Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 436
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Cell Physiol ; 239(6): e31288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685860

ABSTRACT

Galectin-12 is a tissue-specific galectin that has been largely defined by its role in the regulation of adipocyte differentiation and lipogenesis. This study aimed to evaluate the role of galectin-12 in the differentiation and polarization of neutrophils within a model of acute myeloid leukemia HL-60 cells. All-trans retinoic acid and dimethyl sulfoxide were used to induce differentiation of HL-60 cells which led to the generation of two phenotypes of neutrophil-like cells with opposite changes in galectin-12 gene (LGALS12) expression and different functional responses to N-formyl- l-methionyl- l-leucyl- l-phenylalanine. These phenotypes showed significant differences of differentially expressed genes on a global scale based on bioinformatics analysis of available Gene Expression Omnibus (GEO) data sets. We also demonstrated that HL-60 cells could secrete and accumulate galectin-12 in cell culture medium under normal growth conditions. This secretion was found to be entirely inhibited upon neutrophilic differentiation and was accompanied by an increase in intracellular lipid droplet content and significant enrichment of 22 lipid gene ontology terms related to lipid metabolism in differentiated cells. These findings suggest that galectin-12 could serve as a marker of neutrophilic plasticity or polarization into different phenotypes and that galectin-12 secretion may be influenced by lipid droplet biogenesis.


Subject(s)
Galectins , Leukemia, Promyelocytic, Acute , Neutrophils , Humans , Cell Differentiation , Galectins/metabolism , Galectins/genetics , HL-60 Cells , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Lipid Metabolism/genetics , Neutrophils/metabolism , Phenotype , Tretinoin/pharmacology
2.
Biochem Cell Biol ; 102(3): 275-284, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38484367

ABSTRACT

Neutrophil myeloperoxidase/H2O2/chloride system is a key mechanism to control pathogen infection. This enzyme, myeloperoxidase, plays a pivotal role in the arsenal of azurophilic granules that are released through degranulation upon neutrophil activation, which trigger local hypochlorous acid production. Myeloperoxidase gene encodes a protein precursor named promyeloperoxidase that arbors a propeptide that gets cleaved later during secretory routing in post-endoplasmic reticulum compartments. Although evidence suggested that this processing event was performed by one or different enzymes from the proprotein convertases family, the identity of this enzyme was never investigated. In this work, the naturally producing myeloperoxidase promyelocytic cell line HL-60 was used to investigate promyeloperoxidase cleavage during granulocytic differentiation in response to proprotein convertase inhibitors decanoyl-RVKR-chloromethylketone and hexa-d-arginine. Stable PC knockdown of endogenously expressed proprotein convertases, furin and PC7, was achieved using lentiviral delivery of shRNAs. None of the knockdown cell line could reproduce the effect of the pan-proprotein convertases inhibitor decanoyl-RVKR-chloromethylketone that accumulated intracellular promyeloperoxidase stores in HL-60 cells, therefore illustrating that both furin and PC7 redundantly process this proprotein.


Subject(s)
Furin , Peroxidase , Humans , HL-60 Cells , Furin/metabolism , Furin/genetics , Peroxidase/metabolism , Granulocytes/metabolism , Granulocytes/cytology , Cell Differentiation , Subtilisins/metabolism , Enzyme Precursors/metabolism , Enzyme Precursors/genetics , Amino Acid Chloromethyl Ketones/pharmacology
3.
Blood Cells Mol Dis ; 108: 102871, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013336

