Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Chemistry ; 30(38): e202400651, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38705845

ABSTRACT

Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO2) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr -1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

2.
Angew Chem Int Ed Engl ; : e202409526, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39032131

ABSTRACT

The development of active, stable, and more affordable electrocatalysts for acidic oxygen evolution reaction (OER) is of great importance for the practical application of electrolyzers and the advancement of renewable energy conversion technologies. Currently, IrO2 is the only catalyst with high stability and activity, but a high cost. Further optimization of the catalyst is limited by the lack of understanding of catalytic behaviors at the acid-IrO2 interface. Here, in strong interaction with the experiment, we develop an explicit model based on grand-canonical density function theory (GC-DFT) calculations to describe acidic OER over IrO2. Compared to the explicit models reported previously, hydronium cations (H3O+) are introduced at the electrochemical interface in the current model. As a result, a variation in stable IrO2 surface configuration under the OER operating condition from previously proposed complete *O-coverage to a mixture coverage of *OH and *O is revealed, which is well supported by in situ Raman measurements. In addition, the accuracy of predicted overpotential is increased in comparison with the experimentally measured. More importantly, an alteration of the potential limiting step from previously identified *O → *OOH to *OH → *O is observed, which opens new opportunities to advance the IrO2-based catalysts for acidic OER.

3.
Mikrochim Acta ; 190(1): 1, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36456757

ABSTRACT

A portable sensor for visual monitoring of Fe2+ and H2O2, two-dimensional Co3O4 modified by nano-IrO2 (IrO2@2D Co3O4) was prepared in this work, for the first time, with the help of microwave radiation at 140 °C, which was further stabilized onto common test strips. The present IrO2@2D Co3O4 possessed superior dual-function enzyme-like activity with low toxicity and excellent biocompatibility. Especially, trace Fe2+ and H2O2 could exclusively alter their enzyme-like catalytic activity with discriminating hyperchromic or hypochromic effect, i.e., from blue to colorless or to dark blue for both IrO2@2D Co3O4 dispersion and its functionalized test strips. The linear regression equations were A652 = 0.5940 - 0.00041 cFe2+ (10-8 M, R2 = 0.9927) for Fe2+ and ∆A652 = 0.0023 cH2O2 + 0.00025 (10-7 M, R2 = 0.9982) for H2O2, respectively. When applied to visual monitoring of aqueous Fe2+ and intercellular H2O2, the recoveries were 101.2 ~ 102.5% and 95.8 ~ 103.7% with detection limits of 1.25 × 10-8 mol/L and 1.02 × 10-7 mol/L, respectively, far below the permitted values in drinking water set by the World Health Organization. The mechanisms for the enhancing enzyme-mimetic activity of IrO2@2D Co3O4 and its selective responses to Fe2+ and H2O2 were investigated in detail.


Subject(s)
Hydrogen Peroxide , Microwaves , Cobalt , Linear Models
4.
Environ Monit Assess ; 195(1): 14, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36271209

ABSTRACT

Being one of the leading industries worldwide, the textile industry has been consuming large quantities of groundwater and discharging huge volumes of dye-contaminated effluents into our aquatic environment. Augmentation of water sources via reuse of treated effluents is therefore highly necessary. In the present study, the decolorization and degradation of synthetic toxic dye from an aqueous solution were investigated through an electro-biological route. Initially, decolorization of synthetic dye solutions (100, 500, and 1000 mg L-1) was carried out by electrooxidation process using mixed metal oxide and titanium as anode and cathode, respectively. The electrooxidation solutions were further treated using bacteria (Pseudomonas aeruginosa) that were isolated from petroleum-transporting pipelines. UV-Vis, TOC, chemical oxygen demand, and NMR analyses revealed that the biodegradation process with electrooxidation enhanced the mineralization of the synthetic dye solutions. An optimum NaCl electrolyte concentration of 3 g L-1 was sufficient to produce reactive species viz., free chlorine and hypochlorite, which are responsible for the Reactive Blue 19 (RB-19) decolorization. Among the three RB-19 concentrations, the highest removal percentage was noticed at 100 mg L-1 (100%) with energy consumption and energy costs equal to 5.44 kWh m-3 and 0.65 USD m-3, respectively.


