Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.035
Filter
Add more filters

Publication year range
1.
Cell ; 184(4): 983-999.e24, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606986

ABSTRACT

Interleukin-12 (IL-12) and IL-23 are heterodimeric cytokines that are produced by antigen-presenting cells to regulate the activation and differentiation of lymphocytes, and they share IL-12Rß1 as a receptor signaling subunit. We present a crystal structure of the quaternary IL-23 (IL-23p19/p40)/IL-23R/IL-12Rß1 complex, together with cryoelectron microscopy (cryo-EM) maps of the complete IL-12 (IL-12p35/p40)/IL-12Rß2/IL-12Rß1 and IL-23 receptor (IL-23R) complexes, which reveal "non-canonical" topologies where IL-12Rß1 directly engages the common p40 subunit. We targeted the shared IL-12Rß1/p40 interface to design a panel of IL-12 partial agonists that preserved interferon gamma (IFNγ) induction by CD8+ T cells but impaired cytokine production from natural killer (NK) cells in vitro. These cell-biased properties were recapitulated in vivo, where IL-12 partial agonists elicited anti-tumor immunity to MC-38 murine adenocarcinoma absent the NK-cell-mediated toxicity seen with wild-type IL-12. Thus, the structural mechanism of receptor sharing used by IL-12 family cytokines provides a protein interface blueprint for tuning this cytokine axis for therapeutics.


Subject(s)
Interleukin-12/chemistry , Interleukin-12/metabolism , Killer Cells, Natural/metabolism , Receptors, Interleukin/chemistry , Receptors, Interleukin/metabolism , T-Lymphocytes/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes/immunology , Female , HEK293 Cells , Humans , Immunity , Interleukin-12/agonists , Interleukin-12 Subunit p40/chemistry , Interleukin-12 Subunit p40/metabolism , Mice, Inbred C57BL , Models, Molecular , Neoplasms/immunology , Neoplasms/pathology , Protein Structure, Quaternary , Receptors, Interleukin/ultrastructure , Receptors, Interleukin-12/metabolism , Signal Transduction , Structure-Activity Relationship
2.
Immunity ; 54(4): 687-701.e4, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33773107

ABSTRACT

Interferon-γ (IFN-γ)-producing CD4+ T helper-1 (Th1) cells are critical for protection from microbes that infect the phagosomes of myeloid cells. Current understanding of Th1 cell differentiation is based largely on reductionist cell culture experiments. We assessed Th1 cell generation in vivo by studying antigen-specific CD4+ T cells during infection with the phagosomal pathogen Salmonella enterica (Se), or influenza A virus (IAV), for which CD4+ T cells are less important. Both microbes induced T follicular helper (Tfh) and interleukin-12 (IL-12)-independent Th1 cells. During Se infection, however, the Th1 cells subsequently outgrew the Tfh cells via an IL-12-dependent process and formed subsets with increased IFN-γ production, ZEB2-transcription factor-dependent cytotoxicity, and capacity to control Se infection. Our results indicate that many infections induce a module that generates Tfh and poorly differentiated Th1 cells, which is followed in phagosomal infections by an IL-12-dependent Th1 cell amplification module that is critical for pathogen control.


Subject(s)
Cell Differentiation/immunology , Th1 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Line , Drosophila/immunology , Female , Interferon-gamma/immunology , Interleukin-12/immunology , Lymphocyte Activation/immunology , Male , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology
3.
Immunity ; 54(11): 2547-2564.e7, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34715017

ABSTRACT

Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection.