ABSTRACT

A graft source for allogeneic hematopoietic stem cell transplantation is umbilical cord blood, which contains umbilical cord blood mononuclear cells (MNCs and mesenchymal stem cells, both an excellent source of extracellular microparticles (MPs). MPs act as cell communication mediators, which are implicated in reactive oxygen species formation or detoxification depending on their origin. Oxidative stress plays a crucial role in both the development of cancer and its treatment by triggering apoptotic mechanisms, in which CD34+ cells are implicated. The aim of this work is to investigate the oxidative stress status and the apoptosis of HL-60 and mononuclear cells isolated from umbilical cord blood (UCB) following a 24- and 48-hour exposure to CD34 + microparticles (CD34 + MPs). The activity of superoxide dismutase, glutathione reductase, and glutathione S-transferase, as well as lipid peroxidation in the cells, were employed as oxidative stress markers. A 24- and 48-hour exposure of leukemic and mononuclear cells to CD34 + -MPs resulted in a statistically significant increase in the antioxidant activity and lipid peroxidation in both cells types. Moreover, CD34 + MPs affect the expression of BCL2 and FAS and related proteins and downregulate the hematopoietic differentiation program in both HL-60 and mononuclear cells. Our results indicate that MPs through activation of antioxidant enzymes in both homozygous and nonhomozygous cells might serve as a means for graft optimization and enhancement.


Subject(s)
Antigens, CD34 , Apoptosis , Cell-Derived Microparticles , Fetal Blood , Hematopoietic Stem Cells , Oxidative Stress , Humans , Fetal Blood/cytology , Antigens, CD34/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Cell-Derived Microparticles/metabolism , HL-60 Cells , Lipid Peroxidation , Leukocytes, Mononuclear/metabolism , Superoxide Dismutase/metabolism , Reactive Oxygen Species/metabolism
4.
FASEB J ; 37(1): e22676, 2023 01.
Article in English | MEDLINE | ID: mdl-36468834

ABSTRACT

The G protein-coupled receptors, GPR43 (free fatty acid receptor 2, FFA2) and GPR41 (free fatty acid receptor 3, FFA3), are activated by short-chain fatty acids produced under various conditions, including microbial fermentation of carbohydrates. Previous studies have implicated this receptor energy homeostasis and immune responses as well as in cell growth arrest and apoptosis. Here, we observed the expression of both receptors in human blood cells and a remarkable enhancement in leukemia cell lines (HL-60, U937, and THP-1 cells) during differentiation. A reporter assay revealed that GPR43 is coupled with Gαi and Gα12/13 and is constitutively active without any stimuli. Specific blockers of GPR43, GLPG0974 and CATPB function as inverse agonists because treatment with these compounds significantly reduces constitutive activity. In HL-60 cells, enhanced expression of GPR43 led to growth arrest through Gα12/13 . In addition, the blockage of GPR43 activity in these cells significantly impaired their adherent properties due to the reduction of adhesion molecules. We further revealed that enhanced GPR43 activity induces F-actin formation. However, the activity of GPR43 did not contribute to butyrate-induced apoptosis in differentiated HL-60 cells because of the ineffectiveness of the inverse agonist on cell death. Collectively, these results suggest that GPR43, which possesses constitutive activity, is crucial for growth arrest, followed by the proper differentiation of leukocytes.


Subject(s)
Fatty Acids, Volatile , Leukocytes , Receptors, Cell Surface , Humans , Fatty Acids, Volatile/metabolism , Leukocytes/metabolism , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Cell Differentiation , HL-60 Cells
5.
Purinergic Signal ; 20(5): 559-570, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38416332

ABSTRACT

The A3 adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A3AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1ß, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1ß, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A3AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A3AR and in recombinant hA3AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A3AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA3AR.


Subject(s)
Adenosine A3 Receptor Agonists , Receptor, Adenosine A3 , Humans , HL-60 Cells , Receptor, Adenosine A3/metabolism , Receptor, Adenosine A3/genetics , Adenosine A3 Receptor Agonists/pharmacology , Allosteric Regulation/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology
6.
Bioorg Med Chem ; 98: 117553, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38128297