Subject(s)
Biological Phenomena , Petroleum , Coloring Agents/chemistry , Chlorine , Titanium/chemistry , Hypochlorous Acid , Sodium Chloride , Environmental Monitoring , Textile Industry , Biodegradation, Environmental , Water
5.
Nanotechnology ; 33(2)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34598175

ABSTRACT

We fabricate porous nanostructured 1µm thick ZnO-metal/metal oxide hybrid material thin films using a unique approach utilizing physical vapor deposition with postdeposition annealing. We study Pt, Pd, Ru, Ir and Sn as the metals and find they all form hybrid structures, however with differing physical and electrochemical properties. We investigate their applicability in microsupercapacitor electrodes in a LiCl aqueous electrolyte and find that the ZnO hybrid with Ir exhibits the highest capacitances. We follow with optimization and more detailed material studies of the ZnO-Ir hybrid showing that a significant amount of Ir is present in the material in the form of metallic Ir and indiffused Ir, while IrO2is also present in the nanoscale. We obtain electrodes with 5.25 mF · cm-2capacitance with 90% retention over 10 000 charge/discharge cycles in an aqueous LiCl electrolyte, which is better than the reported values for other Ir-based hybrids. Finally, we showed that the electrodes provide 2.64 mF · cm-2in a symmetric device with an operating voltage of 0.8 V. With this report, we discuss the influence of both Ir and IrO2on the capacitance, underlining the synergistic effect, and show them as promising inorganic matterials for integration with other supercapacitor electrodes.

6.
Mikrochim Acta ; 187(2): 110, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31916015

ABSTRACT

The authors describe a peroxidase-mimicking nanozyme composed of IrO2 and graphene oxide (GO). It was synthesized from monodisperse IrO2 nanoparticles with an average diameter of 1.7 ± 0.3 nm that were prepared by pulsed laser ablation in ethanol. The nanoparticles were then placed on polyallylamine-modified GO nanosheets through electrostatic interaction. The peroxidase-like activity of the resulting nanocomposites was evaluated by catalytic oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. Kinetic results demonstrated that the catalytic behavior of the nanocomposites follows Michaelis-Menten kinetics. Experiments performed with terephthalic acid and cytochrome C confirmed that the peroxidase-like activity originated from the electron transfer mechanism rather than from generation of hydroxy radicals. The peroxidase-like activity is inhibited in the presence of ascorbic acid (AA). Based on this property, a colorimetric assay was developed for the determination of AA by exploiting the peroxidase-like activity of IrO2/GO nanocomposites. The linear relationship between absorbance at 652 nm and the concentration of AA was acquired. The limit of detection for AA is 324 nM. Further applications of the method for AA detection in real samples were also successfully demonstrated. Graphical abstractSchematic of the preparation of polyallylamine (PAH)-stabilized IrO2/GO nanocomposites and the colorimetric detection of AA based on the peroxidase-like activity of IrO2/GO nanocomposites.


Subject(s)
Ascorbic Acid/analysis , Graphite/chemistry , Iridium/chemistry , Metal Nanoparticles/chemistry , Polyamines/chemistry , Ascorbic Acid/chemistry , Benzidines/chemistry , Catalysis , Colorimetry/methods , Coloring Agents/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Nanocomposites/chemistry , Oxidation-Reduction , Peroxidase/chemistry
7.
Mikrochim Acta ; 187(12): 675, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33241461

ABSTRACT

A highly sensitive colorimetric sensing strategy based on enzyme@metal-organic framework (GAA@Cu-MOF) and IrO2/MnO2 nanocomposite was exploited innovatively for screening of α-glucosidase (GAA) inhibitors. IrO2/MnO2 nanocomposite exhibits excellent oxidase-mimicking activity which can directly catalyze the oxidation of 3,3,5,5,-tetramethylbenzidine (TMB) into a blue product with an absorption maximum at 652 nm. And GAA@Cu-MOF can decompose L-ascorbic acid-2-O-α-D-glucopyranosyl (AAG) to ascorbic acid (AA). The produced AA can destroy the IrO2/MnO2 nanocomposite and reduce its oxidase-like activity. However, the generation of AA is restricted when GAA inhibitors are added to the system, which allows the oxidase-like activity of the IrO2/MnO2 nanocomposite to be maintained. In view of this, a method for screening of GAA inhibitors was developed. In addition to enhancing the stability of GAA, the method can also effectively avoid the potential interference of H2O2 in the screening process of GAA inhibitors, which helps to improve the sensitivity of the method. Therefore, highly sensitive determination for acarbose and ascorbic acid are achieved with detection limits of 6.27 nM and 1.23 µM, respectively. The proposed method was successfully applied to screen potential GAA inhibitors from oleanolic acid derivatives. Graphical abstract.