Subject(s)
Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Cryptosporidium/immunology , Dendritic Cells/immunology , Host-Parasite Interactions/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Th1 Cells/immunology , Animals , Dendritic Cells/metabolism , Disease Models, Animal , Homeostasis , Intestinal Mucosa/metabolism , Mice , Microbiota , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/metabolism
4.
Immunity ; 52(1): 96-108.e9, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31810881

ABSTRACT

Although type 1 innate lymphoid cells (ILC1s) have been originally found as liver-resident ILCs, their pathophysiological role in the liver remains poorly investigated. Here, we demonstrated that carbon tetrachloride (CCl4) injection into mice activated ILC1s, but not natural killer (NK) cells, in the liver. Activated ILC1s produced interferon-γ (IFN-γ) and protected mice from CCl4-induced acute liver injury. IFN-γ released from activated ILC1s promoted the survival of hepatocytes through upregulation of Bcl-xL. An activating NK receptor, DNAM-1, was required for the optimal activation and IFN-γ production of liver ILC1s. Extracellular adenosine triphosphate accelerated interleukin-12-driven IFN-γ production by liver ILC1s. These findings suggest that ILC1s are critical for tissue protection during acute liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Hepatocytes/metabolism , Interferon-gamma/immunology , Liver/cytology , Lymphocytes/immunology , bcl-X Protein/metabolism , Adenosine Triphosphate/metabolism , Animals , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/metabolism , Carbon Tetrachloride/toxicity , Cells, Cultured , Female , Interleukin-12 Subunit p35/immunology , Killer Cells, Natural/immunology , Liver/immunology , Liver/injuries , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
Immunity ; 51(2): 367-380.e4, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31350179

ABSTRACT

Epithelial barrier defects are implicated in the pathogenesis of inflammatory bowel disease (IBD); however, the role of microbiome dysbiosis and the cytokine networks orchestrating chronic intestinal inflammation in response to barrier impairment remain poorly understood. Here, we showed that altered Schaedler flora (ASF), a benign minimal microbiota, was sufficient to trigger colitis in a mouse model of intestinal barrier impairment. Colitis development required myeloid-cell-specific adaptor protein MyD88 signaling and was orchestrated by the cytokines IL-12, IL-23, and IFN-γ. Colon inflammation was driven by IL-12 during the early stages of the disease, but as the mice aged, the pathology shifted toward an IL-23-dependent inflammatory response driving disease chronicity. These findings reveal that IL-12 and IL-23 act in a temporally distinct, biphasic manner to induce microbiota-driven chronic intestinal inflammation. Similar mechanisms might contribute to the pathogenesis of IBD particularly in patients with underlying intestinal barrier defects.


Subject(s)
Colitis/immunology , Inflammatory Bowel Diseases/immunology , Interleukin-12/metabolism , Interleukin-23/metabolism , Intestinal Mucosa/pathology , Microbiota/immunology , Animals , Chronic Disease , Disease Models, Animal , Humans , Inflammation , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-12/genetics , Interleukin-23/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Transplantation Chimera
6.
Immunity ; 49(6): 1148-1161.e7, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30552023

ABSTRACT

Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single-cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12). These DCs did not bind anti-PD-1 but produced IL-12 upon sensing interferon γ (IFN-γ) that was released from neighboring T cells. In turn, DC-derived IL-12 stimulated antitumor T cell immunity. These findings suggest that full-fledged activation of antitumor T cells by anti-PD-1 is not direct, but rather involves T cell:DC crosstalk and is licensed by IFN-γ and IL-12. Furthermore, we found that activating the non-canonical NF-κB transcription factor pathway amplified IL-12-producing DCs and sensitized tumors to anti-PD-1 treatment, suggesting a therapeutic strategy to improve responses to checkpoint blockade.


Subject(s)
Dendritic Cells/immunology , Interferon-gamma/immunology , Interleukin-12/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Dendritic Cells/metabolism , Female , Humans , Immunotherapy/methods , Interferon-gamma/metabolism , Interleukin-12/administration & dosage , Interleukin-12/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , NF-kappa B/immunology , NF-kappa B/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
7.
Trends Immunol ; 44(6): 399-407, 2023 06.
Article in English | MEDLINE | ID: mdl-37100645

ABSTRACT

Conventional dendritic cells (cDCs) can integrate multiple stimuli from the environment and provide three separate outputs in terms of antigen presentation, costimulation, and cytokine production; this guides the activation, expansion, and differentiation of distinct functional T helper subsets. Accordingly, the current dogma posits that T helper cell specification requires these three signals in sequence. Data show that T helper 2 (Th2) cell differentiation requires antigen presentation and costimulation from cDCs but does not require polarizing cytokines. In this opinion article, we propose that the 'third signal' driving Th2 cell responses is, in fact, the absence of polarizing cytokines; indeed, the secretion of the latter is actively suppressed in cDCs, concomitant with acquired pro-Th2 functions.


