Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-38530347

ABSTRACT

A Gram-stain-negative, non-endospore-forming, motile, short rod-shaped strain, designated SYSU G07232T, was isolated from a hot spring microbial mat, sampled from Rehai National Park, Tengchong, Yunnan Province, south-western China. Strain SYSU G07232T grew at 25-50 °C (optimum, 37 °C), at pH 5.5-9.0 (optimum, pH 6.0) and tolerated NaCl concentrations up to 1.0 % (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SYSU G07232T showed closest genetic affinity with Chelatococcus daeguensis K106T. The genomic features and taxonomic status of this strain were determined through whole-genome sequencing and a polyphasic approach. The predominant quinone of this strain was Q-10. Major cellular fatty acids comprised C19 : 0 cyclo ω8c and summed feature 8. The whole-genome length of strain SYSU G07232T was 4.02 Mbp, and the DNA G+C content was 69.26 mol%. The average nucleotide identity (ANIm ≤84.85 % and ANIb ≤76.08  %) and digital DNA-DNA hybridization (≤ 21.9 %) values between strain SYSU G07232T and the reference species were lower than the threshold values recommended for distinguishing novel prokaryotic species. Thus, based on the provided phenotypic, phylogenetic, and genetic data, it is proposed that strain SYSU G07232T (=KCTC 8141T=GDMCC 1.4178T) be designated as representing a novel species within the genus Chelatococcus, named Chelatococcus albus sp. nov.


Subject(s)
Beijerinckiaceae , Hot Springs , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , China , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria
2.
Article in English | MEDLINE | ID: mdl-39083039

ABSTRACT

Taiwan is situated in the subtropical region and its geographical location and topographical features contribute to a rich ecological diversity and scenic landscapes. We investigated the diversity of methanogens in different environments of Taiwan using a culture-dependent method. This report presents the characterization and taxonomy of six hydrogenotrophic methanogens obtained from cold seep sediments (strain FWC-SCC1T and FWC-SCC3T), marine sediments (strain CWC-02T and YWC-01T), estuarine sediments (strain Afa-1T), and a hot spring well (strain Wushi-C6T) in Taiwan. The proposed names of the six novel species are Methanoculleus frigidifontis (type strain FWC-SCC1T=BCRC AR10056T=NBRC 113993T), Methanoculleus oceani (CWC-02T=BCRC AR10055T=NBRC 113992T), Methanoculleus methanifontis (FWC-SCC3T=BCRC AR10057T=NBRC 113994T), Methanoculleus nereidis (YWC-01T=BCRC AR10060T=NBRC 114597T), Methanoculleus formosensis (Afa-1T=BCRC AR10054T=NBRC 113995T), and Methanoculleus caldifontis (Wushi-06T=BCRC AR10059T= NBRC 114596T).


Subject(s)
DNA, Archaeal , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Taiwan , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , DNA, Archaeal/genetics , Methanomicrobiaceae/genetics , Methanomicrobiaceae/classification , Methanomicrobiaceae/isolation & purification , Base Composition , Hot Springs/microbiology
3.
Int Microbiol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129036

ABSTRACT

A new thermophilic strain, designated as Bacillus sp. LMB3902, was isolated from Hammam Debagh, the hottest spring in Algeria (up to 98 °C). This isolate showed high protease production in skim milk media at 55 °C and exhibited significant specific protease activity by using azocasein as a substrate (157.50 U/mg). Through conventional methods, chemotaxonomic characteristics, 16S rRNA gene sequencing, and comparative genomic analysis with the closely related strain Bacillus licheniformis DSM 13 (ATCC 14580 T), the isolate Bacillus sp. LMB3902 was identified as a potentially new strain of Bacillus licheniformis. In addition, the gene functions of Bacillus sp. LMB3902 strain were predicted using the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups, Non-Redundant Protein Sequence Database, Swiss-Prot, and Pfam databases. The results showed that the genome size of Bacillus sp. LMB3902 was 4.279.557 bp, with an average GC content of 46%. The genome contained 4.760 predicted genes, including 8 rRNAs, 78 tRNAs, and 24 sRNAs. A total of 235 protease genes were annotated including 50 proteases with transmembrane helix structures and eight secreted proteases with signal peptides. Additionally, the majority of secondary metabolites found by antiSMASH platform showed low similarity to identified natural products, such as fengicin (53%), lichenysin (57%), and surfactin (34%), suggesting that this strain may encode for novel uncharacterized natural products which can be useful for biotechnological applications. This study is the first report that describes the complete genome sequence, taxono-genomics, and gene annotation as well as protease production of the Bacillus genus in this hydrothermal vent.