Subject(s)
Colorimetry/methods , Glycoside Hydrolase Inhibitors/analysis , Metal-Organic Frameworks/chemistry , Nanocomposites/chemistry , alpha-Glucosidases/metabolism , Acarbose/analysis , Ascorbic Acid/analysis , Catalysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Iridium/chemistry , Limit of Detection , Manganese Compounds/chemistry , Oxides/chemistry , alpha-Glucosidases/chemistry
8.
J Environ Manage ; 265: 110571, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32421562

ABSTRACT

Electrochemical treatments of coking wastewater (CW) and coal gasification wastewater (CGW) were conducted with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. The performances of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes were investigated by analyzing the effects of five key influencing factors including anodes material, current density, anode-cathode distance, initial pH value, and electrolyte type. The removal efficiencies of total organic carbon (TOC) were analyzed during the processes of CW and CGW electro-oxidation. The removal efficiencies of sixteen polynuclear aromatic hydrocarbons (PAHs) in CW and CGW by electro-oxidation were also explored to further assess the electrochemical activities of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. The Ti/Ti4O7 anode achieved 78.7% COD removal efficiency of CW, 85.8% COD removal efficiency of CGW, 50.3% TOC removal efficiency of CW, and 54.8% TOC removal efficiency of CGW, higher than the Ti/RuO2-IrO2 anode (76.7%, 78.1%, 44.8% and 46.8%). The COD removal efficiencies increased with the applied current density, decreased with the increase of the anode-cathode distance, and slightly decreased with the increase of the initial pH value. Meanwhile, the removal efficiencies of sixteen PAHs by the Ti/Ti4O7 anode were mostly higher than those by the Ti/RuO2-IrO2 anode. By comprehensively analyzing the performances of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes on electrochemical treatments of CW and CGW, this study may supply insights into the application potentials of these anodes to the electrochemical treatments of real wastewater.


Subject(s)
Coke , Water Pollutants, Chemical , Coal , Electrodes , Oxidation-Reduction , Titanium , Wastewater
9.
Sensors (Basel) ; 19(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013700

ABSTRACT

The most vital step in the development of novel and existing surface acoustic wave (SAW)-based sensors and transducers is their design and optimization. Demand for SAW devices has been steadily increasing due to their low cost, portability, and versatility in electronics, telecommunications, and biosensor applications. However, a full characterization of surface acoustic wave biosensors in a three-dimensional (3D) finite element model has not yet been developed. In this study, a novel approach is developed for analyzing shear horizontal Love wave resonator devices. The developed modeling methodology was verified using fabricated devices. A thorough analysis of the 3D model and the experimental device was performed in this study including scattering parameters (S-parameters), reflection coefficient parameters, transmission parameters, and phase velocity. The simulated results will be used as a design guideline for future device design and optimization, which has thus far resulted in close matching between prediction and experimental results. This manuscript is the first to demonstrate a 3D finite element model to correlate the sensitivity of the SAW device with the magnitude of the phase shift, the real and imaginary part of the response, insertion loss, and the frequency shift. The results show that the imaginary part of the response shift has a higher sensitivity compared to other parameters.

10.
J Hazard Mater ; 470: 134228, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626683

ABSTRACT

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Subject(s)
Arsenic , Cadmium , Gene Expression Regulation, Plant , Lolium , Plant Growth Regulators , Stress, Physiological , Cadmium/toxicity , Lolium/drug effects , Lolium/metabolism , Lolium/genetics , Arsenic/toxicity , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Indoleacetic Acids/metabolism , Abscisic Acid/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
11.
Anal Chim Acta ; 1298: 342408, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462333

ABSTRACT

BACKGROUND: In vitro screening strategies based on the inhibition of α-glucosidase (GAA) activity have been widely used for the discovery of potential antidiabetic drugs, but they still face some challenges, such as poor enzyme stability, non-reusability and narrow range of applicability. To overcome these limitations, an in vitro screening method based on GAA@GOx@Cu-MOF reactor was developed in our previous study. However, the method was still not satisfactory enough in terms of construction cost, pH stability, organic solvent resistance and reusability. Thence, there is still a great need for the development of in vitro screening methods with lower cost and wider applicability. RESULTS: A colorimetric sensing strategy based on GAA/(Au-Au/IrO2)@Cu(PABA) cascade catalytic reactor, which constructed through simultaneous encapsulating Au-Au/IrO2 nanozyme with glucose oxidase-mimicking and peroxidase-mimicking activities and GAA in Cu(PABA) carrier with peroxidase-mimicking activity, was innovatively developed for in vitro screening of GAA inhibitors in this work. It was found that the reactor not only exhibited excellent thermal stability, pH stability, organic solvent resistance, room temperature storage stability, and reusability, but also possessed cascade catalytic performance, with approximately 12.36-fold increased catalytic activity compared to the free system (GAA + Au-Au/IrO2). Moreover, the in vitro GAA inhibitors screening method based on this reactor demonstrated considerable anti-interference performance and detection sensitivity, with a detection limit of 4.79 nM for acarbose. Meanwhile, the method owned good reliability and accuracy, and has been successfully applied to the in vitro screening of oleanolic acid derivatives as potential GAA inhibitors. SIGNIFICANCE: This method not only more effectively solved the shortcomings of poor stability, narrow scope of application, and non-reusability of natural enzymes in the classical method compared with our previous work, but also broaden the application scope of Au-Au/IrO2 nanozyme with glucose oxidase and peroxidase mimicking activities, and Cu(PABA) carrier with peroxidase mimicking activity, which was expected to be a new generation candidate method for GAA inhibitor screening.


Subject(s)
4-Aminobenzoic Acid , Glycoside Hydrolase Inhibitors , Glycoside Hydrolase Inhibitors/pharmacology , Glucose Oxidase , Reproducibility of Results , Colorimetry/methods , Peroxidases , Solvents , Hydrogen Peroxide
12.
Sci Rep ; 14(1): 9821, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684728

ABSTRACT

Dimensionally stable anodes of titanium (Ti) metal coated with mixed metal oxides (MMO) are widely used in several electrochemical applications, especially chloro-alkali electrolysis. Herein, we deposited MMO coatings on Ti substrates in different compositions, namely, (60%RuO2-40%TiO2), (60%RuO2-30%TiO2-10%IrO2), and (60%RuO2-20%TiO2-15%IrO2-5%Ta2O5), where RuO2 has the same percentage ratio in all coatings. The aim was to use these electrodes for chlorine evolution reaction (CER) and oxygen evolution reaction (OER) applications. Electrochemical characterization of the coated samples was performed to identify the best Ti/MMO electrodes with the highest efficiencies among the various prepared combinations. The role of IrO2 and Ta2O5 in enhancing corrosion resistance and electrochemical efficacy was up for debate. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses were exploited to determine the surface morphology, chemical composition, crystallinity, surface composition, and chemical states of the acquired coatings. The differential scanning calorimetry (DSC) method was used to evaluate the apparent activation energy ( E a ) of the deposited MMO. Additionally, the electrochemical performance of our designed coatings was scrutinized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), a current on-off test, a CV stability test (ST), and an accelerated stability test (AST). Furthermore, linear sweep voltammetry (LSV) was incorporated to assess the catalytic efficacy of the prepared anodes toward the CER in a brine solution of pH 2 and the OER in 1 M H2SO4. It became clear that the CER and OER incurred almost the same potential value (1.1 V) on both Ti/RuO2-TiO2 and Ti/RuO2-TiO2-IrO2 electrodes. However, on the Ti/RuO2-TiO2-IrO2-Ta2O5 anode, there was a 0.2 V potential difference between the CER occurring at 1.1 V and the OER happening at 1.3 V.