Subject(s)
Cytokines , Th2 Cells , Humans , T-Lymphocytes, Helper-Inducer , Cell Differentiation , Th1 Cells
8.
Proc Natl Acad Sci U S A ; 120(33): e2300343120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37566635

ABSTRACT

Dendritic cells (DCs) are major regulators of innate and adaptive immune responses. DCs can be classified into plasmacytoid DCs and conventional DCs (cDCs) type 1 and 2. Murine and human cDC1 share the mRNA expression of XCR1. Murine studies indicated a specific role of the XCR1-XCL1 axis in the induction of immune responses. Here, we describe that human cDC1 can be distinguished into XCR1- and XCR1+ cDC1 in lymphoid as well as nonlymphoid tissues. Steady-state XCR1+ cDC1 display a preactivated phenotype compared to XCR1- cDC1. Upon stimulation, XCR1+ cDC1, but not XCR1- cDC1, secreted high levels of inflammatory cytokines as well as chemokines. This was associated with enhanced activation of NK cells mediated by XCR1+ cDC1. Moreover, XCR1+ cDC1 excelled in inhibiting replication of Influenza A virus. Further, under DC differentiation conditions, XCR1- cDC1 developed into XCR1+ cDC1. After acquisition of XCR1 expression, XCR1- cDC1 secreted comparable level of inflammatory cytokines. Thus, XCR1 is a marker of terminally differentiated cDC1 that licenses the antiviral effector functions of human cDC1, while XCR1- cDC1 seem to represent a late immediate precursor of cDC1.


Subject(s)
Dendritic Cells , Killer Cells, Natural , Humans , Cell Differentiation , Cytokines
9.
Gastroenterology ; 166(3): 483-495, 2024 03.
Article in English | MEDLINE | ID: mdl-38096956

ABSTRACT

BACKGROUND & AIMS: Dysbiosis of the gut microbiota is considered a key contributor to inflammatory bowel disease (IBD) etiology. Here, we investigated potential associations between microbiota composition and the outcomes to biological therapies. METHODS: The study prospectively recruited 296 patients with active IBD (203 with Crohn's disease, 93 with ulcerative colitis) initiating biological therapy. Quantitative microbiome profiles of pretreatment and posttreatment fecal samples were obtained combining flow cytometry with 16S amplicon sequencing. Therapeutic response was assessed by endoscopy, patient-reported outcomes, and changes in fecal calprotectin. The effect of therapy on microbiome variation was evaluated using constrained ordination methods. Prediction of therapy outcome was performed using logistic regression with 5-fold cross-validation. RESULTS: At baseline, 65.9% of patients carried the dysbiotic Bacteroides2 (Bact2) enterotype, with a significantly higher prevalence among patients with ileal involvement (76.8%). Microbiome variation was associated with the choice of biological therapy rather than with therapeutic outcome. Only anti-tumor necrosis factor-α treatment resulted in a microbiome shift away from Bact2, concomitant with an increase in microbial load and butyrogen abundances and a decrease in potentially opportunistic Veillonella. Remission rates for patients hosting Bact2 at baseline were significantly higher with anti-tumor necrosis factor-α than with vedolizumab (65.1% vs 35.2%). A prediction model, based on anthropometrics and clinical data, stool features (microbial load, moisture, and calprotectin), and Bact2 detection predicted treatment outcome with 73.9% accuracy for specific biological therapies. CONCLUSION: Fecal characterization based on microbial load, moisture content, calprotectin concentration, and enterotyping may aid in the therapeutic choice of biological therapy in IBD.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Dysbiosis , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/drug therapy , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy , Feces , Biological Therapy , Tumor Necrosis Factor-alpha , Leukocyte L1 Antigen Complex , Necrosis
10.
Int Immunol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101520

ABSTRACT

Follicular helper T (Tfh) cells promote B cell differentiation and antibody production in the B cell follicles of secondary lymphoid organs. Tfh cells express their signature transcription factor BCL6, interleukin (IL)-21, and surface molecules including inducible T cell costimulator, programmed cell death-1 (PD-1), and the chemokine receptor CXCR5. Migration of Tfh cells to B cell follicles largely depends on the CXCR5 expression induced by interactions with antigen-presenting dendritic cells in the T cell area. How Tfh cells acquire sufficient levels of CXCR5 expression, however, has remained unclear. Using our in vitro culture system to generate CXCR5low Tfh-like cells from naïve CD4+ T cells with IL-6 in the absence of other cell types, we found that the active form of vitamin D, calcitriol, markedly enhanced CXCR5 expression after the release from persistent T cell receptor (TCR) stimulation. CH-223191, an aryl hydrocarbon receptor antagonist, further enhanced CXCR5 expression. IL-12 but not IL-4, in place of IL-6, also supported calcitriol to enhance CXCR5 expression even before the release from TCR stimulation, whereas the cell viability sharply decreased after the release. The Tfh-like cells generated with IL-6 and calcitriol exhibited chemotaxis towards CXCL13, expressed IL-21, and helped B cells to produce IgG antibodies in vitro more efficiently than Tfh-like cells generated without added calcitriol. Calcitriol injections into antigen-primed mice increased the proportion of CXCR5+PD-1+CD4+ cells in their lymphoid organs, and enhanced T cell entry into B-cell follicles. These results suggest that calcitriol promotes CXCR5 expression in developing Tfh cells and regulates their functional differentiation.

11.
Exp Cell Res ; 439(1): 114073, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38704079

ABSTRACT

Determining the appropriate source of antigens for optimal antigen presentation to T cells is a major challenge in designing dendritic cell (DC) -based therapeutic strategies against hepatocellular carcinoma (HCC). Tumor-derived exosomes (Tex) express a wide range of tumor antigens, making them a promising source of antigens for DC vaccines. As reported, the exosomes secreted by tumor cells can inhibit the antitumor function of immune cells. In this study, we transfected hepatocellular carcinoma cells with Rab27a to enhance the yield of exosomes, which were characterized using transmission electron microscopy and Western blot analysis. We found that Tex secreted by overexpressing Rab27a Hepatocellular carcinoma cell lines pulsed DC is beneficial for the differentiation and maturation of DCs but inhibits the secretion of the IL-12 cytokine. Consequently, we developed a complementary immunotherapy approach by using Tex as an antigen loaded onto DCs, in combination with the cytokine IL-12 to induce antigen-specific cytotoxic T lymphocytes (CTLs). The results indicated that the combination of DC-Tex and IL-12 was more effective in stimulating T lymphocyte proliferation, releasing IFN-γ, and enhancing cytotoxicity compared to using exosomes or IL-12 alone. Additionally, the inclusion of IL-12 also compensated for the reduced IL-2 secretion by DCs caused by Tex. Moreover, in a BALB/c nude mice model of hepatocellular carcinoma, CTLs induced by DC-Tex combined with IL-12 maximized the tumor-specific T-cell immune effect and suppressed tumor growth. Thus, Tex provides a novel and promising source of antigens, with cytokines compensating for the shortcomings of Tex as a tumor antigen. This work helps to clarify the role of exosomes in tumor immunotherapy and may offer a safe and effective prospective strategy for the clinical application of exosome-based cellular immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Dendritic Cells , Exosomes , Interleukin-12 , Liver Neoplasms , rab27 GTP-Binding Proteins , Dendritic Cells/immunology , Dendritic Cells/metabolism , Exosomes/metabolism , Animals , Interleukin-12/metabolism , Interleukin-12/genetics , rab27 GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Mice , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Humans , Cell Line, Tumor , Cell Proliferation , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Mice, Inbred BALB C , Immunotherapy/methods
12.
J Cell Mol Med ; 28(3): e18100, 2024 02.
Article in English | MEDLINE | ID: mdl-38189641

ABSTRACT

IL12B encodes the shared p40 subunit (IL-12p40) of IL-12 and IL-23, which have diverse immune functions and are closely related to the occurrence and development of atherosclerosis (AS). However, the exact role of IL12B in coronary heart disease (CHD) was still unknown. A case-control association analysis was performed between five single nucleotide polymorphisms (SNPs) of IL12B (rs1003199, rs3212219, rs2569254, rs2853694 and rs3212227) and CHD in Chinese Han population (1824 patients with CHD vs. 2784 controls). Logistic regression analyses were used to study the relationships between SNPs and CHD, while multiple linear regression analyses were used to test the association between the SNP and the severity of CHD. In addition, the plasma IL12B concentration of CHD patients were detected by ELISA. We detected a significant association between one of the SNPs, rs2853694-G and CHD (padj = 2.075 × 10-5 , OR, 0.773 [95% CI, 0.686-0.870]). Stratified analysis showed that rs2853694 was associated with CHD in both male and female populations and was significantly associated with both early- and late-onset CHD. In addition, rs2853694 is also related to the different types of CHD including clinical-CHD and anatomical-CHD. Moreover, there are significant differences in serum IL12B concentrations between rs2853694-TT carriers and rs2853694-GT carriers in CHD patients (p = 0.010). A common variant of IL12B was found significantly associated with CHD and its subgroups. As a shared subunit of IL-12 and IL-23, IL-12p40 may play a key role in IL-12/IL-23 axis mediated AS, which is expected to be an effective therapeutic target for CHD.


Subject(s)
Atherosclerosis , Coronary Disease , Humans , Male , Female , Genetic Predisposition to Disease , Interleukin-12 Subunit p40 , Interleukin-12 , Polymorphism, Single Nucleotide , Case-Control Studies , Genotype
13.
Curr Issues Mol Biol ; 46(4): 2931-2945, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38666913

ABSTRACT

Natural killer (NK) cells are crucial components of innate immunity, known for their potent tumor surveillance abilities. Chimeric antigen receptors (CARs) have shown promise in cancer targeting, but optimizing CAR designs for NK cell functionality remains challenging. CAR-NK cells have gained attention for their potential to reduce side effects and enable scalable production in cancer immunotherapy. This study aimed to enhance NK cell anti-tumor activity by incorporating PD1-synthetic Notch (synNotch) receptors. A chimeric receptor was designed using UniProt database sequences, and 3D structure models were generated for optimization. Lentiviral transduction was used to introduce PD1-Syn receptors into NK cells. The expression of PD1-Syn receptors on NK cell surfaces was assessed. Engineered NK cells were co-cultured with PDL1+ breast cancer cells to evaluate their cytotoxic activity and ability to produce interleukin-12 (IL-12) and interferon-gamma (IFNγ) upon interaction with the target cells. This study successfully expressed the PD1-Syn receptors on NK cells. CAR-NK cells secreted IL-12 and exhibited target-dependent IFNγ production when engaging PDL1+ cells. Their cytotoxic activity was significantly enhanced in a target-dependent manner. This study demonstrates the potential of synNotch receptor-engineered NK cells in enhancing anti-tumor responses, especially in breast cancer cases with high PDL1 expression.

14.
Curr Issues Mol Biol ; 46(8): 9234-9244, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39194762

ABSTRACT

Parkinson's disease (PD) is the second leading neurodegenerative disease after Alzheimer's disease. Mucuna pruriens (L.) DC. (MP) is a plant that contains Levodopa (L-DOPA) and has been known to improve the symptoms of PD. In this preliminary study, we investigated the anti-parkinsonian potential of MP to compare the effects of L-DOPA. We first developed an in vivo model of the PD in C57BL/6 male mice using rotenone. A total of twelve mice were used for this experiment. Nine mice were injected with rotenone (28 mg/kg) daily for 28 days. The mice experiments were performed to validate the effectiveness of MP to treat PD. Synthetic L-DOPA in a ratio of 1:20 with MP was used as MP contains 5% L-DOPA by weight in it. MP and L-DOPA were injected for 19 days on a daily basis. Cognitive function was evaluated using beam balance and olfactory tests. Serum analysis was performed using serum enzyme-linked immunosorbent assay (ELISA) analysis test. IL-12, IL-6, and TGF-ß 1 were evaluated to validate the PD inducement and treatment. The levels of IL-12, IL-6, and TGF-ß1 (p < 0.0001) in the PD mice group were significantly higher than those in the control group. The PD mice also showed higher latencies in beam balance and olfactory tests (p < 0.0001) compared to the control group. Both MP and L-DOPA-treated groups showed alleviation in latencies in beam balance and olfactory tests and decreased neuroinflammation in ELISA analysis (p < 0.001). The results treated by MP and L-DOPA showed insignificant differences in their values (p > 0.05). This proved that the MP and L-DOPA had similar effects in improving the symptoms of PD when used in the ratio of 1:20. Furthermore, both MP and L-DOPA reduced the level of IL-6 and TGF-ß1 in this study. It may be inferred that a reduction in the level of IL-6 and TGF-ß1 eventually leads to a reduction in the Th17 cells. The pathogenic Th17 is thought to be present in virtually all chronic inflammatory disorders. This can be an interesting area of research in further understanding the immunological effect of MP in ameliorating PD symptoms.

15.
Clin Immunol ; 266: 110335, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098705

ABSTRACT

More frequent among adults, phenocopies may be caused by somatic mutations or anti-cytokine autoantibodies, mimicking the phenotypes of primary immunodeficiencies. A fourteen-year-old girl was referred for a two-year history of weight loss and multiple recurrent abscesses, complicated recurrent pneumonia, pyelonephritis, osteomyelitis, and septic shock, without fever. She had started with nausea, hyporexia, and weight loss, then with abscesses in her hands, knee, ankle, and spleen. She also developed a rib fracture and left thoracic herpes zoster. The patient was cachectic, with normal vital signs, bilateral crackles on chest auscultation, tumefaction of the knee joint, and poorly healed wounds in hands and chest, oozing a yellowish fluid. Chest computed tomography revealed multiple bilateral bronchiectases. Laboratory workup reported chronic anemia, leukocytosis, neutrophilia, mild lymphopenia, thrombocytosis, pan-hypergammaglobulinemia, and elevated acute serum reactants. Lymphocyte subsets were low but present. Mycobacterium tuberculosis was detected via polymerase chain reaction in a bone biopsy specimen from ankle osteomyelitis. Whole-exome sequencing failed to identify a monogenic defect. Interleukin-12 was found markedly elevated in the serum of the patient. Phosphorylation of STAT4, induced by increasing doses of IL-12, was neutralized by patient serum, confirming the presence of anti-IL12 autoantibodies. IL-12 and IL-23 are crucial cytokines in the defense against intracellular microorganisms, the induction of interferon-gamma production by lymphocytes, and other inflammatory functions. Patients who develop neutralizing serum autoantibodies against IL12 manifest late in life with weight loss, multiple recurrent abscesses, poor wound healing, and fistulae. Treatment with anti-CD20 monoclonal antibodies was effective.


Subject(s)
Abscess , Autoantibodies , Humans , Female , Autoantibodies/immunology , Autoantibodies/blood , Adolescent , Abscess/immunology , Interleukin-12 Subunit p40/immunology , Recurrence , Osteomyelitis/immunology
16.
Article in English | MEDLINE | ID: mdl-38750870

ABSTRACT

BACKGROUND & AIMS: Seventeen percent of patients with ulcerative colitis that undergo proctocolectomy with pouch surgery will develop chronic pouchitis. We evaluated the efficacy of ustekinumab for these patients. METHODS: We performed a prospective study of patients with chronic pouchitis receiving ustekinumab intravenously at baseline (∼6 mg/kg) and 90 mg ustekinumab subcutaneously every 8 weeks thereafter. The Modified Pouchitis Disease Activity Index (mPDAI) was assessed at baseline and weeks 16 and 48. The primary endpoint was the proportion of patients achieving steroid-free remission (mPDAI <5 and reduction by ≥2 points) at week 16. Secondary endpoints included the proportion of patients achieving remission at week 48, the proportion of patients achieving response (reduction of mPDAI by ≥2 points) at weeks 16 and 48, and change in mPDAI. RESULTS: We enrolled 22 patients (59% male; median age, 42.2 years). Remission was achieved in 27.3% at week 16 and 36.4% at week 48. Response was achieved in 54.5% both at weeks 16 and 48. The median mPDAI decreased from 8 (interquartile range [IQR], 7-10) to 7 (IQR, 4-9) at week 16 (P = .007) and 4 (IQR, 1.75-7.25) at week 48 (P < .001). The clinical mPDAI subscore decreased from 3.5 (IQR, 2-4) to 2 (IQR, 1-3) at week 16 (P = .009) and 1 (IQR, 0-2.25) at week 48 (P = .001). The endoscopic mPDAI subscore decreased from 5.5 (IQR, 4-6) to 4 (IQR, 3-6) at week 16 (P = .032) and 3 (IQR, 1.75-4.25) at week 48 (P = .001). CONCLUSION: Ustekinumab was efficacious in one-half of the patients suffering from chronic pouchitis. Ustekinumab should therefore be positioned in the treatment algorithm of chronic pouchitis. (ClinicalTrials.gov Number NCT04089345).

17.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960949

ABSTRACT

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Subject(s)
Immunologic Memory , Killer Cells, Natural , Recombinant Fusion Proteins , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Animals , Recombinant Fusion Proteins/genetics , Mice , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin-15/metabolism
18.
Article in English | MEDLINE | ID: mdl-39153010

ABSTRACT

OBJECTIVES: Hepatitis B reactivation (HBVr) constitutes a side effect of the treatment of autoimmune rheumatic diseases. Even though HBVr risk of conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs) and anti-tumor necrosis factor (anti-TNF) agents has long been established, the risk of targeted synthetic (ts)DMARDs and anti-interleukin (anti-IL) agents remains largely unknown. METHODS: We conducted a SLR (PubMed, Scopus and EMBASE) and metanalysis to examine the HBVr risk for the following: anti-IL17, anti-IL12/23, anti-IL23 and JAK-inhibitors in patients with chronic HBV infection (HBsAg presence or detectable HBV-DNA) and in patients with prior HBV infection (HBcAb-positive and HBsAg-negative). Meta-analysis was performed using both the fixed and random effects method and was conducted using the R computing language. RESULTS: Overall, our study revealed a low HBVr risk of < 6% in all agents; the risk was significantly higher for people having chronic compared with those with resolved HBV (14,4% vs 5.1%, respectively p< 0.01). There was no difference among different drugs in the HBVr rates [anti-IL-17: 4% (95% CI: 1-9%), anti-IL-12/IL-23: 2% (95% CI: 0-5%), JAK-inhibitors: 4% (95% CI: 1-8%), anti-IL23: 0%]. Of note, HBVr rate reached 28% in patients with chronic HBV who did not receive anti-viral treatment. For patients with resolved hepatitis the respective percentage was 4.7%. CONCLUSION: Overall, our meta-analysis shows that patients with chronic HBV receiving anti-IL-17, anti-IL-12/23, anti-IL-23 and JAK-inhibitors have significant risk for HBVr, especially if they are not under anti-viral treatment. In contrast, resolved HBV seems to offer minor risk for HBVr even without anti-viral treatment.

19.
Cytokine ; 174: 156457, 2024 02.
Article in English | MEDLINE | ID: mdl-38056248

ABSTRACT

The level of IL-2 increases markedly in serum and central nervous system (CNS) of patients with multiple sclerosis (MS) and animals with experimental allergic encephalomyelitis (EAE). However, mechanisms by which IL-2 is induced under autoimmune demyelinating conditions are poorly understood. The present study underlines the importance of IL-12p40 homodimer (p402), the so-called biologically inactive molecule, in inducing the expression of IL-2 in mouse BV-2 microglial cells, primary mouse and human microglia, mouse peritoneal macrophages, RAW264.7 macrophages, and T cells. Interestingly, we found that p402 and IL-12p70 (IL-12), but not IL-23, dose-dependently induced the production of IL-2 and the expression of IL-2 mRNA in microglial cells. Similarly, p402 also induced the activation of IL-2 promoter in microglial cells and RAW264.7 cells. Among various stimuli tested, p402 was the most potent stimulus followed by IFN-γ, bacterial lipopolysaccharide, HIV-1 gp120, and IL-12 in inducing the activation of IL-2 promoter in microglial cells. Moreover, p402, but not IL-23, increased NFATc2 mRNA expression and the transcriptional activity of NFAT. Furthermore, induction of IL-2 mRNA expression by over-expression of p40, but not by p19, cDNA indicated that p40, but not p19, is responsible for the induction of IL-2 mRNA in microglia. Finally, by using primary microglia from IL to 12 receptor ß1 deficient (IL-12Rß1-/-) and IL-12 receptor ß2 deficient (IL-12Rß2-/-) mice, we demonstrate that p402 induces the expression of IL-2 via IL-12Rß1, but not IL-12Rß2. In experimental autoimmune encephalomyelitis, an animal model of MS, neutralization of p402 by mAb a3-1d led to decrease in clinical symptoms and reduction in IL-2 in T cells and microglia. These results delineate a new biological function of p402, which is missing in the so-called autoimmune cytokine IL-23, and raise the possibility of controlling increased IL-2 and the disease process of MS via neutralization of p402.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Animals , Mice , Interleukin-12/metabolism , Microglia/metabolism , Interleukin-2/metabolism , Macrophages/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Interleukin-23
20.
Cytokine ; 176: 156501, 2024 04.
Article in English | MEDLINE | ID: mdl-38290255

ABSTRACT

It is well known that systemic lupus erythematosus (SLE) is an auto-inflammatory disease that is characterized by chronic and widespread inflammation. The exact pathogenesis of SLE is still a matter of debate. However, it has been suggested that the binding of autoantibodies to autoantigens forms immune complexes (ICs), activators of the immune response, in SLE patients. Ultimately, all of these responses lead to an imbalance between anti-inflammatory and pro-inflammatory cytokines, resulting in cumulative inflammation. IL-35, the newest member of the IL-12 family, is an immunosuppressive and anti-inflammatory cytokine secreted mainly by regulatory cells. Structurally, IL-35 is a heterodimeric cytokine, composed of Epstein-Barr virus-induced gene 3 (EBI3) and p35. IL-35 appears to hold therapeutic and diagnostic potential in cancer and autoimmune diseases. In this review, we summarized the most recent associations between IL and 35 and SLE. Unfortunately, the comparative review of IL-35 in SLE indicates many differences and contradictions, which make it difficult to generalize the use of IL-35 in the treatment of SLE. With the available information, it is not possible to talk about targeting this cytokine for the lupus treatment. So, further studies would be needed to establish the clear and exact levels of this cytokine and its related receptors in people with lupus to provide IL-35 as a preferential therapeutic or diagnostic candidate in SLE management.


Subject(s)
Epstein-Barr Virus Infections , Lupus Erythematosus, Systemic , Humans , Epstein-Barr Virus Infections/drug therapy , Herpesvirus 4, Human , Cytokines , Interleukin-12 , Inflammation/drug therapy , Anti-Inflammatory Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL