Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant J ; 117(2): 541-560, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37932864

ABSTRACT

Carotenoids are isoprenoid pigments indispensable for photosynthesis. Moreover, they are the precursor of apocarotenoids, which include the phytohormones abscisic acid (ABA) and strigolactones (SLs) as well as retrograde signaling molecules and growth regulators, such as ß-cyclocitral and zaxinone. Here, we show that the application of the volatile apocarotenoid ß-ionone (ß-I) to Arabidopsis plants at micromolar concentrations caused a global reprogramming of gene expression, affecting thousands of transcripts involved in stress tolerance, growth, hormone metabolism, pathogen defense, and photosynthesis. This transcriptional reprogramming changes, along with induced changes in the level of the phytohormones ABA, jasmonic acid, and salicylic acid, led to enhanced Arabidopsis resistance to the widespread necrotrophic fungus Botrytis cinerea (B.c.) that causes the gray mold disease in many crop species and spoilage of harvested fruits. Pre-treatment of tobacco and tomato plants with ß-I followed by inoculation with B.c. confirmed the effect of ß-I in increasing the resistance to this pathogen in crop plants. Moreover, we observed reduced susceptibility to B.c. in fruits of transgenic tomato plants overexpressing LYCOPENE ß-CYCLASE, which contains elevated levels of endogenous ß-I, providing a further evidence for its effect on B.c. infestation. Our work unraveled ß-I as a further carotenoid-derived regulatory metabolite and indicates the possibility of establishing this natural volatile as an environmentally friendly bio-fungicide to control B.c.


Subject(s)
Arabidopsis , Norisoprenoids , Solanum lycopersicum , Plant Growth Regulators/metabolism , Arabidopsis/metabolism , Disease Resistance/genetics , Transcriptome , Abscisic Acid , Botrytis/metabolism , Plants, Genetically Modified/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Plant
2.
BMC Plant Biol ; 24(1): 589, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902627

ABSTRACT

BACKGROUND: The plant-specific YABBY transcription factor family plays important roles in plant growth and development, particularly leaf growth, floral organ formation, and secondary metabolite synthesis. RESULTS: Here, we identified a total of 13 OfYABBY genes from the Osmanthus fragrans genome. These 13 OfYABBY genes were divided into five subfamilies through phylogenetic analysis, and genes in the same subfamily showed similar gene structures and conserved protein motifs. Gene duplication promoted the expansion of the OfYABBY family in O. fragrans. Tissue-specific expression analysis showed that the OfYABBY family was mainly expressed in O. fragrans leaves and floral organs. To better understand the role of OfYABBY genes in plant growth and development, OfYABBY12 was selected for heterologous stable overexpression in tobacco, and OfYABBY12-overexpressing tobacco leaves released significantly fewer volatile organic compounds than wild-type tobacco leaves. Overexpression of OfYABBY12 led to the downregulation of NtCCD1/4 and decreased ß-ionone biosynthesis. Correspondingly, a dual-luciferase assay showed that OfYABBY12 negatively regulated the expression of OfCCD4, which promotes ß-ionone synthesis. Furthermore, tobacco leaves overexpressing OfYABBY12 were curled and wrinkled and had significantly reduced leaf thickness and leaf inclusions and significantly extended flower pistils (styles). CONCLUSION: Overall, the results suggest that the OfYABBY gene family may influence the biosynthesis of the floral scent (especially ß-ionone) in O. fragrans and may regulate leaf morphogenesis and lateral organs.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oleaceae , Plant Leaves , Plant Proteins , Transcription Factors , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/anatomy & histology , Oleaceae/genetics , Oleaceae/growth & development , Oleaceae/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/anatomy & histology , Flowers/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Odorants , Volatile Organic Compounds/metabolism
3.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893339

ABSTRACT

Six ionone glycosides (1-3 and 5-7), including three new ones, named capitsesqsides A-C (1-3), together with an eudesmane sesquiterpenoid glycoside (4) and three known triterpenoid saponins (8-10) were isolated from Rhododendron capitatum. The structures of these compounds were determined by extensive spectroscopic techniques (MS, UV, 1D-NMR, and 2D-NMR) and comparison with data reported in the literature. The absolute configurations were determined by comparison of the experimental and theoretically calculated ECD curves and LC-MS analyses after acid hydrolysis and derivatization. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. Molecular docking demonstrated that 2 has a favorable affinity for NLRP3 and iNOS.


Subject(s)
Glycosides , Rhododendron , Rhododendron/chemistry , Mice , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , RAW 264.7 Cells , Animals , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Norisoprenoids/chemistry , Norisoprenoids/pharmacology , Norisoprenoids/isolation & purification , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
4.
Biochem Biophys Res Commun ; 653: 147-152, 2023 04 23.
Article in English | MEDLINE | ID: mdl-36870239

ABSTRACT

TGR5 is a G-protein-coupled receptor that is activated by bile acids. The activation of TGR5 in brown adipose tissue (BAT) increases energy expenditure by increasing the expression level of thermogenesis-related genes, such as peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, uncoupling protein 1, and type II iodothyronine deiodinase. Therefore, TGR5 is a potential drug target in treating obesity and associated metabolic disorders. In this study, we identified the aroma compounds α-ionone and nootkatone as well as their derivatives as TGR5 agonists by using the luciferase reporter assay system. These compounds had little effect on the activity of the farnesoid X receptor, a nuclear receptor activated by bile acids. Mice fed 0.2% α-ionone containing high-fat diet (HFD) increased the thermogenesis-related gene expression level in BAT and suppressed weight gain compared with mice fed a normal HFD. These findings indicate that aromatic compounds with TGR5 agonist activity are promising chemicals to prevent obesity.


Subject(s)
Diet, High-Fat , Obesity , Animals , Mice , Adipose Tissue, Brown/metabolism , Bile Acids and Salts/metabolism , Diet, High-Fat/adverse effects , Energy Metabolism , Mice, Inbred C57BL , Obesity/metabolism , Polycyclic Sesquiterpenes/metabolism , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/therapeutic use , Thermogenesis
5.
FEMS Yeast Res ; 232023 01 04.
Article in English | MEDLINE | ID: mdl-36708173

ABSTRACT

Wine is composed of multitudinous flavour components and volatile organic compounds that provide this beverage with its attractive properties of taste and aroma. The perceived quality of a wine can be attributed to the absolute and relative concentrations of favourable aroma compounds; hence, increasing the detectable levels of an attractive aroma, such as ß-ionone with its violet and berry notes, can improve the organoleptic qualities of given wine styles. We here describe the generation of a new grape-must fermenting strain of Saccharomyces cerevisiae that is capable of releasing ß-ionone through the heterologous expression of both the enzyme carotenoid cleavage dioxygenase 1 (CCD1) and its substrate, ß-carotene. Haploid laboratory strains of S. cerevisiae were constructed with and without integrated carotenogenic genes and transformed with a plasmid containing the genes of CCD1. These strains were then mated with a sporulated diploid wine industry yeast, VIN13, and four resultant crosses-designated MQ01-MQ04-which were capable of fermenting the must to dryness were compared for their ability to release ß-ionone. Analyses of their fermentation products showed that the MQ01 strain produced a high level of ß-ionone and offers a fermenting hybrid yeast with the potential to enhance the organoleptic qualities of wine.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Odorants , Norisoprenoids/metabolism , Fermentation
6.
J Biochem Mol Toxicol ; 37(6): e23331, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36843289

ABSTRACT

ß-Ionone, the end ring analog of ß-carotenoids, has been proven to have an antitumor effect in a variety of cancers. In this study, we investigated the impact of ß-ionone on renal cell carcinoma (RCC) cell lines (786-O and ACHN) using colony formation assays, flow cytometry analysis, and western blot analysis. We found that ß-ionone effectively inhibited the proliferation of RCC cells in vitro, which was also confirmed in a xenograft model. Moreover, we found that ß-ionone could induce autophagy, as indicated by LC3 puncta in 786-O and ACHN cell lines and the expression of LC3 in ß-ionone-treated RCC cells. To further explore the underlying mechanism, we assessed liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway activity, and the results showed that ß-ionone inhibited the proliferation of RCC cells by inducing autophagy via the LKB1/AMPK signaling pathway. In summary, our findings provide a new therapeutic strategy of ß-ionone-induced autophagy in RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , AMP-Activated Protein Kinases/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Protein Serine-Threonine Kinases/metabolism , Kidney Neoplasms/metabolism , Autophagy , Cell Proliferation , Cell Line, Tumor
7.
Biotechnol Lett ; 45(4): 499-508, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738355

ABSTRACT

PURPOSE: We purified and characterized a novel ene-reductase (KaDBR1) from Kazachstania exigua HSC6 for the synthesis of dihydro-ß-ionone from ß-ionone. METHODS: KaDBR1 was purified to homogeneity by ammonium sulfate precipitation and phenyl-Sepharose Fast Flow and Q-Sepharose chromatography. The purified enzyme was characterized by measuring the amount of dihydro-ß-ionone from ß-ionone with LC-MS analysis method. RESULTS: The molecular mass of KaDBR1 was estimated to be 45 kDa by SDS-PAGE. The purified KaDBR1 enzyme had optimal activity at 60 °C and pH 6.0. The addition of 5 mM Mg2+, Ca2+, Al3+, Na+, and dithiothreitol increased the activity of KaDBR1 by 25%, 18%, 34%, 20%, and 23%, respectively. KaDBR1 favored NADH over NADPH as a cofactor, and its catalytic efficiency (kcat/Km) toward ß-ionone using NADH was 8.1-fold greater than when using NADPH. CONCLUSION: Owing to its unique properties, KaDBR1 is a potential candidate for the enzymatic biotransformation of ß-ionone to dihydro-ß-ionone in biotechnology applications.


Subject(s)
NAD , Oxidoreductases , NADP , Hydrogen-Ion Concentration , Molecular Weight
8.
Plant J ; 105(2): 351-375, 2021 01.
Article in English | MEDLINE | ID: mdl-33258195

ABSTRACT

Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants' rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, ß-cyclocitral, ß-cyclogeranic acid, ß-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant-plant and plant-herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.


Subject(s)
Carotenoids/metabolism , Signal Transduction , Abscisic Acid/metabolism , Cell Communication , Heterocyclic Compounds, 3-Ring/metabolism , Lactones/metabolism , Metabolic Networks and Pathways , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Plants/metabolism
9.
Planta ; 256(5): 100, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36251100

ABSTRACT

MAIN CONCLUSION: A new carotenoid cleavage dioxygenase NtCCD10 from tobacco was characterized. There is some difference between NtCCD10 and CCD1 in structure. NtCCD10 can cleave the C5-C6 (C5'-C6') and C9-C10 (C9'-C10') double bonds of carotenoids and has high catalytic activity. Carotenoid cleavage dioxygenases (CCDs) cleave carotenoids to produce a variety of apocarotenoids, which have important biological functions for organisms in nature. There are eleven CCDs subfamilies in the plant kingdom, many of which have been extensively characterized in their functions. However, as a newly classified subfamily, the function of CCD10 has rarely been studied. In this work, the function of an NtCCD10 gene from dicotyledonous Nicotiana tabacum was cloned and characterized, and its phylogeny, molecular structural modeling and protein structure were also systematically analyzed. Like other CCDs, NtCCD10 also possesses a seven bladed ß-propeller with Fe2+ cofactor in its center constituting the active site of the enzyme. The Fe2+ is also coordinated bonding with four conserved histidine residues. Meanwhile, NtCCD10 also has many unique features, such as its α1 and α3 helixes are not anti-parallel, a special ß-sheet and a longer access tunnel for substrates. When expressed in engineered Escherichia coli (producing phytoene, lycopene, ß-carotene, and zeaxanthin) and Saccharomyces cerevisiae (producing ß-carotene), NtCCD10 could symmetrically cleave phytoene and ß-carotene at the C9-C10 and C9'-C10' positions to produce geranylacetone and ß-ionone, respectively. In addition, NtCCD10 could also cleave the C5-C6 and C5'-C6' double bonds of lycopene to generate 6-methyl-5-heptene-2-one (MHO). NtCCD10 has higher catalytic activity than PhCCD1 in yeast, which provides a good candidate CCD for biosynthesis of ß-ionone and has potential applications in biotechnological industry. This study identified the taxonomic position and catalytic activity of the first NtCCD10 in dicotyledonous plants. This will provide a reference for the discovery and functional identification of CCD10 enzymes in dicotyledons.


Subject(s)
Dioxygenases , Carotenoids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Histidine/metabolism , Lycopene/metabolism , Norisoprenoids , Nicotiana/genetics , Nicotiana/metabolism , Zeaxanthins/metabolism , beta Carotene/metabolism
10.
BMC Microbiol ; 22(1): 78, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35321650

ABSTRACT

BACKGROUND: Cyanobacteria blooms have become a major environmental problem and concern because of secondary metabolites produced by cyanobacteria released into the water. Cyanobacteria produce volatile organic compounds (VOCs), such as the compounds ß-cyclocitral and ß-ionone, which comprise odors, off-flavors, defense compounds, as well as growth regulators. Therefore, the general objective of this work was to evaluate the VOCs produced by two strains of Microcystis aeruginosa, differing in their ability to produce microcystins (LTPNA 01-non-producing and LTPNA 08-toxin-producing). The analysis of VOC production was carried out in (1) normal culture conditions, (2) under different light intensities (LI), and (3) after the external application of ß-ionone in both cultures. RESULTS: The results showed that ß-cyclocitral and ß-ionone are produced in all growth phases of LTPNA 01 and LTPNA 08. Both strains were producers of ß-cyclocitral and ß-ionone in normal culture conditions. It was observed that the ß-cyclocitral concentration was higher than ß-ionone in all light intensities investigated in this study. Additionally, the strain LTPNA 01 produced more ß-cyclocitral than LTPNA 08 at almost all times and LIs analyzed. However, the strain LTPNA 08 produced more ß-ionone, mainly at the initial times. In addition, the experiment results with the external addition of ß-ionone in the cultures showed that the strain LTPNA 01 produced more ß-cyclocitral in control conditions than in treatment. Nonetheless, ß-ionone production was higher in treatment conditions in LTPNA 08, indicating that the addition of ß-ionone may favor the production of these compounds and inhibit the production of ß-cyclocitral. CONCLUSION: Our results showed that some abiotic factors, such as different light intensities and external application of ß-ionone, can be triggers that lead to the production of VOCs.


Subject(s)
Cyanobacteria , Microcystis , Volatile Organic Compounds , Aldehydes/metabolism , Cyanobacteria/metabolism , Diterpenes , Norisoprenoids/metabolism , Volatile Organic Compounds/analysis
11.
J Exp Bot ; 73(2): 615-630, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34849759

ABSTRACT

Plants activate biochemical responses to combat stress. (Hemi-)biotrophic pathogens are fended off by systemic acquired resistance (SAR), a primed state allowing plants to respond faster and more strongly upon subsequent infection. Here, we show that SAR-like defences in barley (Hordeum vulgare) are propagated between neighbouring plants, which respond with enhanced resistance to the volatile cues from infected senders. The emissions of the sender plants contained 15 volatile organic compounds (VOCs) associated with infection. Two of these, ß-ionone and nonanal, elicited resistance upon plant exposure. Whole-genome transcriptomics analysis confirmed that interplant propagation of defence in barley is established as a form of priming. Although gene expression changes were more pronounced after challenge infection of the receiver plants with Blumeria graminis f. sp. hordei, differential gene expression in response to the volatile cues of the sender plants included an induction of HISTONE DEACETYLASE 2 (HvHDA2) and priming of TETRATRICOPEPTIDE REPEAT-LIKE superfamily protein (HvTPL). Because HvHDA2 and HvTPL transcript accumulation was also enhanced by exposure of barley to ß-ionone and nonanal, our data identify both genes as possible defence/priming markers in barley. Our results suggest that VOCs and plant-plant interactions are relevant for possible crop protection strategies priming defence responses in barley.


Subject(s)
Hordeum , Aldehydes , Hordeum/genetics , Norisoprenoids , Plant Diseases , Plant Proteins/genetics , Plants
12.
Microb Cell Fact ; 21(1): 246, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36424649

ABSTRACT

BACKGROUND: α-Ionone is highly valued in cosmetics and perfumery with a global usage of 100-1000 tons per year. Metabolic engineering by microbial fermentation offers a promising way to produce natural (R)-α-ionone in a cost-effective manner. Apart from optimizing the metabolic pathways, the approach is also highly dependent on generating a robust strain which retains productivity during the scale-up process. To our knowledge, no study has investigated strain robustness while increasing α-ionone yield. RESULTS: Built on our previous work, here, we further increased α-ionone yield to 11.4 mg/L/OD in 1 mL tubes by overexpressing the bottleneck dioxygenase CCD1 and re-engineering the pathway, which is > 65% enhancement as compared to our previously best strain. However, the yield decreased greatly to 2.4 mg/L/OD when tested in 10 mL flasks. Further investigation uncovered an unexpected inhibition that excessive overexpression of CCD1 was accompanied with increased hydrogen peroxide (H2O2) production. Excessive H2O2 broke down lycopene, the precursor to α-ionone, leading to the decrease in α-ionone production in flasks. This proved that expressing too much CCD1 can lead to reduced production of α-ionone, despite CCD1 being the rate-limiting enzyme. Overexpressing the alkyl hydroperoxide reductase (ahpC/F) partially solved this issue and improved α-ionone yield to 5.0 mg/L/OD in flasks by reducing oxidative stress from H2O2. The strain exhibited improved robustness and produced ~ 700 mg/L in 5L bioreactors, the highest titer reported in the literature. CONCLUSION: Our study provides an insight on the importance of mediating the oxidative stress to improve strain robustness and microbial production of α-ionone during scaling up. This new strategy may be inspiring to the biosynthesis of other high-value apocarotenoids such as retinol and crocin, in which oxygenases are also involved.


Subject(s)
Hydrogen Peroxide , Norisoprenoids , Norisoprenoids/metabolism , Metabolic Engineering , Oxidative Stress
13.
Chem Biodivers ; 19(2): e202100735, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34821468

ABSTRACT

Synthesis of ß-ionone in microbial cell factories is limited by the efficiency of carotenoid cleavage dioxygenases (CCDs). To obtain genes responsible for specific cleavage of carotenoids generating ß-ionone, a novel carotenoid cleavage dioxygenase 1 from Morus notabilis was cloned and overexpressed in Escherichia coli. The MnCCD1 protein was able to cleave a variety of carotenoids at the positions 9, 10 (9', 10') to produce ß-ionone, 3-hydroxy-4-oxo-ß-ionone, 3-hydroxy-ß-ionone, and 3-hydroxy-α-ionone in vitro. MnCCD1 could also cleave lycopene and ß-carotene at the 9, 10 (9', 10') bind bond to produce pseudoionone and ß-ionone, respectively, in E. coli accumulating carotenoids. The enzyme activity of MnCCD1 was reached 2.98 U/mL at optimized conditions (temperature 28 °C, IPTG 0.1 mM, induction time 24 h). The biochemical characterization of MnCCD1 revealed the optimal activities were at pH 8.4 and 35 °C. The addition of 10 % ethanol could increase enzyme activity at above 15 %. However, an obvious decline was observed on enzyme activity as the concentration of Fe2+ increased (0-1 mM). The Vmax for ß-apo-8'-carotenal was 72.5 U/mg, while the Km was 0.83 mM. The results provide a foundation for developing the application of carotenoid cleavage dioxygenases as biocatalysis and synthetic biology platforms to produce volatile aroma components from carotenoids.


Subject(s)
Dioxygenases , Morus , Dioxygenases/chemistry , Dioxygenases/genetics , Dioxygenases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Morus/metabolism , beta Carotene/chemistry
14.
Chem Biodivers ; 19(1): e202100694, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34780126

ABSTRACT

Natural ß-ionone, a high-value flavoring agent, has been widely applied in the food, cosmetics, and perfume industry. However, attempts to overproduce ß-ionone in microorganisms have been limited by the efficiency of carotenoid cleavage dioxygenases (CCDs), which catalyzes ß-carotene in the biosynthesis pathway. In order to obtain CCD genes responsible for the specific cleavage of carotenoids generating ß-ionone, a novel carotenoid cleavage dioxygenase 1 from Helianthus annuus was cloned and overexpressed in Escherichia coli BL21(DE3). The recombinant CCD was able to cleave a variety of carotenoids at the 9, 10 (9', 10') sites to produce C13 products in vitro, including ß-ionone, pseudoionone, 3-hydroxy-4-oxo-ß-ionone, 3-hydroxy-ß-ionone, and 3-hydroxy-α-ionone, which vary depending on the carotenoid substrates. In comparison with lycopene and zeaxanthin, HaCCD1 also showed the high specificity for ß-carotene to cleave the 9, 10 (9', 10') double bond to produce ß-ionone in E. coli accumulating carotenoids. Finally, the expression of HaCCD1 in E. coli was optimized, and biochemical characterizations were further clarified. The optimal activity of HaCCD1 was at pH 8.8 and 50 °C. The Vmax for ß-apo-8'-carotenal was 10.14 U/mg, while the Km was 0.32 mM. Collectively, our study provides a valuable enzyme for the synthesis of natural ß-ionone by biotransformation and synthetic biology platform.


Subject(s)
Carotenoids/metabolism , Dioxygenases/metabolism , Helianthus/enzymology , Carotenoids/chemistry , Cloning, Molecular , Dioxygenases/genetics , Escherichia coli/metabolism , Kinetics , Norisoprenoids/chemistry , Norisoprenoids/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Substrate Specificity , beta Carotene/chemistry , beta Carotene/metabolism
15.
Bioprocess Biosyst Eng ; 45(5): 891-900, 2022 May.
Article in English | MEDLINE | ID: mdl-35244776

ABSTRACT

Dihydro-ß-ionone is a characteristic aroma compound of Osmanthus fragrans and is widely applied in the flavor & fragrance industry. However, the main focus is on chemical synthesis due to the metabolic pathways of dihydro-ß-ionone is still unclear. Here, we explored the one-pot synthesis system for dihydro-ß-ionone production using carotenoid cleavage dioxygenase (CCD) and enoate reductase. After screening the CCD enzyme, PhCCD1 from the Petunia hybrid was identified as the suitable enzyme for the first step of dihydro-ß-ionone synthesis due to the high enzyme activity for carotenoid. The PhCCD1 was expressed in Escherichia coli and further characterized. The optimal activity of PhCCD1 was observed at pH 6.8 and 45 °C. The enzyme was stable over the pH range of 6.0-8.0 and had good thermal stability below 40 °C. Then, we optimized the coupled reaction conditions for dihydro-ß-ionone production by PhCCD1 and enoate reductase AaDBR1 from Artemisia annua. Furthermore, we introduced the NADPH regeneration system with a 1.5-fold enhancement for dihydro-ß-ionone production. Collectively, approximately 13.34 mg/L dihydro-ß-ionone was obtained by the one-pot biosystem with a corresponding molar conversion of 85.8%. For the first time, we successfully designed and constructed a new synthesis pathway for dihydro-ß-ionone production in vitro. The coupled catalysis reported herein illustrates the feasibility of producing dihydro-ß-ionone from carotenoids and guides further engineering in the food industry.


Subject(s)
Dioxygenases , Carotenoids/metabolism , Dioxygenases/chemistry , Dioxygenases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Norisoprenoids/chemistry , Norisoprenoids/metabolism , Oxidoreductases/metabolism
16.
J Asian Nat Prod Res ; 24(10): 955-962, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35852115

ABSTRACT

Four new ionones and ionone glycosides (1-4) were isolated from the whole plant of Rehmannia piasezkii Maxim. Their planar structures as well as absolute configuration were confirmed via spectroscopic analysis, ECD calculation, and X-ray crystallography. Compounds 1-4 were tested for their cytotoxicity against five human tumor cell lines and ability to inhibit LPS-activated NO production in the BV2 cell line.


Subject(s)
Rehmannia , Humans , Rehmannia/chemistry , Norisoprenoids/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Molecular Structure , Cell Line, Tumor
17.
J Asian Nat Prod Res ; 24(8): 777-783, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34605341

ABSTRACT

One new ionone glycoside, named centrantheroside F (1), together with 9 known compounds (2-10), were isolated from the roots of Centranthera grandiflora. Their structures were determined by spectroscopic data analyses and comparing with the literature data. The absolute configuration of 1 was confirmed via 2 D NMR and electronic circular dichroism (ECD). All isolated compounds were evaluated for their inhibitory activity on lipopolysaccharide (LPS)-induced nitric oxide (NO) production.


Subject(s)
Cardiac Glycosides , Glycosides , Glycosides/chemistry , Molecular Structure , Nitric Oxide , Norisoprenoids , Plant Roots/chemistry
18.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362105

ABSTRACT

Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region. Here, we report the newly identified CYP101D5 from Sphingomonas echinoides. CYP101D5 catalyzes the hydroxylation of ß-ionone and flavonoids, including naringenin and apigenin, and causes the dehydrogenation of α-ionone. A structural investigation and comparison with other CYP101 families indicated that spatial constraints at the substrate-recognition site originate from the B/C loop. Furthermore, charge distribution at the substrate binding site may be important for substrate selectivity and the preference for CYP101D5.


Subject(s)
Cytochrome P-450 Enzyme System , Sphingomonas , Humans , Crystallography, X-Ray , Substrate Specificity , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Binding Sites
19.
J Chem Ecol ; 47(4-5): 444-454, 2021 May.
Article in English | MEDLINE | ID: mdl-33683547

ABSTRACT

Olfactory cues constitute one of the most important plant-pollinator communication channels. Specific chemical components can be associated with specific pollinator functional groups due to pollinator-mediated selection on flower volatile (FV) emission. Here, we used multivariate analyses of FV data to detect an association between FVs and the worldwide distributed pollinator group of the carpenter bees (Xylocopa spp.). We compiled FVs of 29 plant species: 9 pollinated by carpenter bees, 20 pollinated by other bee pollinator functional groups. We tested whether FV emission differed between these groups. To rule out any phylogenetic bias in our dataset, we tested FV emission for phylogenetic signal. Finally, using field assays, we tested the attractive function of two FVs found to be associated with carpenter bees. We found no significant multivariate difference between the two plant groups FVs. However, seven FVs (five apocarotenoid terpenoids, one long-chain alkane and one benzenoid) were significantly associated with carpenter bee pollination, thus being "predictor" compounds of pollination by this pollinator functional group. From those, ß-ionone and (E)-methyl cinnamate presented the highest indicator values and had their behavioural function assessed in field assays. Phylogenetic signal for FVs emission was weak, suggesting that their emission could result from pollinator-mediated selection. In field assays, the apocarotenoid ß-ionone attracted carpenter bees, but also bees from other functional groups. The benzenoid (E)-methyl cinnamate did not attract significant numbers of pollinators. Thus, ß-ionone functions as a non-specific bee attractant, while apocarotenoid FVs emerge as consistent indicators of pollination by large food-foraging bees among bee-pollinated flowers.


Subject(s)
Flowers/chemistry , Pheromones/chemistry , Pollination/physiology , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Animals , Bees , Behavior, Animal , Cinnamates/chemistry , Cinnamates/metabolism , Food Preferences/physiology , Male , Multivariate Analysis , Norisoprenoids/chemistry , Norisoprenoids/metabolism , Odorants , Pheromones/metabolism , Phylogeny , Reproduction
20.
Xenobiotica ; 51(12): 1427-1435, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34931580

ABSTRACT

Exposure to or ingestion of turpentine can alter the scent of urine, conferring it a flowery, violet-like scent. Turpentine's effect on urine was initially noticed after its use either as medicine or as a preservative in winemaking. Regardless of the source of exposure, the phenomenon requires metabolic conversion of turpentine component(s) to ionone, the molecule mainly responsible for the scent of violets.The purpose of this study was to identify the presence of ionone in the urine of rats that received ß-pinene, and thus to demonstrate that the postulated conversion occurs.We treated rats intraperitoneally with normal saline (negative control), ß-ionone (positive control), low-dose ß-pinene (1/3 of LD50), and high-dose ß-pinene (1/2 of LD50). Urine samples were collected up to 72 h after administration of the compounds, followed by gas chromatography/mass spectrometry identification of the presence of ionone.ß-Ionone was found in the urine of rats exposed to both low and high doses of ß-pinene. In contrast, α-ionone appears unlikely to have been formed in rats exposed to either low or high doses of ß-pinene. ß-pinene was converted to ß-ionone, followed by partial excretion in the urine of rats. ß-Ionone is a minor metabolite of ß-pinene.


Subject(s)
Norisoprenoids , Turpentine , Animals , Bicyclic Monoterpenes , Rats
SELECTION OF CITATIONS
SEARCH DETAIL