13.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985871

ABSTRACT

In vitro and in vivo stimulation and recording of neuron action potential is currently achieved with microelectrode arrays, either in planar or 3D geometries, adopting different materials and strategies. IrO2 is a conductive oxide known for its excellent biocompatibility, good adhesion on different substrates, and charge injection capabilities higher than noble metals. Atomic layer deposition (ALD) allows excellent conformal growth, which can be exploited on 3D nanoelectrode arrays. In this work, we disclose the growth of nanocrystalline rutile IrO2 at T = 150 °C adopting a new plasma-assisted ALD (PA-ALD) process. The morphological, structural, physical, chemical, and electrochemical properties of the IrO2 thin films are reported. To the best of our knowledge, the electrochemical characterization of the electrode/electrolyte interface in terms of charge injection capacity, charge storage capacity, and double-layer capacitance for IrO2 grown by PA-ALD was not reported yet. IrO2 grown on PtSi reveals a double-layer capacitance (Cdl) above 300 µF∙cm-2, and a charge injection capacity of 0.22 ± 0.01 mC∙cm-2 for an electrode of 1.0 cm2, confirming IrO2 grown by PA-ALD as an excellent material for neuroelectronic applications.

14.
Nanomaterials (Basel) ; 13(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37513142

ABSTRACT

The present work reports on the synthesis and characterization of iridium (Ir)-based nanohybrids with variable chemical compositions. More specifically, highly stable polyvinylpyrrolidone (PVP) nanohybrids of the PVP-IrO2 and PVP-Ir/IrO2 types, as well as non-coated Ir/IrO2 nanoparticles, are synthesized using different synthetic protocols and characterized in terms of their chemical composition and morphology via X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM), respectively. Furthermore, their nonlinear optical (NLO) response and optical limiting (OL) efficiency are studied by means of the Z-scan technique, employing 4 ns laser pulses at 532 and 1064 nm. The results demonstrate that the PVP-Ir/IrO2 and Ir/IrO2 systems exhibit exceptional OL performance, while PVP-IrO2 presents very strong saturable absorption (SA) behavior, indicating that the present Ir-based nanohybrids could be strong competitors to other nanostructured materials for photonic and optoelectronic applications. In addition, the findings denote that the variation in the content of IrO2 nanoparticles by using different synthetic pathways significantly affects the NLO response of the studied Ir-based nanohybrids, suggesting that the choice of the appropriate synthetic method could lead to tailor-made NLO properties for specific applications in photonics and optoelectronics.

15.
Chemosphere ; 331: 138777, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37121287

ABSTRACT

In this work, the electrolytic process conditions for the electrochemical oxidation (EO) of composting leachate biochemical effluent (CLBE) were optimized via the response surface methodology (RSM). Meanwhile, a comparative study had been done on the failure characteristics of Ti/RuO2-IrO2 anodes in a single electrolyte solution system (H2SO4 and NaCl) and real wastewater (CLBE) by accelerated life tests, respectively. The RSM optimization results showed that the COD, NH3-N and TN removal rates were 50.53%, 100% and 95.61% at 30 min, respectively, with a desirability value of 0.993. In parallel, the electrochemical and material characterizations were carried out on the electrodes before and after failure, by which the failure mechanism of Ti/RuO2-IrO2 anodes was clarified. On the whole, the true failure in the H2SO4 solution was attributed to coating dissolution and Ti substrate oxidation. In contrast, the electrode exhibited "apparent failure" due to the "bubble effect" in both NaCl and CLBE solutions, and the "effective roughness" formed compensated for the loss of activity caused by the absence of the coating. Besides, additional dissolution of the Ti substrate occurred in the CLBE solution due to the current edge effect and the presence of organic matter. This paper takes the actual wastewater as the research object and reveals its electrode failure mechanism, which provides a theoretical basis and reference for the subsequent optimization of the actual electrode service life.


Subject(s)
Composting , Water Pollutants, Chemical , Wastewater , Titanium/chemistry , Sodium Chloride , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Electrodes
16.
Chemosphere ; 338: 139510, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454991

ABSTRACT

This study utilizes artificial intelligence and statistical modelling to optimize the operating parameters of a carbon-based electro-Fenton process for purifying model dye (RB19)-contaminated wastewater. Multilevel experimental Box-Behnken and uniform deisgns (BBD, UD) with four variables were analysed using polynomial regression analysis (PRA) and artificial neural networks (ANN), while the process optimisation was done using desirability function. For the given testing range but different design matrices and runs, both designs predicted a maximum RB19 removal (RB19-RR) of 90 ± 2.1% at lowest energy consumption (EC) of 0.44 ± 2.5 Wh, when voltage, Na2SO4, FeSO4, and time were maintained as follows: 4-5.3 V, 7-11 mM, 0.4-0.6 mM, and 35-40 min, respectively. All the design-model combinations portrayed the similar senitivity analyses, revealing that RB19 degradation and EC are primarily influenced by electrolysis time and voltage. The performance assessment demonstrated that all the design-model combinations also excellently predicted for unseen conditions as the maximum root mean squared error (RMSE) value for RB19-RR was 4.07, while it was 0.072 for EC, however, BBD-ANN performance proved to be slightly better than others. Having ∼57% less experimentation, UD based models managed to accurately predict the results for unseen conditions as the statistical errors were quite insignificant, even in some cases, RMSE found to be less for UD compared to BBD, elucidating the potential of uniform design as an alternative of conventional factorial designs. Nevertheless, the prediction accuracy is also dependent on modelling approach, as in some cases ANN failed to predict the response precisely specially when dealing with small data. Furthermore, techno-economic evaluation results spell out the efficacy of carbon felt based enhanced electro-Fenton process as promising environmental remediation technology and highlight its practical implication from view of operational cost.


Subject(s)
Wastewater , Water Pollutants, Chemical , Carbon , Carbon Fiber , Artificial Intelligence , Electrolysis , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/analysis , Oxidation-Reduction
17.
Materials (Basel) ; 16(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570116

ABSTRACT

We have assessed new anodic coloring materials that can be used as ion storage layers in complementary energy storage electrochromic devices (ESECDs) to enhance their electrochromic storage performance. In our study, we fabricated counter electrodes (ion storage layers) using an IrO2-doping NiO (Ir:NiO) film through cathodic arc plasma (CAP) with varying surface charge capacities. We have also investigated the influence of a MoO3-doped WO3 (Mo:WO3) film using various Ar/O2 gas flow ratios (1/4, 1/5, and 1/6, respectively). The ESECDs used in the demonstration were 10 × 10 cm2 in size and achieved an optical transmittance modulation of the Ir:NiO ESECDs (glass/ITO/ Mo:WO3/gel polymer electrolytes/ Ir:NiO/ITO/glass), with ΔT = 53.3% (from Tbleaching (66.6%) to Tcoloration (13.1%)). The ESECDs had a quick coloration time of 3.58 s, a rapid bleaching time of 1.24 s, and a high cycling durability. Furthermore, it remained at a 45% transmittance modulation level even after 3000 cycles. New anodic materials can thereby provide an alternative to traditional active materials for bi-functional electrochromic batteries.

18.
J Phys Condens Matter ; 34(28)2022 May 13.
Article in English | MEDLINE | ID: mdl-34927604

ABSTRACT

Undercoordinated, bridging O-atoms (Obr) are highly active as H-acceptors in alkane dehydrogenation on IrO2(110) surfaces but transform to HObrgroups that are inactive toward hydrocarbons. The low C-H activity and high stability of the HObrgroups cause the kinetics and product selectivity during CH4oxidation on IrO2(110) to depend sensitively on the availability of Obratoms prior to the onset of product desorption. From temperature programmed reaction spectroscopy (TPRS) and kinetic simulations, we identified two Obr-coverage regimes that distinguish the kinetics and product formation during CH4oxidation on IrO2(110). Under excess Obrconditions, when the initial Obrcoverage is greater than that needed to oxidize all the CH4to CO2and HObrgroups, complete CH4oxidation is dominant and produces CO2in a single TPRS peak between 450 and 500 K. However, under Obr-limited conditions, nearly all the initial Obratoms are deactivated by conversion to HObror abstracted after only a fraction of the initially adsorbed CH4oxidizes to CO2and CO below 500 K. Thereafter, some of the excess CHxgroups abstract H and desorb as CH4above ∼500 K while the remainder oxidize to CO2and CO at a rate that is controlled by the rate at which Obratoms are regenerated from HObrduring the formation of CH4and H2O products. We also show that chemisorbed O-atoms ('on-top O') on IrO2(110) enhance CO2production below 500 K by efficiently abstracting H from Obratoms and thereby increasing the coverage of Obratoms available to completely oxidize CHxgroups at low temperature. Our results provide new insights for understanding factors which govern the kinetics and selectivity during CH4oxidation on IrO2(110) surfaces.

19.
J Colloid Interface Sci ; 605: 851-862, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34371428

ABSTRACT

Photodynamic therapy (PDT) of tumor has achieved good results, but the treatment efficiency is not high due to the lack of effective photosensitizers and tumor hypoxia. In this study, iridium dioxide nanoparticles (IrO2 NPs) with excellent photothermal/photodynamic effects and catalase like activity were synthesized by a simple method. The combination of glucose oxidase (GOx) and IrO2 NPs is formed by hyaluronic acid (HA), which have the activities of glucose oxidase and catalase, can target tumor sites and form in situ amplifiers in tumor microenvironment (IrO2-GOx@HA NPs). Firstly, GOx convert the high levels of glucose in the tumor to hydrogen peroxide (H2O2), and then IrO2 NPs convert H2O2 to oxygen (O2), which can enhance the type II of PDT. IrO2 NPs also can be used as a thermosensitive agent for photothermal therapy (PTT). In cancer cells, IrO2-GOx@HA NPs-mediated amplifier enhances the effect of type II of PDT, aggravating the apoptosis of breast cancer (4T1) cells and cooperating with its own PTT to further improve the overall treatment effect. Under simulated hypoxic conditions of tumor tissue, it was found that IrO2-GOx@HA NPs treatment can effectively relieve hypoxia inside tumor tissue. In addition, the results in vivo further proved that, IrO2-GOx@HA NPs can enhance the role of II PDT and cooperate with PTT to treat breast cancer effectively. The results highlight the prospect of IrO2-GOx@HA NPs in controlling and regulating tumor hypoxia to overcome the limitations of current cancer therapy.


Subject(s)
Breast Neoplasms , Nanoparticles , Neoplasms , Photochemotherapy , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Hydrogen Peroxide , Iridium , Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photothermal Therapy , Tumor Microenvironment
20.
Front Chem ; 10: 900962, 2022.
Article in English | MEDLINE | ID: mdl-35720989

ABSTRACT

Nitrate pollution is already a global problem, and the electrocatalytic reduction of nitrate is a promising technology for the remediation of wastewater and polluted water bodies. In this work, Co3O4/Ti electrodes were prepared by electrodeposition for the electrocatalytic reduction of nitrate. The morphology, chemical, and crystal structures of Co3O4/Ti and its catalytic activity were investigated. Then, the electrocatalytic nitrate reduction performance of Co3O4/Ti as the cathode was evaluated by monitoring the removal efficiencies of nitrate (NO3 --N) and total nitrogen (TN), generation of reduction products, current efficiency (CE), and energy consumption (EC) at different operating conditions. Under the catalysis of Co3O4/Ti, NO3 - was reduced to N2 and NH4 +, while no NO2 - was produced. After the introduction of chloride ions and IrO2-RuO2/Ti as the anode, NH4 + was selectively oxidized to N2. The removal efficiencies of NO3 --N (at 100 mg/L) and TN after 2 h were 91.12% and 60.25%, respectively (pH 7.0; Cl- concentration, 2000 mg/L; current density, 15 mA/cm2). After 4 h of operation, NO3 --N and TN were completely removed. However, considering the EC and CE, a 2-h reaction was the most appropriate. The EC and CE were 0.10 kWh/g NO3 -N and 40.3%, respectively, and electrocatalytic performance was maintained after 10 consecutive reduction cycles (2 h each). The cathode Co3O4/Ti, which is prepared by electrodeposition, can effectively remove NO3 --N, with low EC and high CE.

SELECTION OF CITATIONS
SEARCH DETAIL