ABSTRACT

Neutrophil binding to vascular P- and E-selectin is the rate-limiting step in the recruitment of immune cells to sites of inflammation. Many diseases, including sickle cell anemia, post-myocardial infarction reperfusion injury, and acute respiratory distress syndrome are characterized by dysregulated inflammation. We have recently reported sialyl Lewisx analogues as potent antagonists of P- and E-selectin and demonstrated their in vivo immunosuppressive activity. A key component of these molecules is a tartrate diester that serves as an acyclic tether to orient the fucoside and the galactoside moiety in the required gauche conformation for optimal binding. The next stage of our study involved attaching an extended carbon chain onto one of the esters. This chain could be utilized to tether other pharmacophores, lipids, and contrast agents in the context of enhancing pharmacological applications through the sialyl Lewisx / receptor-mediated mechanism. Herein, we report our preliminary studies to generate a small library of tartrate based sialyl Lewisx analogues bearing extended carbon chains. Anionic charged chemical entities are attached to take advantage of proximal charged amino acids in the carbohydrate recognition domain of the selectin receptors. Starting with a common azido intermediate, synthesized using copper-catalyzed Huisgen 1,3-dipolar cycloadditions, these molecules demonstrate E- and P-selectin binding properties.


Subject(s)
E-Selectin , P-Selectin , Humans , P-Selectin/metabolism , E-Selectin/metabolism , Tartrates , Sialyl Lewis X Antigen , Oligosaccharides/chemistry , Binding Sites , Carbon , Inflammation , Cell Adhesion
7.
Mol Biol Rep ; 51(1): 997, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297923

ABSTRACT

BACKGROUND: Thiazole derivatives are gaining prominence in cancer research due to their potent anti-cancer effects and multifaceted biological activities. In leukemia research, these compounds are particularly studied for their ability to induce apoptosis, disrupt mitochondrial membrane potential (MMP), and modulate cell signaling pathways. METHODS AND RESULTS: This study investigates the efficacy of 4-Methylthiazole in inducing apoptosis in HL-60 leukemia cells. Apoptosis was quantified via flow cytometry using FITC Annexin V and propidium iodide staining. Mitochondrial disruption was evaluated through alterations in mitochondrial membrane potential (MMP) as measured by the JC-1 assay. The compound significantly disrupted MMP, activated Caspase-3, and induced the release of Cytochrome C, all of which are critical markers of apoptosis (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). Additionally, treatment with 4-Methylthiazole markedly reduced CD45 and CD123 surface markers, indicating significant phenotypic alterations in leukemia cells (****p < 0.0001). High-dose treatment with 4-Methylthiazole significantly increased ROS levels, suggesting elevated oxidative stress and the presence of intracellular free radicals, contributing to its cytotoxic effects (*p < 0.05). A significant rise in TNF-α levels was observed post-treatment, indicating a pro-inflammatory response that may further inhibit leukemia cell viability. While IL-6 levels remained unchanged, a dose-dependent decrease in IL-10 levels was noted, suggesting a reduction in immunosuppressive conditions within the tumor microenvironment (*p < 0.05). CONCLUSIONS: Overall, 4-Methylthiazole targets leukemia cells through multiple apoptotic mechanisms and modifies the immune landscape of the tumor microenvironment, enhancing its therapeutic potential. This study highlights the need for further clinical investigation to fully exploit the potential of thiazole derivatives in leukemia treatment.


Subject(s)
Apoptosis , Membrane Potential, Mitochondrial , Mitochondria , Thiazoles , Humans , Apoptosis/drug effects , HL-60 Cells , Thiazoles/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Antineoplastic Agents/pharmacology , Cytochromes c/metabolism , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Caspase 3/metabolism , Cell Survival/drug effects , Signal Transduction/drug effects
8.
Bioorg Chem ; 147: 107410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688197

ABSTRACT

A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, 1H-, 13C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines. Among all, compound 3b was the most potent, with IC50 of 0.018 µM for normoxia, and 0.001 µM for hypoxia, compared to staurosporine against HL-60 leukemia cell line. To verify the selectivity of this derivative, it was assessed against a panel of tyrosine kinase EGFR, VEGFR-2, B-raf, ERK, CK1, p38-MAPK, Src and Abl enzymes. Results revealed that compound 3b can effectively and selectively inhibit Src/Abl with IC500.25 µM and Abl inhibitory activity with IC500.08 µM, respectively, and was found to be more potent on these enzymes than other kinases that showed the following results: EGFR IC500.31 µM, VEGFR-2 IC500.68 µM, B-raf IC500.33 µM, ERK IC501.41 µM, CK1 IC500.29 µM and p38-MAPK IC500.38 µM. Moreover, cell cycle analysis and apoptosis performed to compound 3b against HL-60 suggesting its antiproliferative activity through Src/Abl inhibition. Finally, molecular docking studies and physicochemical properties prediction for compounds 3b, 3c, and 3 h were carried out to investigate their biological activities and clarify their bioavailability.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-abl , src-Family Kinases , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Guanidine/pharmacology , Guanidine/chemistry , Guanidine/chemical synthesis , Guanidine/analogs & derivatives , HL-60 Cells , Leukemia/drug therapy , Leukemia/pathology , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Proto-Oncogene Proteins c-abl/metabolism , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism , Structure-Activity Relationship , Cyanamide/chemical synthesis , Cyanamide/chemistry , Cyanamide/pharmacology
9.
J Ultrasound Med ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39257135

ABSTRACT

OBJECTIVES: In the treatment of acute myeloid leukemia (AML), conventional therapies can lead to severe side effects and drug resistance. There is a need for alternative treatments that do not cause treatment resistance and have minimal or no side effects. Sonodynamic therapy (SDT), due to its noninvasive, multiple repeatability, localized treatment feature and do not cause treatment resistance, emerges as an alternative treatment option. However, it has not received sufficient attention in the treatment of AML especially acute promyelocytic leukemia (APL). The aim of the study was to investigate the potential differentiation and antileukemic effects of acridine orange (AO)-mediated SDT on HL60 cells. METHODS: Cell viability was determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method in the control, ultrasound, AO concentrations, and ultrasound-exposed AO concentrations groups. Transmission electron microscopy (TEM) was used to determine morphology, and flow cytometry was used to determine apoptosis, DNA cycle, cell volume, mitochondria membrane potential (Δψm), reactive oxygen species (ROS) production, and differentiation markers (CD11b and CD15) expressions. Additionally, toluidine blue staining for semithin sections was used to determine differentiation. RESULTS: The cytotoxicity of AO-mediated SDT on HL60 cells was significantly higher than other groups, and TEM images showed that it caused various morphological changes typical for apoptosis. Flow cytometry results showed the presence of early apoptosis, subG1 arrest, loss of Δψm, increase of intracellular ROS production, decreased cell volume, and increased expression of CD11b (1.3-fold) antigen and CD15 (1.2-fold) antigen. CONCLUSION: Data showed that AO-mediated SDT significantly induced apoptosis in HL60 cells. Increased expression of CD11b and CD15 antigens and morphological findings demonstrated that AO-mediated SDT contributes to granulocytic differentiation in HL60 cells. AO-mediated SDT has potential as an alternative treatment of APL.

10.
J Asian Nat Prod Res ; : 1-13, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258746

ABSTRACT

Acute promyelocytic leukemia (APL) is marked by a block at the promyelocyte stage. Treatments like ATRA and ATO face resistance and relapse issues. Plastrum testudinis, a traditional Chinese medicine, may offer therapeutic potential. This study investigated xtr-miR-22-3p from P. testudinis for treating APL. High expression of xtr-miR-22-3p was confirmed, with target prediction indicating interactions with key genes, including PML. xtr-miR-22-3p reduced HL-60 leukemia cell growth, altered the cell cycle, and selectively inhibited HL-60 proliferation while promoting BMSC growth, suggesting its potential as a targeted APL therapy.

11.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731835

ABSTRACT

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Subject(s)
Leukemia, Myeloid, Acute , Systems Biology , Tretinoin , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Tretinoin/pharmacology , Systems Biology/methods , HL-60 Cells , Gene Expression Profiling , K562 Cells , Drug Discovery/methods , Transcriptome , Cell Line, Tumor , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Leukemic/drug effects , Tumor Necrosis Factor-alpha/metabolism
12.
J Clin Biochem Nutr ; 75(1): 17-23, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39070531

ABSTRACT

Neutrophil extracellular trap (NET) formation is a unique self-defense mechanism of neutrophils; however, it is also involved in many diseases, including atherosclerosis. Resveratrol and catechin are antioxidants with anti-atherosclerotic properties. Here, we examined the effects of resveratrol, catechin, and other related compounds on NET formation. HL-60-derived neutrophils were pretreated with resveratrol and other compounds before stimulation with phorbol-myristate acetate (PMA). DNA and myeloperoxidase released from neutrophils were determined. Resveratrol suppressed the DNA release from neutrophils in a dose-dependent manner. NET formation was enhanced by 1-palmitoyl-2-oxovaleroyl phosphatidylcholine (POVPC), a truncated form of oxidized phospholipid, and resveratrol suppressed NET formation induced by POVPC and PMA. Furthermore, we designed several analogs of resveratrol or catechin whose conformation was restricted by the inhibition of the free rotation of aromatic rings. The conformationally constrained analogs were more effective at inhibiting NET formation; however, their inhibitory function decreased when compound was a large, hydrophobic analog. The most potent compounds, planar catechin and resveratrol, suppressed myeloperoxidase release from activated neutrophils. In addition, these compounds suppressed DNA release from neutrophils stimulated with calcium ionophore. These results suggest that resveratrol, catechin and their analogs exert anti-NET effects, and that constraining the geometry of these compounds enhanced their inhibitory effects.

13.
FASEB J ; 36(1): e22094, 2022 01.
Article in English | MEDLINE | ID: mdl-34888943

ABSTRACT

Modifications in sphingolipid (SL) metabolism and mitochondrial bioenergetics are key factors implicated in cancer cell response to chemotherapy, including chemotherapy resistance. In the present work, we utilized acute myeloid leukemia (AML) cell lines, selected to be refractory to various chemotherapeutics, to explore the interplay between SL metabolism and mitochondrial biology supportive of multidrug resistance (MDR). In agreement with previous findings in cytarabine or daunorubicin resistant AML cells, relative to chemosensitive wildtype controls, HL-60 cells refractory to vincristine (HL60/VCR) presented with alterations in SL enzyme expression and lipidome composition. Such changes were typified by upregulated expression of various ceramide detoxifying enzymes, as well as corresponding shifts in ceramide, glucosylceramide, and sphingomyelin (SM) molecular species. With respect to mitochondria, despite consistent increases in both basal respiration and maximal respiratory capacity, direct interrogation of the oxidative phosphorylation (OXPHOS) system revealed intrinsic deficiencies in HL60/VCR, as well as across multiple MDR model systems. Based on the apparent requirement for augmented SL and mitochondrial flux to support the MDR phenotype, we explored a combinatorial therapeutic paradigm designed to target each pathway. Remarkably, despite minimal cytotoxicity in peripheral blood mononuclear cells (PBMC), co-targeting SL metabolism, and respiratory complex I (CI) induced synergistic cytotoxicity consistently across multiple MDR leukemia models. Together, these data underscore the intimate connection between cellular sphingolipids and mitochondrial metabolism and suggest that pharmacological intervention across both pathways may represent a novel treatment strategy against MDR.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , Leukemia/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , Sphingolipids/metabolism , Cytarabine/pharmacology , Daunorubicin/pharmacology , HL-60 Cells , Humans , Leukemia/pathology , Mitochondria/pathology , Vincristine/pharmacology
14.
Cell Commun Signal ; 21(1): 300, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37904222

ABSTRACT

BACKGROUND: Neutrophils depend heavily on glycolysis for energy production under normal conditions. In contrast, neutrophils require energy supplied by mitochondrial oxidative phosphorylation (OXPHOS) during chemotaxis. However, the mechanism by which the energy supply changes from glycolysis to OXPHOS remains unknown. Leucine-rich repeat kinase 2 (LRRK2) is partially present in the outer mitochondrial membrane fraction. Lrrk2-deficient cells show mitochondrial fragmentation and reduced OXPHOS activity. We have previously reported that mitofusin (MFN) 2 is involved in chemotaxis and OXPHOS activation upon chemoattractant N-formyl-Met-Leu-Phe (fMLP) stimulation in differentiated HL-60 (dHL-60) cells. It has been previously reported that LRRK2 binds to MFN2 and partially colocalizes with MFN2 at the mitochondrial membranes. This study investigated the involvement of LRRK2 in chemotaxis and MFN2 activation in neutrophils and dHL-60 cells. METHODS: Lrrk2 knockout neutrophils and Lrrk2 knockdown dHL-60 cells were used to examine the possible involvement of LRRK2 in chemotaxis. Lrrk2 knockdown dHL-60 cells were used a tetracycline-inducible small hairpin RNA (shRNA) system to minimize the effects of LRRK2 knockdown during cell culture. The relationship between LRRK2 and MFN2 was investigated by measuring the GTP-binding activity of MFN2 in Lrrk2 knockdown dHL-60 cells. The effects of LRRK2 kinase activity on chemotaxis were examined using the LRRK2 kinase inhibitor MLi-2. RESULTS: fMLP-induced chemotactic activity was reduced in Lrrk2 knockout neutrophils in vitro and in vivo. Lrrk2 knockdown in dHL-60 cells expressing Lrrk2 shRNA also reduced fMLP-induced chemotactic activity. Lrrk2 knockdown dHL-60 cells showed reduced OXPHOS activity and suppressed mitochondrial morphological change, similar to Mfn2 knockdown dHL-60 cells. The amount of LRRK2 in the mitochondrial fraction and the GTP-binding activity of MFN2 increased upon fMLP stimulation, and the MFN2 GTP-binding activity was suppressed in Lrrk2 knockdown dHL-60 cells. Furthermore, the kinase activity of LRRK2 and Ser935 phosphorylation of LRRK2 were reduced upon fMLP stimulation, and LRRK2 kinase inhibition by MLi-2 increased the migration to fMLP. CONCLUSIONS: LRRK2 is involved in neutrophil chemotaxis and the GTP-binding activity of MFN2 upon fMLP stimulation. On the other hand, the kinase activity of LRRK2 shows a negative regulatory effect on fMLP-induced chemotactic activity in dHL-60 cells. Video Abstract.


Subject(s)
Chemotaxis , Neutrophils , Humans , Neutrophils/metabolism , HL-60 Cells , Oxidative Phosphorylation , RNA, Small Interfering/metabolism , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/pharmacology
15.
Bioorg Med Chem Lett ; 93: 129415, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37532107

ABSTRACT

The intramolecular electrophilic cyclization of alkynes with disulfides to form thieno[2,3-b]quinoxaline structures and to introduce thioether substituents afforded quinoxaline derivatives (7a-7d, 8a-8d). Among obtained eight derivatives, the raloxifene analogues (7c, 8b) showed specifically high cytotoxicity against breast cancer cells (SK-BR-3), and raloxifene analogues (8a) showed the highest cytotoxicity against human leukemia cells (HL-60). None of the raloxifene analogues (7a-7d, 8a-8d) showed cytotoxicity against human lung fibroblasts (WI-38), which are normal cells.


Subject(s)
Quinoxalines , Raloxifene Hydrochloride , Humans , Cyclization , Quinoxalines/pharmacology , Raloxifene Hydrochloride/pharmacology , Disulfides
16.
Biosci Biotechnol Biochem ; 87(8): 825-832, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37245061

ABSTRACT

The phytochemical investigation of Dialium corbisieri seeds led to the isolation of five monoterpenoid indole alkaloids along with a phytoserotonin, 1-6 and among the known compounds, the spectroscopic data of (5S)-methoxy-akuammiline (1) was reported for the first time. The structures were elucidated based on nuclear magnetic resonance spectroscopic techniques such as ultraviolet, infrared, high-resolution electrospray ionization time-of-flight mass spectrometry, and electron-capture dissociation spectrum calculations. The isolated compounds were evaluated for their cytotoxicity and cell progression in the human acute promyelocytic leukemia HL60 cell line.


Subject(s)
Leukemia, Promyelocytic, Acute , Humans , HL-60 Cells , Leukemia, Promyelocytic, Acute/drug therapy , Molecular Structure , Indole Alkaloids/pharmacology , G1 Phase Cell Cycle Checkpoints
17.
J Enzyme Inhib Med Chem ; 38(1): 405-422, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36458403

ABSTRACT

A series of benzo[h]chromenes, benzo[f]chromenes, and benzo[h]chromeno[2,3-d]pyrimidines were prepared. All the newly synthesised compounds were selected by National Cancer Institute for single-dose testing against 60 cell lines. Benzo[h]chromenes 5a and 6a showed promising anti-cancer activity and selected for the five-dose testing. Compounds 5a and 6a suppressed cell growth in HL-60 by the induction of cell cycle arrest, which was confirmed using flow cytometry and Annexin V-FITC/PI assays showed at the G1/S phase by regulating the expression of CDK-2/CyclinD1, triggering cell apoptosis by activating both the extrinsic (Fas/Caspase 8) and intrinsic (Bcl-2/Caspase 3) apoptosis pathways, which were determined by the western blot. Benzo[h]chromenes 5a and 6a decreased the protein expression levels of Bcl-2, CDK-2, and CyclinD1 and increased the expression of caspase 3, caspase 8, and Fas. In silico molecular analysis of compounds 5a and 6a in CDK-2 and Bcl-2 was performed.


Subject(s)
Benzopyrans , Leukemia, Myeloid, Acute , Humans , HL-60 Cells , Benzopyrans/pharmacology , Molecular Docking Simulation , Caspase 8 , Caspase 3 , Cell Cycle Checkpoints , Proto-Oncogene Proteins c-bcl-2 , Apoptosis
18.
Environ Toxicol ; 38(5): 1063-1077, 2023 May.
Article in English | MEDLINE | ID: mdl-36793247

ABSTRACT

Leukemia is a type of disease in which hematopoietic stem cells proliferate clonally at the genetic level. We discovered previously by high-resolution mass spectrometry that diallyl disulfide (DADS), which is one of the effective ingredients of garlic, reduces the performance of RhoGDI2 from APL HL-60 cells. Although RhoGDI2 is oversubscribed in several cancer categories, the effect of RhoGDI2 in HL-60 cells has remained unexplained. We aimed to investigate the influence of RhoGDI2 on DADS-induced differentiation of HL-60 cells to elucidate the association among the effect of inhibition or over-expression of RhoGDI2 with HL-60 cell polarization, migration and invasion, which is important for establishing a novel generation of inducers to elicit leukemia cell polarization. Co-transfection with RhoGDI2-targeted miRNAs apparently decreases the malignant biological behavior of cells and upregulates cytopenias in DADS-treated HL-60 cell lines, which increases CD11b and decreases CD33 and mRNA levels of Rac1, PAK1 and LIMK1. Meanwhile, we generated HL-60 cell lines with high-expressing RhoGDI2. The proliferation, migration and invasion capacity of such cells were significantly increased by the treated with DADS, while the reduction capacity of the cells was decreased. There was a reduction in CD11b and an increase in CD33 production, as well as an increase in the mRNA levels of Rac1, PAK1 and LIMK1. It also confirmed that inhibition of RhoGDI2 attenuates the EMT cascade via the Rac1/Pak1/LIMK1 pathway, thereby inhibiting the malignant biological behavior of HL-60 cells. Thus, we considered that inhibition of RhoGDI2 expression might be a new therapeutic direction for the treatment of human promyelocytic leukemia. The anti-cancer property of DADS against HL-60 leukemia cells might be regulated by RhoGDI2 through the Rac1-Pak1-LIMK1 pathway, which provides new evidence for DADS as a clinical anti-cancer medicine.


