also drawbacks of the clinical application of HDAC inhibitors like intrinsic or acquired drug resistance and, thus, new HDAC inhibitors with improved activities are sought for. Kinase inhibitors are very promising anticancer drugs and often showed synergistic anticancer effects in combination with HDAC inhibitors. Several hybrid molecules with HDAC and kinase inhibitory structural motifs were disclosed with even improved anticancer activities when compared with co-application of HDAC and receptor tyrosine kinase inhibitors. Chimeric inhibitors with HDAC inhibitory activities exert a rapidly growing field of research and only in this year several new dual HDAC/kinase inhibitors were disclosed. This review briefly summarizes the status and future perspective of the most advanced and promising dual HDAC/kinase inhibitors and their potential as anticancer drug candidates.
Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/therapeutic use , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Neoplasms/drug therapyABSTRACT
Collectively known as psoriatic disease, psoriasis and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases in which patients present with cutaneous and musculoskeletal inflammation. Affecting roughly 2-3% of the world's total population, there remains unmet therapeutic needs in both psoriasis and PsA despite the availability of current immunomodulatory treatments. As a result, patients with psoriatic disease often experience reduced quality of life. Recently, a class of small molecules, commonly investigated as anti-cancer agents, called histone deacetylase (HDAC) inhibitors, have been proposed as a new promising anti-inflammatory treatment for immune- and inflammatory-related diseases. In inflammatory diseases, current evidence is derived from studies on diseases like rheumatoid arthritis (RA) and systematic lupus erythematosus (SLE), and while there are some reports studying psoriasis, data on PsA patients are not yet available. In this review, we provide a brief overview of psoriatic disease, psoriasis, and PsA, as well as HDACs, and discuss the rationale behind the potential use of HDAC inhibitors in the management of persistent inflammation to suggest its possible use in psoriatic disease.
Subject(s)
Arthritis, Psoriatic , Psoriasis , Humans , Arthritis, Psoriatic/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Inflammation/drug therapy , Psoriasis/drug therapy , Quality of LifeABSTRACT
Cancer metastasis increases the complexity of the disease and escalates patient mortality. Traditional chemotherapy has been associated with low efficacy and marked side effects. Studies pivot toward histone deacetylase (HDAC) enzymes and inhibitors because they are critical for chromatin structure, gene regulation, and cellular activities that are linked to metastasis and cancer progression. HDAC inhibitors (HDACi) can alter gene expression patterns and can lead to cell-cycle arrest and apoptosis in neoplastic cells. Several HDACi drugs like vorinostat, romidepsin, panobinostat, and belinostat are approved by the Food and Drug Administration. China and Japan have approved the use of tucidinostat, a new subtype-selective HDACi that inhibits class 1 HDAC1, HDAC2, HDAC3, as well as class 2b HDAC10. These drugs have shown promising results in the treatment of multiple carcinoma including cervical cancer, T-cell lymphoma, brain cancer, and breast cancer. This review highlights the HDACi classes, the mechanism of action of these inhibitors, their preclinical and clinical efficacy, and the latest clinical trials and patents used in cancer therapeutics. Overall, this review focuses on patents and clinical trials data from 2019 onward to give a better viewpoint on current trends in HDACis as chemotherapy agents.
ABSTRACT
The essential role of epigenetic modification in the pathogenesis of a series of cancers have gradually been recognized. Histone deacetylase (HDACs), as well-known epigenetic modulators, are responsible for DNA repair, cell proliferation, differentiation, apoptosis and angiogenesis. Studies have shown that aberrant expression of HDACs is found in many cancer types. Thus, inhibition of HDACs has provided a promising therapeutic approach alternative for these patients. Since HDAC inhibitor (HDACi) vorinostat was first approved by the Food and Drug Administration (FDA) for treating cutaneous T-cell lymphoma (CTCL) in 2006, the combination of HDAC inhibitors with other molecules such as chemotherapeutic drugs has drawn much attention in current cancer treatment, especially in hematological malignancies therapy. Up to now, there have been more than twenty HDAC inhibitors investigated in clinic trials with five approvals being achieved. Indeed, Histone deacetylase inhibitors promote or enhance several different anticancer mechanisms and therefore are in evidence as potential antileukemia agents. In this review, we will focus on possible mechanisms by how HDAC inhibitors exert therapeutic benefit and their clinical utility in leukemia.
ABSTRACT
Skeletal muscle differentiation involves activation of quiescent satellite cells to proliferate, differentiate and fuse to form new myofibers; this requires coordination of myogenic transcription factors. Myogenic transcription is tightly regulated by various intracellular signaling pathways, which include members of the protein kinase D (PKD) family. PKD is a family of serine-threonine kinases that regulate gene expression, protein secretion, cell proliferation, differentiation and inflammation. PKD is a unique PKC family member that shares distant sequence homology to calcium-regulated kinases and plays an important role in muscle physiology. In this report, we show that class I histone deacetylase (HDAC) inhibition, and in particular HDAC8 inhibition, attenuated PKD phosphorylation in skeletal C2C12 myoblasts in response to phorbol ester, angiotensin II and dexamethasone signaling independent of changes in total PKD protein expression. As class I HDACs and PKD signaling are requisite for myocyte differentiation, these data suggest that HDAC8 functions as a potential feedback regulator of PKD phosphorylation to control myogenic gene expression.
Subject(s)
Myoblasts, Skeletal , Protein Kinase C , Phosphorylation , Protein Kinase C/metabolism , Signal Transduction/physiology , Myoblasts, Skeletal/metabolismABSTRACT
The treatment of human immunodeficiency virus (HIV) infection is notoriously difficult due to the ability of this virus to remain latent in the host's CD4+ T cells. Histone deacetylases (HDACs) interfere with DNA transcription in HIV-infected hosts, resulting in viral latency. Therefore, HDAC inhibitors can be used to activate viral transcription in latently infected cells, after which the virus can be eliminated through a shock-and-kill strategy. Here, a drug delivery system is developed to effectively deliver HDAC inhibitors to latent HIV-infected cells. Given that the efficacy of HDAC inhibitors is reduced under hypoxic conditions, oxygen-containing nanosomes are used as drug carriers. Oxygen-containing nanosomes can improve the efficiency of chemotherapy by delivering essential oxygen to cells. Additionally, their phospholipid bilayer structure makes them uniquely well-suited for drug delivery. In this study, a novel drug delivery system is developed by taking advantage of the oxygen carriers in these oxygen nanosomes, incorporating a multi-drug strategy consisting of HDAC inhibitors and PKA activators, and introducing CXCR4 binding peptides to specifically target CD4+ T cells. Oxygen nanosomes with enhanced targeting capability through the introduction of the CXCR4 binding peptide mitigate drug toxicity and slow down drug release. The observed changes in the expression of p24, a capsid protein of HIV, indirectly confirm that the proposed drug delivery system can effectively induce transcriptional reactivation of HIV in latent HIV-infected cells.
Subject(s)
HIV Infections , HIV-1 , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Virus Latency , HIV Infections/drug therapy , HIV Infections/genetics , Oxygen/pharmacology , CD4-Positive T-Lymphocytes , HIV-1/geneticsABSTRACT
In the present study, a novel series of 11 urushiol-based hydroxamic acid histone deacetylase (HDAC) inhibitors was designed, synthesized, and biologically evaluated. Compounds 1-11 exhibited good to excellent inhibitory activities against HDAC1/2/3 (IC50 : 42.09-240.17â nM) and HDAC8 (IC50 : 16.11-41.15â nM) inâ vitro, with negligible activity against HDAC6 (>1409.59â nM). Considering HDAC8, docking experiments revealed some important features contributing to inhibitory activity. According to Western blot analysis, select compounds could notably enhance the acetylation of histone H3 and SMC3 but not-tubulin, indicating their privileged structure is appropriate for targeting class I HDACs. Furthermore, antiproliferation assays revealed that six compounds exerted greater inâ vitro antiproliferative activity against four human cancer cell lines (A2780, HT-29, MDA-MB-231, and HepG2, with IC50 values ranging from 2.31-5.13â µM) than suberoylanilide hydroxamic acid; administration of these compounds induced marked apoptosis in MDA-MB-231 cells, with cell cycle arrest in the G2/M phase. Collectively, specific synthesized compounds could be further optimized and biologically explored as antitumor agents.
Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Histone Deacetylase Inhibitors/chemistry , Cell Line, Tumor , Structure-Activity Relationship , Cell Proliferation , Drug Screening Assays, Antitumor , Histone Deacetylases/metabolism , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Repressor Proteins/metabolismABSTRACT
Epigenetic alterations frequently participate in the onset of hematological malignancies. Histone deacetylases (HDACs) are essential for regulating gene transcription and various signaling pathways. Targeting HDACs has become a novel treatment option for hematological malignancies. Chidamide is the first oral selective HDAC inhibitor for HDAC1, HDAC2, HDAC3, and HDAC10 and was first approved for the treatment of R/R peripheral T-cell lymphoma by the China Food and Drug Administration in 2014. Chidamide was also approved under the name Hiyasta (HBI-8000) in Japan in 2021. In vitro studies revealed that chidamide could inhibit proliferation and induce apoptosis via cell cycle arrest and the regulation of apoptotic proteins. In clinical studies, chidamide was also efficacious in multiple myeloma, acute leukemia and myelodysplastic syndrome. This review includes reported experimental and clinical data on chidamide monotherapy or chidamide treatment in combination with chemotherapy for various hematological malignancies, offering a rationale for the renewed exploration of this drug.