4.
Extremophiles ; 28(2): 29, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900286

ABSTRACT

Hot spring environments encompass broad physicochemical ranges, in which temperature and pH account for crucial factors shaping hot spring microbial community and diversity. However, the presence of photosynthetic microbial mats adjacent to boiling hot spring vents, where fluid temperatures extend beyond photosynthetic capability, questions the microbial profiles and the actual temperatures of such adjacent mats. Therefore, this study aims to characterize thermophilic microbial communities at Pong Dueat Pa Pae hot spring using next-generation sequencing, including investigating hot spring mineralogy. Results suggest that Pong Dueat Pa Pae hot spring precipitates comprise mainly silica which also acts as the main preservative medium for microbial permineralization. Molecular results revealed the presence of cyanobacterial and Chloroflexi species in the thick, orange and green subaerial mats surrounding the vents, suggesting the mats would be at least 30 °C cooler than source vents despite constantly receiving geyser splashes. Bacterial abundance was considerably higher than archaeal (97.9% versus 2.1%). Cyanobacterial (mainly Synechococcus and Leptolygbya) and Chloroflexi species (mainly Roseiflexus) accounted for almost half (40.04%) of the bacterial community, while DHVEG-6 and Thaumarchaeota comprised dominant members (> 90%) of the archaeal fraction. This study updates and provides insights into thermophilic microbial community composition and mineralogy of hot springs in Thailand.


Subject(s)
Hot Springs , Microbiota , Hot Springs/microbiology , Thailand , Cyanobacteria/metabolism , Cyanobacteria/genetics , Chloroflexi/genetics , Chloroflexi/metabolism
5.
Anaerobe ; 88: 102866, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797261

ABSTRACT

OBJECTIVE: The family Paenibacillaceae is linked to the order Caryophanales. Paenibacillaceae members residing in compost or soil play crucial roles in nutrient recycling and breaking down complex organic materials. However, our understanding of Paenibacillaceae remains limited. METHODS: Strain SYSU GA230002T was conclusively identified using a polyphasic taxonomic approach frequently utilized in bacterial systematics. Standard microbiological techniques were employed to characterize the morphology and biochemistry of strain SYSU GA230002T. RESULTS: An anaerobic and gram--negative bacterium, designated SYSU GA230002T, was isolated from geothermally heated soil of Tengchong, Yunnan Province, south-west China. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that strain SYSU GA230002T belongs to the family Paenibacillaceae. 16S rRNA gene sequence similarity (<94.0 %), ANI (<71.95 %) and AAI values (<58.67 %) between strain SYSU GA230002T with other members of the family were lower than the threshold values recommended for distinguishing novel species. Growth was observed at 30-45 °C (optimum, 37 °C), pH 7.0-8.0 (optimum, pH 7.5) and in 0-3.0 % (w/v) NaCl concentrations (optimum, 0 %). The major fatty acids detected were anteiso-C15:0, iso-C16:0 and iso-C17:0. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid, one unidentified aminolipid and two unidentified glycolipids. The respiratory quinone was MK-7. The DNA G + C content of strain SYSU GA230002T was 49.87 %. CONCLUSION: Based on the results of morphological, physiological properties, and chemotaxonomic characteristics, this strain is proposed to represent a new species of a new genus Ferviditalea candida gen. nov., sp. nov. The type strain of the type species is SYSU GA230002T (=KCTC 25726T = GDMCC 1.4160T).

6.
Molecules ; 29(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474529

ABSTRACT

As a crucial enzyme for cellulose degradation, ß-glucosidase finds extensive applications in food, feed, and bioethanol production; however, its potential is often limited by inadequate thermal stability and glucose tolerance. In this study, a functional gene (lq-bg5) for a GH1 family ß-glucosidase was obtained from the metagenomic DNA of a hot spring sediment sample and heterologously expressed in E. coli and the recombinant enzyme was purified and characterized. The optimal temperature and pH of LQ-BG5 were 55 °C and 4.6, respectively. The relative residual activity of LQ-BG5 exceeded 90% at 55 °C for 9 h and 60 °C for 6 h and remained above 100% after incubation at pH 5.0-10.0 for 12 h. More importantly, LQ-BG5 demonstrated exceptional glucose tolerance with more than 40% activity remaining even at high glucose concentrations of 3000 mM. Thus, LQ-BG5 represents a thermophilic ß-glucosidase exhibiting excellent thermal stability and remarkable glucose tolerance, making it highly promising for lignocellulose development and utilization.


Subject(s)
Glucose , Hot Springs , Glucose/metabolism , beta-Glucosidase/metabolism , Escherichia coli/metabolism , Temperature , Hydrogen-Ion Concentration , Enzyme Stability , Substrate Specificity
7.
BMC Microbiol ; 23(1): 56, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36869305

ABSTRACT

BACKGROUND: Thermostable microorganisms are extremophiles. They have a special genetic background and metabolic pathway and can produce a variety of enzymes and other active substances with special functions. Most thermo-tolerant microorganisms from environmental samples have resisted cultivation on artificial growth media. Therefore, it is of great significance to isolate more thermo-tolerant microorganisms and study their characteristics to explore the origin of life and exploit more thermo-tolerant enzymes. Tengchong hot spring in Yunnan contains a lot of thermo-tolerant microbial resources because of its perennial high temperature. The ichip method was developed by D. Nichols in 2010 and can be used to isolate so-called "uncultivable" microorganisms from different environments. Here, we describe the first application of modified ichip to isolate thermo-tolerant bacteria from hot springs. RESULTS: In this study, 133 strains of bacteria belonging to 19 genera were obtained. 107 strains of bacteria in 17 genera were isolated by modified ichip, and 26 strains of bacteria in 6 genera were isolated by direct plating methods. 25 strains are previously uncultured, 20 of which can only be cultivated after being domesticated by ichip. Two strains of previously unculturable Lysobacter sp., which can withstand 85 °C, were isolated for the first time. Alkalihalobacillus, Lysobacter and Agromyces genera were first found to have 85 °C tolerance. CONCLUSION: Our results indicate that the modified ichip approach can be successfully applied in a hot spring environment.


Subject(s)
Actinomycetales , Bacillaceae , Hot Springs , China , Culture Media
8.
Arch Microbiol ; 205(4): 123, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36939906

ABSTRACT

An actinomycete, designated strain HSS6-12T, was isolated from hot spring sediment collected from Ranong province, Thailand. The strain showed taxonomic characteristics consistent with those of members of the genus Micromonospora. HSS6-12T produced a single spore directly on the substrate mycelium, and no aerial mycelium was detected. The isomer of diamino acid presented in cell wall peptidoglycan was meso-diaminopimelic acid. Arabinose, xylose, glucose, and ribose were detected in whole-cell hydrolysates. MK-10(H4), MK-9(H4), and MK-10(H6) were major menaquinones. Major cellular fatty acids were iso-C16:0, iso-C15:0, and iso-C17:0. Phospholipid profile was composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylinositolmannosides. 16S rRNA gene analysis revealed that HSS6-12T shared the highest 16S rRNA gene sequence similarity with Micromonospora inositola DSM 43819T (99.3%). In contrast, the genome analysis showed that HSS6-12T formed a tight taxonomic position in a phylogenomic tree with Micromonospora endolithica DSM 44398T. Moreover, the average nucleotide identity-blast, the digital DNA-DNA hybridization, and the average amino acid identity values between HSS6-12T and M. inositola DSM 43819T and M. endolithica DSM 44398T were 83.1-84.0%, 27.5-28.7%, and 80.4-82.2%, respectively, indicating that HSS6-12T was different species with both closely related Micromonospora-type strains. In addition, HSS6-12T could be discriminated from its closely related type strains by many physiological and biochemical characteristics. Thus, HSS6-12T could be considered a novel species of the genus Micromonospora, and the name Micromonospora thermarum is proposed for the strain. The type strain is HSS6-12T (= BCC 41915T = JCM 17127T).