Subject(s)
Leukemia , rho Guanine Nucleotide Dissociation Inhibitor beta , Humans , Allyl Compounds/pharmacology , Cell Differentiation/drug effects , Disulfides/pharmacology , HL-60 Cells/drug effects , HL-60 Cells/metabolism , Leukemia/metabolism , Leukemia/pathology , Lim Kinases/genetics , Lim Kinases/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/pharmacology , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/pharmacology , rho Guanine Nucleotide Dissociation Inhibitor beta/drug effects , rho Guanine Nucleotide Dissociation Inhibitor beta/metabolism , RNA, Messenger , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology
19.
Int J Mol Sci ; 24(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37108514

ABSTRACT

Despite the significant advancements in complex anticancer therapy, the search for new and more efficient specific anticancer agents remains a top priority in the field of drug discovery and development. Here, based on the structure-activity relationships (SARs) of eleven salicylaldehyde hydrazones with anticancer activities, we designed three novel derivatives. The compounds were tested in silico for drug-likeness, synthesized, and evaluated in vitro for anticancer activity and selectivity on four leukemic cell lines (HL-60, KE-37, K-562, and BV-173), one osteosarcomic cell line (SaOS-2), two breast adenocarcinomic cell lines (MCF-7 and MDA-MB-231), and one healthy cell line (HEK-293). The designed compounds were found to have appropriate drug likeness and showed anticancer activities in all cell lines tested; particularly, two of them exhibited remarkable anticancer activity in nanomolar concentrations on the leukemic cell lines HL-60 and K-562 and the breast cancer MCF-7 cells and extraordinary selectivity for the same cancer lines ranging between 164- and 1254-fold. The study also examined the effects of different substituents on the hydrazone scaffold and found that the 4-methoxy salicylic moiety, phenyl, and pyridinyl rings are the most appropriate for anticancer activity and selectivity of this chemical class.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Leukemia , Humans , Female , Breast Neoplasms/drug therapy , Hydrazones/chemistry , HEK293 Cells , Drug Design , Cell Proliferation , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Line, Tumor , Leukemia/drug therapy , Molecular Structure , Drug Screening Assays, Antitumor
20.
Molecules ; 28(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687077

ABSTRACT

'Globemaster' is an ornamental hybrid cultivar whose parent plants are Allium cristophii and A. macleanii. The chemical constituents of 'Globemaster' bulbs have not yet been examined; thus, a systematic phytochemical investigation was undertaken herein. A series of chromatographic separations of the MeOH extract of 'Globemaster' bulbs afforded 27 steroidal glycosides (1-27), which are classified into 23 spirostanol glycosides (1-8 and 11-25), two furostanol glycosides (9 and 26), a pregnane glycoside (10), and a cholestane glycoside (27). The structures of the hitherto undescribed compounds (1-10) were determined from the two-dimensional NMR spectroscopic data and hydrolysis. The cytotoxicity of the isolated compounds (1-27) toward HL-60 human promyelocytic leukemia cells, A549 human adenocarcinoma lung cancer cells, and SBC-3 human small-cell lung cancer cells was evaluated. Compounds 8, 22, 23, 24, and 26 exhibited cytotoxicity toward all cell lines in a dose-dependent manner, with IC50 values in the 1.3-49 µM range.


Subject(s)
Allium , Cardiac Glycosides , Lung Neoplasms , Humans , Glycosides/pharmacology , HL-60 Cells
SELECTION OF CITATIONS
SEARCH DETAIL