Subject(s)
Actinobacteria , Hot Springs , Micromonospora , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phospholipids/analysis , Fatty Acids/analysis , Phylogeny , Vitamin K 2/chemistry , Actinobacteria/genetics , DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
9.
Arch Microbiol ; 205(9): 323, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37651004

ABSTRACT

In this research, we examined the microbial diversity in Sohna hot spring, Haryana, India using shotgun metagenome sequencing based on the Illumina Hiseq 4000 sequencing technology. The raw sequence data from metagenomic paired-end libraries were analysed for taxonomic classification, diversity, and functional annotation using MG-RAST online server. The results showed the presence of total of 57 phyla, 931 genera, and 2068 species, predominantly occupied by Moraxellaceae (Gammaproteobacteria). However, at the species level, we reported the presence of some representative pathogenic taxa, such as Acinetobacter baumannii and Moraxella osloensis. The functional annotation predicted at various levels based on SEED-based subsystem, KEGG ortholog identity (KO), Cluster of Orthologous Groups (COGs) database identified the predominance of genes associated with primary and secondary metabolism along with a crucial role in environmental and genetic signals, cellular communication, and cell signalling. Comparative Genome Analysis (CGA) using The Pathosystem Resource Integration Centre (PATRIC) tool based on genome annotation and assembly of the metagenomic libraries for representative taxon Acinetobacter baumannii (NCBI tax id:470) characterized the reads with a unique genome identifier of 470.20380 (A. baumannii DDLJ4) which is evolutionary closer to A. baumannii ATCC 470.17978 400667.7. In addition, the CARD database results about the presence of potential AMR pathotypes and the prevalence of adeABC, adeIJK, abeM gene-specific clusters that function as multidrug efflux pumps. Overall, the results provided a comprehensive insight into virulence and anti-microbial resistance mechanism and could be useful for developing potential drug targets against the possible AMR pathotypes.


Subject(s)
Acinetobacter baumannii , Hot Springs , Metagenomics , India , Acinetobacter baumannii/genetics , Biological Evolution
10.
Article in English | MEDLINE | ID: mdl-36748593

ABSTRACT

A novel anaerobic bacterium, designated SYSU GA19001T, was isolated from a hot spring sediment sample. Phylogenetic analysis indicated that the isolate belongs to the genus Clostridium, and showed the highest sequence similarity to Clostridium swellfunianum CICC 10730T (96.63 %) and Clostridium prolinivorans PYR-10T (96.11 %). Cells of strain SYSU GA19001T were Gram-stain-positive, spore-forming, rod-shaped (0.6-0.8×2.6-4.0 µm) and motile. Growth was observed at pH 5.0-9.0 (optimum, pH 7.0), 37-55 °C (optimum, 45 °C) and in NaCl concentrations of 0-2.0 % (optimum, 0 %). The genomic DNA G+C content was 31.62 %. The major cellular fatty acids of strain SYSU GA19001T were C14 : 0, iso-C15 : 0, C16 : 0 and summed feature 8. The prominent polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol. Meso-diaminopimelic acid was the diamino acid in peptidoglycan. Based on the results of phylogenetic, chemotaxonomic and phenotypic analyses, strain SYSU GA19001T represents a novel species of the genus Clostridium, for which the name Clostridium caldaquaticum sp. nov. is proposed. The type strain of the proposed novel species is SYSU GA19001T (=NBRC 115040T= CGMCC 1.17864T).


Subject(s)
Fatty Acids , Hot Springs , Fatty Acids/chemistry , Phospholipids/chemistry , Hot Springs/microbiology , Phylogeny , Base Composition , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Clostridium
11.
Article in English | MEDLINE | ID: mdl-36748411

ABSTRACT

A novel thermophilic, anaerobic bacterium, strain F1F22T, was isolated from hot spring water collected in northern Tunisia. The cells were non-motile, Gram-negative and helical with hooked ends, 0.5×10-32 µm in size. Growth of the strain was observed at 45-70 °C (optimum, 55 °C), in 0.0-1.0 % (w/v) NaCl (optimum without NaCl) and at pH 6.5-8.5 (optimum, pH 7.5). Yeast extract was required for growth, and the strain grew on glucose, sucrose and maltose. The major fatty acids were C16:0 (40.2 %), iso-C16: 0 (30.2 %) and C16 :0 DMA (14.5 %). The genome consisted of a circular chromosome (2.5 Mb) containing 2672 predicted protein-encoding genes with a G+C content of 43.15 mol %. Based on a comparative 16S rRNA gene sequence analysis, strain F1F22T formed a deeply branching lineage within the phylum Spirochaetota, class Spirochaetia, order Brevinematales, and had only low sequence similarity to other species of the phylum (lower than 83 %). Genome-based analysis of average nucleotide identity and digital DNA-DNA hybridization of strain F1F22T with Treponema caldarium DSM 7334T, Brevinema andersonii ATCC 43811T and Spirochaeta thermophila DSM 6578T showed values between 63.26 and 63.52 %, and between 20 and 25 %. Hence, we propose strain F1F22T as a representative of a novel family (Thermospiraceae fam. nov.), genus and species of Brevinematales: Thermospira aquatica gen. nov., sp. nov. (type strain F1F22T=JCM 31314T=DSM 101182T).


Subject(s)
Hot Springs , Hot Springs/microbiology , Spirochaetales , Fatty Acids/chemistry , RNA, Ribosomal, 16S/genetics , Base Composition , Sodium Chloride , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Sequence Analysis, DNA
12.
Article in English | MEDLINE | ID: mdl-37204219

ABSTRACT

An isolate, designated CFH 74404T, was recovered from a hot spring in Tengchong, Yunnan province, PR China. Phylogenetic analysis indicated that the isolate belongs to the family Thermomicrobiaceae and showed the highest 16S rRNA gene sequence similarity to Thermorudis peleae KI4T (93.6 %), Thermorudis pharmacophila WKT50.2T (93.1 %), Thermomicrobium roseum DSM 5159T (92.0 %) and Thermomicrobium carboxidum KI3T (91.7 %). The average amino acid identity and average nucleotide identity values between strain CFH 74404T and the closest relatives were 42.0-75.9 % and 67.0-77.3 %, respectively. Cells of strain CFH 74404T stained Gram-positive and were aerobic, non-motile and short rod-shaped. Growth occurred at 20-65 °C (optimum, 55 °C), pH 6.0-8.0 (optimum, pH 7.0) and with up to 2.0 % (w/v) NaCl (optimum 0-1.0 %, w/v). The predominant respiratory quinone was MK-8. The major fatty acids (>10 %) were C18 : 0 (50.8 %) and C20 : 0 (16.8 %). The polar lipid profile of strain CFH 74404T included diphosphatidylglycerol, four unidentified phosphoglycolipids, phosphatidylinositol and three unidentified glycolipids. The G+C content of the genomic DNA was determined to be 67.1 mol% based on the draft genome sequence. On the basis of phenotypic, phylogenetic and genotypic analyses, it is concluded that strain CFH 74404T represents a new species of a novel genus Thermalbibacter of the family Thermomicrobiaceae, for which the name Thermalbibacter longus gen. nov., sp. nov. is proposed. The type strain is CFH 74404T (=KCTC 62930T=CGMCC 1.61585T).


Subject(s)
Fatty Acids , Hot Springs , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , China , Bacterial Typing Techniques , Sequence Analysis, DNA
13.
Article in English | MEDLINE | ID: mdl-37141114

ABSTRACT

An actinobacterium strain, PPF5-17T, was isolated from hot spring soil collected from Chiang Rai province, Thailand. The strain exhibited morphological and chemotaxonomic properties similar to those of members of the genus Micromonospora. Colonies of PPF5-17T were strong pinkish red and turned black after sporulation in ISP 2 agar medium. Cells formed single spores directly on the substrate mycelium. Growth was observed from 15 to 45 °C and at pH 5-8. Maximum NaCl concentration for growth was 3 % (w/v). PPF5-17T was found to have meso-diaminopimelic acid, xylose, mannose and glucose in the whole-cell hydrolysate. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannosides were observed as the membrane phospholipids. MK-10(H6), MK-9(H6), MK-10(H4) and MK-9(H4) were the major menaquinones. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0, anteiso-C17 : 0 and iso-C16 : 0. PPF5-17T shared the highest 16S rRNA gene sequence similarity with Micromonospora fluminis LMG 30467T (99.3 %). A genome-based taxonomic study revealed that PPF5-17T was closely related to Micromonospora aurantinigra DSM 44815T in the phylogenomic tree with an average nucleotide identity by blast (ANIb) of 87.7 % and a digital DNA-DNA hybridization (dDDH) value of, 36.1 % which were below the threshold values for delineation of a novel species. Moreover, PPF5-17T could be distinguished from its closest neighbours, M. fluminis LMG 30467T and M. aurantinigra DSM 44815T, with respect to a broad range of phenotypic properties. Thus, PPF5-17T represents a novel species, for which the name Micromonospora solifontis sp. nov. is proposed. The type strain is PPF5-17T (= TBRC 8478T = NBRC 113441T).


Subject(s)
Actinobacteria , Hot Springs , Micromonospora , Fatty Acids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phylogeny , Thailand , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Phospholipids/chemistry , Actinobacteria/genetics
14.
Extremophiles ; 28(1): 5, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991546

ABSTRACT

The development of sustainable and environmentally friendly industrial processes is becoming very crucial and demanding for the rapid implementation of innovative bio-based technologies. Natural extreme environments harbor the potential for discovering and utilizing highly specific and efficient biocatalysts that are adapted to harsh conditions. This review focuses on extremophilic microorganisms and their enzymes (extremozymes) from various hot springs, shallow marine vents, and other geothermal habitats in Europe and the Caucasus region. These hot environments have been partially investigated and analyzed for microbial diversity and enzymology. Hotspots like Iceland, Italy, and the Azores harbor unique microorganisms, including bacteria and archaea. The latest results demonstrate a great potential for the discovery of new microbial species and unique enzymes that can be explored for the development of Circular Bioeconomy.Different screening approaches have been used to discover enzymes that are active at extremes of temperature (up 120 °C), pH (0.1 to 11), high salt concentration (up to 30%) as well as activity in the presence of solvents (up to 99%). The majority of published enzymes were revealed from bacterial or archaeal isolates by traditional activity-based screening techniques. However, the latest developments in molecular biology, bioinformatics, and genomics have revolutionized life science technologies. Post-genomic era has contributed to the discovery of millions of sequences coding for a huge number of biocatalysts. Both strategies, activity- and sequence-based screening approaches, are complementary and contribute to the discovery of unique enzymes that have not been extensively utilized so far.


Subject(s)
Extremophiles , Hot Springs , Extreme Environments , Archaea/genetics , Computational Biology
15.
Microb Ecol ; 86(4): 2305-2319, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37209180

ABSTRACT

Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.


Subject(s)
Chloroflexi , Cyanobacteria , Hot Springs , Hot Springs/microbiology , Croatia , Cyanobacteria/genetics , Temperature , Biofilms , RNA, Ribosomal, 16S/genetics
16.
Microb Ecol ; 86(4): 2344-2356, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37222803

ABSTRACT

The hot spring Vranjska Banja is the hottest spring on the Balkan Peninsula with a water temperature of 63-95 °C and a pH value of 7.1, in situ. According to the physicochemical analysis, Vranjska Banja hot spring belongs to the bicarbonated and sulfated hyperthermal waters. The structures of microbial community of this geothermal spring are still largely unexplored. In order to determine and monitor the diversity of microbiota of the Vranjska Banja hot spring, a comprehensive culture-independent metagenomic analysis was conducted in parallel with a culture-dependent approach for the first time. Microbial profiling using amplicon sequencing analysis revealed the presence of phylogenetically novel taxa, ranging from species to phyla. Cultivation-based methods resulted in the isolation of 17 strains belonging to the genera Anoxybacillus, Bacillus, Geobacillus, and Hydrogenophillus. Whole-genome sequencing of five representative strains was then performed. The genomic characterization and OrthoANI analysis revealed that the Vranjska Banja hot spring harbors phylogenetically novel species of the genus Anoxybacillus, proving its uniqueness. Moreover, these isolates contain stress response genes that enable them to survive in the harsh conditions of the hot springs. The results of the in silico analysis show that most of the sequenced strains have the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase, chitinase, and glucanase) and various antimicrobial molecules that can be of great importance for industrial, agricultural, and biotechnological applications. Finally, this study provides a basis for further research and understanding of the metabolic potential of these microorganisms.


Subject(s)
Hot Springs , Hot Springs/microbiology , Serbia , Phylogeny , Bacteria , Metagenome , RNA, Ribosomal, 16S/genetics
17.
Appl Microbiol Biotechnol ; 107(10): 3273-3289, 2023 May.
Article in English | MEDLINE | ID: mdl-37052633

ABSTRACT

The hot spring microbiome is a complex assemblage of micro- and macro-organisms; however, the understanding and projection of enzymatic repertoire that access earth's integral ecosystem processes remains ambivalent. Here, the Khirganga hot spring characterized with white microbial mat and ions rich in sulfate, chlorine, sodium, and magnesium ions is investigated and displayed the examination of 41 high and medium qualified metagenome-assembled genomes (MAGs) belonged to at least 12 bacterial and 2 archaeal phyla which aids to drive sulfur, oxygen, iron, and nitrogen cycles with metabolic mechanisms involved in heavy metal tolerance. These MAGs possess over 1749 genes putatively involved in crucial metabolism of elements viz. nitrogen, phosphorus, and sulfur and 598 genes encoding enzymes for czc efflux system, chromium, arsenic, and copper heavy metals resistance. The MAGs also constitute 229 biosynthetic gene clusters classified abundantly as bacteriocins and terpenes. The metabolic roles possibly involved in altering linkages in nitrogen biogeochemical cycles and explored a discerned rate of carbon fixation exclusively in archaeal member Methanospirillum hungatei inhabited in microbial mat. Higher Pfam entropy scores of biogeochemical cycling in Proteobacteria members assuring their major contribution in assimilation of ammonia and sequestration of nitrate and sulfate components as electron acceptors. This study will readily improve the understanding of the composite relationship between bacterial species owning metal resistance genes (MRGs) and underline the exploration of adaptive mechanism of these MAGs in multi-metal contaminated environment. KEY POINTS: • Identification of 41 novel bacterial and archaeal species in habitats of hot spring • Genome-resolved metagenomics revealed MRGs (n = 598) against Cr, Co, Zn, Cd, As, and Cu • Highest entropies of N (0.48) and Fe (0.44) cycles were detected within the MAGs.


Subject(s)
Hot Springs , Microbiota , Hot Springs/microbiology , Metagenomics , Bacteria/genetics , Bacteria/metabolism , Archaea/genetics , Archaea/metabolism , Metagenome , Metals/metabolism , Sulfur/metabolism , Nitrogen/metabolism , Phylogeny
18.
Antonie Van Leeuwenhoek ; 116(8): 791-799, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37227603

ABSTRACT

The taxonomic position of strain EF45031T, isolated from the Neungam Carbonate hot spring, was examined using the polyphasic taxonomic approach. Strain EF45031T shared the highest percentage of 16S rRNA gene sequence with Brachybacterium nesterenkovii CIP 104813 T (97.7%). The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values between strain EF45031T and the type strains B. nesterenkovii CIP 104813 T and B. phenoliresistens Phenol-AT were 77.0%, 69.15%, 21.9% and 75.73%, 68.81%, 20.5%, respectively. Phylogenomic analysis using an up-to-date bacterial core gene (UBCG) set revealed that strain EF45031T belonged to the genus Brachybacterium. Growth occurred between 25 and 50 ℃ at pH 6.0-9.0 and could tolerate salinity up to 5% (w/v). Strain had anteiso-C15:0 and anteiso-C17:0 as major fatty acids. Menaquinone-7 (MK-7) was the predominant respiratory menaquinone. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, three aminolipids, and two unidentified glycolipids. The cell-wall peptidoglycan contained meso-diaminopimelic acid as a diagnostic diamino acid. The genome comprised 2,663,796 bp, with a G + C content of 70.9%. Stress-responsive periplasmic chaperone/protease coding genes were identified in the genome of EF45031T and were not detected in other Brachybacterium species. The polyphasic taxonomic properties indicate that the strain represents a novel species within the genus Brachybacterium, for which the name Brachybacterium sillae sp. nov. is proposed. The type strain is EF45031T (= KCTC 49702 T = NBRC 115869 T).


Subject(s)
Actinomycetales , Hot Springs , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Phylogeny , Vitamin K 2/chemistry , DNA , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques
19.
Can J Microbiol ; 69(1): 17-31, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36511419

ABSTRACT

The enigmatic fossil Prototaxites found in successions ranging from the Middle Ordovician to the Upper Devonian was originally described as having conifer affinity. The current debate, however, suggests that they probably represent gigantic algal-fungal symbioses. Our re-investigation of permineralized Prototaxites specimens from two localities, the Heider quarry in Germany and the Bordeaux quarry in Canada, reveals striking anatomical similarities with modern fungal rhizomorphs Armillaria mellea. We analysed extant fungal rhizomorphs and fossil Prototaxites through light microscopy of their anatomy, Fourier transform infrared spectroscopy, X-ray microscopy, and Raman spectroscopy. Based on these comparisons, we interpret the Prototaxites as fungi. The detailed preservation of cell walls and possible organelles seen in transverse sections of Prototaxites reveal that fossilization initiated while the organism was alive, inhibiting the collapse of delicate cellular structures. Prototaxites has been interpreted to grow vertically by many previous workers. Here we propose an alternative view that Prototaxites represents a complex hyphal aggregation (rhizomorph) that may have grown horizontally similar to modern complex aggregated mycelial growth forms, such as cords and rhizomorphs. Their main function was possibly to redistribute water and nutrition from nutrient-rich to nutrient-poor areas facilitating the expansion for early land plant communities.


Subject(s)
Ecosystem , Hyphae , Humans , Mycelium , Fossils , Nutrients
20.
Acta Med Okayama ; 77(4): 387-394, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37635139

ABSTRACT

No epidemiological studies have examined the health effects of daily bathing in radon hot springs. In this cross-sectional study, we investigated the associations between radon hot spring bathing and health conditions. The target population was 5,250 adults ≥ 20 years old in the town of Misasa, Japan. We collected information about the participants' bathing habits and alleviation of a variety of disease symptoms, and their self-rated health (SRH). Unadjusted and adjusted odds ratios (ORs) and 95% confidence intervals (CI) were calculated. In both the adjusted and unadjusted models of hypertension, significant associations between the > 1×/week hot spring bathing and the alleviation of hypertension symptoms were observed compared to the group whose hot spring bathing was <1×/week: adjusted model, OR 5.40 (95%CI: 1.98-14.74); unadjusted model, 3.67 (1.50-8.99) and for gastroenteritis: adjusted model, 9.18 (1.15-72.96); unadjusted model, 7.62 (1.59-36.49). Compared to the no-bathing group, higher SRH was significantly associated with both bathing < 1×/week: unadjusted model, 2.27 (1.53-3.37) and > 1×/week: adjusted model, 1.91 (1.15-3.19). These findings suggest that bathing in radon hot springs is associated with higher SRH and the alleviation of hypertension and gastroenteritis.


Subject(s)
Diagnostic Self Evaluation , Gastroenteritis , Hot Springs , Hypertension , Radon , Radon/therapeutic use , Baths , Japan , Humans , Cross-Sectional Studies , Male , Female , Adult , Middle Aged , Aged , Hypertension/therapy , Gastroenteritis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL