Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
Add more filters

Publication year range
1.
Apoptosis ; 29(9-10): 1738-1756, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38641760

ABSTRACT

To investigate the protective role of immune response gene 1 (IRG1) and exogenous itaconate in autoimmune hepatitis (AIH) and elucidate the underlying mechanisms. Wild-type and IRG1-/- AIH mouse models were established, and samples of liver tissue and ocular blood were collected from each group of mice to assess the effects of IRG1/itaconate on the expression of pro- and anti-inflammatory cytokines. The levels of liver enzymes and related inflammatory factors were determined using enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR). Liver histomorphology was detected through hematoxylin and eosin staining and then scored for liver injury, and the infiltration levels of tissue-resident memory T (TRM) cells and related molecules in the liver tissue were detected through immunofluorescence staining in vitro. RNA sequencing and gene enrichment analysis were conducted to identify the corresponding molecules and pathways, and lentiviral transfection was used to generate TRM cell lines with IRG1, Jak3, Stat3, and p53 knockdown. Real-time quantitative PCR and western blot were performed to detect the expression levels of relevant mRNAs and proteins in the liver tissue and cells. The percentage of apoptotic cells was determined using flow cytometry. IRG1/itaconate effectively reduced the release of pro-inflammatory cytokines and the pathological damage to liver tissue, thereby maintaining normal liver function. At the same time, IRG1/itaconate inhibited the JAK3/STAT3 signaling pathway, regulated the expression of related downstream proteins, and inhibited the proliferation and promoted the apoptosis of CD69+CD103+CD8+ TRM cells. For the first time, P53 was found to act as a downstream molecule of the JAK3/STAT3 pathway and was regulated by IRG1/itaconate to promote the apoptosis of CD8+ TRM cells. IRG1/itaconate can alleviate concanavalin A-induced autoimmune hepatitis in mice by inhibiting the proliferation and promoting the apoptosis of CD69+CD103+CD8+ TRM cells via the JAK3/STAT3/P53 pathway.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Apoptosis , CD8-Positive T-Lymphocytes , Cell Proliferation , Hepatitis, Autoimmune , Integrin alpha Chains , Janus Kinase 3 , STAT3 Transcription Factor , Tumor Suppressor Protein p53 , Animals , Mice , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/metabolism , Apoptosis/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/pathology , Hepatitis, Autoimmune/genetics , Hepatitis, Autoimmune/drug therapy , Integrin alpha Chains/genetics , Integrin alpha Chains/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Janus Kinase 3/antagonists & inhibitors , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Liver/pathology , Liver/drug effects , Liver/metabolism , Liver/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Memory T Cells/drug effects , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
2.
Hematol Oncol ; 42(1): e3233, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37876297

ABSTRACT

Peripheral T-cell lymphoma (PTCL) is a clinically heterogeneous group that represents 10%-15% of all lymphomas. Despite improved genetic and molecular understanding, treatment outcomes for PTCL have not shown significant improvement. Although Janus kinase-2 (JAK2) plays an important role in myeloproliferative neoplasms, the critical role of JAK isoforms in mediating prosurvival signaling in PTCL cells is not well defined. Immunohistochemical analysis of PTCL tumors (n = 96) revealed high levels of constitutively active JAK3 (pJAK3) that significantly (p < 0.04) correlated with the activation state of its canonical substrate STAT3. Furthermore, constitutive activation of JAK3 and STAT3 positively correlated, at least in part, with an oncogenic tyrosine phosphatase PTPN11. Pharmacological inhibition of JAK3 but not JAK1/JAK2 significantly (p < 0.001) decreased PTCL proliferation, survival and STAT3 activation. A sharp contrast was observed in the pJAK3 positivity between ALK+ (85.7%) versus ALK-negative (10.0%) in human PTCL tumors and PTCL cell lines. Moreover, JAK3 and ALK reciprocally interacted in PTCL cells, forming a complex to possibly regulate STAT3 signaling. Finally, combined inhibition of JAK3 (by WHI-P154) and ALK (by crizotinib or alectinib) significantly (p < 0.01) decreased the survival of PTCL cells as compared to either agent alone by inhibiting STAT3 downstream signaling. Collectively, our findings establish that JAK3 is a therapeutic target for a subset of PTCL, and provide rationale for the clinical evaluation of JAK3 inhibitors combined with ALK-targeted therapy in PTCL.


Subject(s)
Lymphoma, T-Cell, Peripheral , Humans , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/genetics , Cell Line, Tumor , Signal Transduction , Phosphorylation , Receptor Protein-Tyrosine Kinases , Janus Kinase 3
3.
J Pathol ; 259(2): 180-193, 2023 02.
Article in English | MEDLINE | ID: mdl-36373877

ABSTRACT

Radiation enteritis (RE) is a prevalent complication of radiotherapy for pelvic malignant tumors, characterized by severe intestinal epithelial destruction and progressive submucosal fibrosis. However, little is known about the pathogenesis of this disease, and so far, there is no specific targeted therapy. Here, we report that CXCL16 is upregulated in the injured intestinal tissues of RE patients and in a mouse model. Genetic deletion of Cxcl16 mitigates fibrosis and promotes intestinal stem cell-mediated epithelial regeneration after radiation injury in mice. Mechanistically, CXCL16 functions on myofibroblasts through its receptor CXCR6 and activates JAK3/STAT3 signaling to promote fibrosis and, at the same time, to transcriptionally modulate the levels of BMP4 and hepatocyte growth factor (HGF) in myofibroblasts. Moreover, we find that CXCL16 and CXCR6 auto- and cross-regulate themselves in positive feedback loops. Treatment with CXCL16 neutralizing monoclonal antibody attenuates fibrosis and improves the epithelial repair in RE mouse model. Our findings emphasize the important role of CXCL16 in the progression of RE and suggest that CXCL16 signaling could be a potential therapeutic target for RE. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Chemokine CXCL16 , Enteritis , Radiation Injuries , Animals , Mice , Chemokine CXCL16/metabolism , Enteritis/etiology , Enteritis/metabolism , Fibrosis , Radiation Injuries/genetics , Receptors, CXCR6 , Regeneration
4.
Bioorg Chem ; 152: 107762, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39222556

ABSTRACT

The JAK-STAT signalling pathway is considered to be a significant role involved in the regulation of inflammatory diseases and immune responses, which indicate that specific inhibition of JAK-STAT pathway would be a potential key strategy for RA (Rheumatoid arthritis) treatment. Cedrol (CE), found from ginger by our group earlier, has been proven to play an excellent role in ameliorating RA via acting on JAK3. In this study, 27 new (1, 3-28), along with one known (2) derivatives of CE were synthesized by using chloroacetic acid and acryloyl chloride as intermediate ligands. In vitro, the inhibition effect on JAK kinases were performed using HTRF (Homogenous Time-Resolved Fluorescence) detection technology, which is more convenient and stable than traditional methods. The results compared with the secretion of LPS-induced p-JAK3 can better reflect the true kinase-selective effect of the compounds. Compound 22 was identified as a potent inhibitor to reduce the secretion of LPS-induced p-JAK3 with a dose-dependent manner. Given these results, compound 22 could serve as a favourable inhibitor of JAK3 for further research.


Subject(s)
Dose-Response Relationship, Drug , Drug Design , Janus Kinase 3 , Protein Kinase Inhibitors , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/metabolism , Humans , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Drug Evaluation, Preclinical
5.
Bioorg Chem ; 149: 107499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815476

ABSTRACT

Janus Kinase 3 (JAK3) is important for the signaling transduction of cytokines in immune cells and is identified as potential target for treatment of rheumatoid arthritis (RA). Recently, we designed and synthesized two JAK3 inhibitors J1b and J1f, which featured with high selectivity but mild bioactivity. Therefore, in present study the structure was optimized to increase the potency. As shown in the results, most of the compounds synthesized showed stronger inhibitory activities against JAK3 in contrast to the lead compounds, among which 9a was the most promising candidate because it had the most potent effect in ameliorating carrageenan-induced inflammation of mice and exhibited low acute in vivo toxicity (MTD > 2 g/kg). Further analysis revealed that 9a was highly selective to JAK3 (IC50 = 0.29 nM) with only minimal effect on other JAK members (>3300-fold) and those kinases bearing a thiol in a position analogous to that of Cys909 in JAK3 (>150-fold). Meanwhile, the selectivity of JAK3 was also confirmed by PBMC stimulation assay, in which 9a irreversibly bound to JAK3 and robustly inhibited the signaling transduction with mild suppression on other JAKs. Moreover, it was showed that 9a could remarkably inhibited the proliferation of lymphocytes in response to concanavalin A and significantly mitigate disease severity in collagen induced arthritis. Therefore, present data indicate that compound 9a is a selective JAK3 inhibitor and could be a promising candidate for clinical treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Janus Kinase 3 , Protein Kinase Inhibitors , Pyrimidines , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/metabolism , Arthritis, Rheumatoid/drug therapy , Animals , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Humans , Structure-Activity Relationship , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Carrageenan , Male , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/chemical synthesis , Molecular Docking Simulation
6.
Bioorg Chem ; 151: 107709, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137599

ABSTRACT

Ginger is an important cooking spice and herb worldwide, and scientific research has gradually confirmed the effect of ginger on preventing hair loss. Cedrol (CE) is a small sesquiterpene molecule in ginger and its external administration (EA) has shown hope in promoting hair growth, and alternative administration mode has become a potential treatment scheme to improve the efficacy of CE. The purpose of this study is to evaluate the effects of oral administration (OA) and EA of CE on hair regeneration of C57BL/6 alopecia areata (AA) mice induced by cyclophosphamide (CP) and to clarify the potential hair growth mechanism of CE in AA model in vitro and in vivo. The results showed that CE-OA has a shorter hair-turning black time and faster hair growth rate, and can lessen hair follicle damage induced by CP and promote hair follicle cell proliferation. Its effect is superior to CE-EA. At the same time, CE can increase the cytokines IFN-γ, IL-2, and IL-7 in the serum of mice, and decrease the expression of adhesion factors ICAM-1 and ELAM-1, thus alleviating the immunosuppression induced by CP. Mechanism research shows that CE regulates the JAK3/STAT3 signaling pathway, activates the Wnt3α/ß-catenin germinal center, and ameliorates oxidative stress induced by CP, thus promoting the proliferation of hair follicle cells and reversing AA. These results provide a theoretical basis for understanding the anti-AA mechanism of CE-OA, indicating that CE can be used as raw material for developing oral hair growth drugs.


Subject(s)
Mice, Inbred C57BL , Sesquiterpenes , Zingiber officinale , Animals , Zingiber officinale/chemistry , Administration, Oral , Mice , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Hair/drug effects , Hair/chemistry , Cell Proliferation/drug effects , Regeneration/drug effects , Hair Follicle/drug effects , Hair Follicle/metabolism , Molecular Structure , Male , Dose-Response Relationship, Drug , Alopecia Areata/drug therapy , Structure-Activity Relationship , Cyclophosphamide/pharmacology , Polycyclic Sesquiterpenes
7.
Mol Divers ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009908

ABSTRACT

Accumulated research strongly indicates that Janus kinase 3 (JAK3) is intricately involved in the initiation and advancement of a diverse range of human diseases, underscoring JAK3 as a promising target for therapeutic intervention. However, JAK3 shows significant homology with other JAK family isoforms, posing substantial challenges in the development of JAK3 inhibitors. To address these limitations, one strategy is to design selective covalent JAK3 inhibitors. Therefore, this study introduces a virtual screening approach that combines common feature pharmacophore modeling, covalent docking, and consensus scoring to identify novel inhibitors for JAK3. First, common feature pharmacophore models were constructed based on a selection of representative covalent JAK3 inhibitors. The optimal qualitative pharmacophore model proved highly effective in distinguishing active and inactive compounds. Second, 14 crystal structures of the JAK3-covalent inhibitor complex were chosen for the covalent docking studies. Following validation of the screening performance, 5TTU was identified as the most suitable candidate for screening potential JAK3 inhibitors due to its higher predictive accuracy. Finally, a virtual screening protocol based on consensus scoring was conducted, integrating pharmacophore mapping and covalent docking. This approach resulted in the discovery of multiple compounds with notable potential as effective JAK3 inhibitors. We hope that the developed virtual screening strategy will provide valuable guidance in the discovery of novel covalent JAK3 inhibitors.

8.
Mol Divers ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141207

ABSTRACT

Rheumatoid Arthritis (RA) is a persistent autoimmune disease affecting approximately 0.5-1 percent of the world population. RA prevalence is higher in woman aged between 35 and 50 years than in age matched men, though this difference is less evident among elderly patients. The profound immune specific effects of disrupted JAK 3 (Janus kinase 3) signaling highlight the possibility of therapeutic targeting of JAK3 as a highly specific mode of immune system suppression. To address the above problem which is unendurable to patients and in the hope to cater some respite to such suffering we have targeted JAK 3 protein and JAK/STAT signaling pathway with compounds downloaded from FDA database, and performed screening of all available compounds docked against JAK3 protein. The difference between the target protein and other proteins of the same family was studied using cross docking and the compounds having higher binding affinity to JAK3 protein also showed more selectivity towards the particular protein. Density functional theory and molecular dynamics simulation study was done to study the compounds at their atomic level to know more about their drug likeliness. At the end of the study and based on our analysis we have come up with three FDA approved drugs that can be proposed as a treatment option for Rheumatoid Arthritis.

9.
Immun Ageing ; 21(1): 59, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237911

ABSTRACT

Natural killer (NK) cells are crucial innate immune cells that provide defense against viruses and tumors. However, aging is associated with alterations in NK cell composition and compromised cell functions. Melatonin, known for its anti-tumor effects, has been reported to improve NK cell function. However, the molecular mechanism underlying melatonin's effect on senescent NK cells remains unclear. In this study, we aimed to elucidate the mechanism by which melatonin enhances the function of senescent NK cells. Our findings revealed that melatonin significantly increased the number and function of NK cells in aging mice. The results suggest that melatonin enhances NK cell proliferation, degranulation, and IFN-γ secretion. Further investigations demonstrated that melatonin promotes NK cell maturation and activation, mainly via the JAK3/STAT5 signaling pathway, leading to increased expression of T-bet. These discoveries provide a theoretical basis for potential immunotherapy strategies based on melatonin-mediated modulation of NK cell function in aging individuals.

10.
Arch Pharm (Weinheim) ; 357(6): e2300753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442328

ABSTRACT

Selective inhibition of Janus kinase 3 (JAK3) is a promising strategy for the treatment of autoimmune diseases. Based on the discovery of a hydrophobic pocket unutilized between the lead compound RB1 and the JAK3 protein, a series of covalent JAK3 inhibitors were prepared by introducing various aromatic fragments to RB1. Among them, J1b (JAK3 IC50 = 7.2 nM, other JAKs IC50 > 1000 nM) stood out because of its low toxicity (MTD > 2 g/kg) and superior anti-inflammatory activity in Institute of Cancer Research mice. Moreover, the acceptable bioavailability (F% = 31.69%) ensured that J1b displayed excellent immune regulation in collagen-induced arthritis mice, whose joints in the high-dose group were almost recovered to a normal state. Given its clear kinase selectivity (Bmx IC50 = 539.9 nM, other Cys909 kinases IC50 > 1000 nM), J1b was nominated as a highly selective JAK3 covalent inhibitor, which could be used to safely treat arthritis and other autoimmune diseases.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drug Design , Janus Kinase 3 , Protein Kinase Inhibitors , Animals , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/metabolism , Mice , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced , Arthritis, Experimental/enzymology , Arthritis, Rheumatoid/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Mice, Inbred DBA , Humans , Dose-Response Relationship, Drug , Molecular Structure , Male , Molecular Docking Simulation
11.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474223

ABSTRACT

The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.


Subject(s)
Immunologic Deficiency Syndromes , Neoplasms , Animals , Humans , Janus Kinase 3/metabolism , Signal Transduction , Janus Kinases/metabolism , Receptors, Cytokine/metabolism , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism
12.
AAPS PharmSciTech ; 25(7): 225, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327349

ABSTRACT

Vitiligo is a significant dermatological challenge affecting 0.5 to 2% of the global population. Despite the various existing medical approaches, current vitiligo treatments are far from ideal. The present study aimed to prepare and evaluate a film-forming gel of 5 fluorouracil (5FU) using different ratios of hydroxypropyl methylcellulose (HPMC) and Zein for treating vitiligo. The prepared film-forming gels were fully characterized in terms of morphology, Fourier-transform infrared spectroscopy, drug content, pH, drying time, in-vitro drug release, and clinical investigation. A 32-full factorial design was used to study the impact of varying concentrations of HPMC (X1) and Zein (X2) on the percentage of 5FU released (Y1) from the prepared film-forming gels. Scanning electron microscopy (SEM) revealed a cross-linked network structure between polymers. An increase in HPMC concentration (2-4%) correlated with higher 5FU release, whereas increased Zein concentration (1-2%) resulted in reduced 5FU release. Furthermore, patients treated with 5FU film-forming gel after dermabrasion with fractional CO2 (FCO2) laser exhibited a significant decrease in JAK3 gene expression and higher effectiveness than those treated with FCO2 laser alone. Our results suggest that the film-forming gel of 5FU is promising as an effective formulation for treating vitiligo.


Subject(s)
Fluorouracil , Gels , Hypromellose Derivatives , Lasers, Gas , Vitiligo , Zein , Fluorouracil/administration & dosage , Vitiligo/drug therapy , Vitiligo/therapy , Zein/chemistry , Hypromellose Derivatives/chemistry , Humans , Drug Liberation , Spectroscopy, Fourier Transform Infrared/methods , Male
13.
Clin Immunol ; 256: 109807, 2023 11.
Article in English | MEDLINE | ID: mdl-37821072

ABSTRACT

Autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC), and non-alcoholic steatohepatitis (NASH) are chronic liver diseases (CLDs) of distinct etiologies that represent a public health risk with limited therapeutic options. A common feature among CLDs is an aggressive T cell response resulting in destruction of liver tissue and fibrosis. Here, we assessed the presence and nature of T cell inflammation in late-stage human AIH, PSC and NASH and examined whether targeting the T cell response can improve disease pathology in a mouse model (Traf6ΔTEC) of spontaneous AIH. T cell infiltration and ensuing inflammatory pathways were present in human AIH and PSC and to a lesser extent in NASH. However, we observed qualitative differences in infiltrating T cell subsets and upregulation of inflammatory pathways among these diseases, while mouse and human AIH exhibited similar immunogenic signatures. While gene expression profiles differed among diseases, we identified 52 genes commonly upregulated across all diseases that included the JAK3 tyrosine kinase. Therapeutic targeting of chronic AIH with the JAK inhibitor tofacitinib reduced hepatic T cell infiltration, AIH histopathology and associated immune parameters in treated Traf6ΔTEC mice. Our results indicate that targeting T cell responses in established hepatic autoimmune inflammation is a feasible strategy for developing novel therapeutic approaches to treat AIH and possibly other CLDs irrespective of etiology.


Subject(s)
Autoimmune Diseases , Cholangitis, Sclerosing , Hepatitis, Autoimmune , Liver Diseases , Non-alcoholic Fatty Liver Disease , Humans , Hepatitis, Autoimmune/drug therapy , Inflammation
14.
J Clin Immunol ; 43(6): 1326-1359, 2023 08.
Article in English | MEDLINE | ID: mdl-37140667

ABSTRACT

The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.


Subject(s)
Gain of Function Mutation , Janus Kinases , Humans , Signal Transduction , Cytokines/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism
15.
J Autoimmun ; 136: 103026, 2023 04.
Article in English | MEDLINE | ID: mdl-37001436

ABSTRACT

Acquired aplastic anemia (AA) is recognized as an immune-mediated disorder resulting from active destruction of hematopoietic cells in bone marrow (BM) by effector T lymphocytes. Bulk genomic landscape analysis and transcriptomic profiling have contributed to a better understanding of the recurrent cytogenetic abnormalities and immunologic cues associated with the onset of hematopoietic destruction. However, the functional mechanistic determinants underlying the complexity of heterogeneous T lymphocyte populations as well as their correlation with clinical outcomes remain to be elucidated. To uncover dysfunctional mechanisms acting within the heterogeneous marrow-infiltrating immune environment and examine their pathogenic interplay with the hematopoietic stem/progenitor pool, we exploited single-cell mass cytometry for BM mononuclear cells of severe AA (SAA) patients pre- and post-immunosuppressive therapy, in contrast to those of healthy donors. Alignment of BM cellular composition with hematopoietic developmental trajectories revealed potential functional roles for non-canonically activated CD4+ naïve T cells in newly-diagnosed pediatric cases of SAA. Furthermore, single-cell transcriptomic profiling highlighted a population of Th17-polarized CD4+CAMK4+ naïve T cells showing activation of the IL-6/JAK3/STAT3 pathway, while gene signature dissection indicated a predisposition to proinflammatory pathogenesis. Retrospective validation from our SAA cohort of 231 patients revealed high plasma levels of IL-6 as an independent risk factor of delayed hematopoietic response to antithymocyte globulin-based immunosuppressive therapy. Thus, IL-6 warrants further investigation as a putative therapeutic target in SAA.


Subject(s)
Anemia, Aplastic , Humans , Child , Anemia, Aplastic/genetics , Anemia, Aplastic/pathology , Interleukin-6/genetics , Retrospective Studies , Th17 Cells , Single-Cell Analysis , Janus Kinase 3 , STAT3 Transcription Factor/genetics
16.
Bioorg Med Chem ; 96: 117354, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37944414

ABSTRACT

Rheumatoid arthritis (RA) is a chronically systemic autoimmune disorder, which is related with various cellular signal pathways. Both BTK (Bruton's Tyrosine Kinase) and JAK3 (Janus Kinase 3) play important roles in the pathogenesis of rheumatoid arthritis. Herein, we reported the discovery of dual BTK/JAK3 inhibitors through bioisosterism and computer-aided drug design based on the structure of BTK inhibitor ibrutinib. We reported the discovery of dual BTK/JAK3 inhibitors which are based on the structure of BTK inhibitor ibrutinib via the method of bioisosterism and computer-aided drug design) Most of the target compounds exhibited moderate to strong inhibitory activities against BTK and JAK3. Among them, compound XL-12 stood out as the most promising candidate targeting BTK and JAK3 with potent inhibitory activities (IC50 = 2.0 nM and IC50 = 14.0 nM respectively). In the in vivo studies, compound XL-12 (40 mg/kg) exhibited more potent antiarthritic activity than ibrutinib (10 mg/kg) in adjuvant arthritis (AA) rat model. Furthermore, compound XL-12 (LD50 > 1600 mg/kg) exerted improved safety compared with ibrutinib (LD50 = 750 mg/kg). These results indicated that compound XL-12, the dual BTK/JAK3 inhibitor, might be a potent drug candidate for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Janus Kinase Inhibitors , Rats , Animals , Agammaglobulinaemia Tyrosine Kinase , Janus Kinase Inhibitors/therapeutic use , Janus Kinase 3 , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism
17.
Cell Mol Life Sci ; 79(6): 322, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35622134

ABSTRACT

BACKGROUND: Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. METHODS: The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. RESULTS: Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. CONCLUSIONS: This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations.


Subject(s)
Janus Kinase 3 , STAT5 Transcription Factor , Animals , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Mutation/genetics , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Signal Transduction/genetics , Zebrafish/genetics , Zebrafish/metabolism
18.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047778

ABSTRACT

Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.


Subject(s)
Interleukin-2 , Leukemia , Humans , Phosphorylation , Interleukin-2/genetics , Interleukin-2/metabolism , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Signal Transduction , Janus Kinases/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism
19.
Molecules ; 28(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894618

ABSTRACT

The drug development process suffers from low success rates and requires expensive and time-consuming procedures. The traditional one drug-one target paradigm is often inadequate to treat multifactorial diseases. Multitarget drugs may potentially address problems such as adverse reactions to drugs. With the aim to discover a multitarget potential inhibitor for B-cell lymphoma treatment, herein, we developed a general pipeline combining machine learning, the interpretable model SHapley Additive exPlanation (SHAP), and molecular dynamics simulations to predict active compounds and fragments. Bruton's tyrosine kinase (BTK) and Janus kinase 3 (JAK3) are popular synergistic targets for B-cell lymphoma. We used this pipeline approach to identify prospective potential dual inhibitors from a natural product database and screened three candidate inhibitors with acceptable drug absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Ultimately, the compound CNP0266747 with specialized binding conformations that exhibited potential binding free energy against BTK and JAK3 was selected as the optimum choice. Furthermore, we also identified key residues and fingerprint features of this dual-target inhibitor of BTK and JAK3.


Subject(s)
Janus Kinase 3 , Lymphoma, B-Cell , Humans , Agammaglobulinaemia Tyrosine Kinase , Workflow , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
20.
Molecules ; 28(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37570884

ABSTRACT

Rheumatoid arthritis (RA) remains one of the most prevalent autoimmune diseases worldwide. Janus kinase 3 (JAK3) is an essential enzyme for treating autoimmune diseases, including RA. Molecular modeling techniques play a crucial role in the search for new drugs by reducing time delays. In this study, the 3D-QSAR approach is employed to predict new JAK3 inhibitors. Two robust models, both field-based with R2 = 0.93, R = 0.96, and Q2 = 87, and atom-based with R2 = 0.94, R = 0.97, and Q2 = 86, yielded good results by identifying groups that may readily direct their interaction. A reliable pharmacophore model, DHRRR1, was provided in this work to enable the clear characterization of chemical features, leading to the design of 13 inhibitors with their pIC50 values. The DHRRR1 model yielded a validation result with a ROC value of 0.87. Five promising inhibitors were selected for further study based on an ADMET analysis of their pharmacokinetic properties and covalent docking (CovDock). Compared to the FDA-approved drug tofacitinib, the pharmaceutical features, binding affinity and stability of the inhibitors were analyzed through CovDock, 300 ns molecular dynamics simulations, free energy binding calculations and ADMET predictions. The results show that the inhibitors have strong binding affinity, stability and favorable pharmaceutical properties. The newly predicted molecules, as JAK3 inhibitors for the treatment of RA, are promising candidates for use as drugs.


Subject(s)
2-Aminopurine , Antirheumatic Agents , Computer-Aided Design , Drug Design , Janus Kinase 3 , Janus Kinase Inhibitors , 2-Aminopurine/analogs & derivatives , 2-Aminopurine/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/pharmacology , Janus Kinase 3/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Piperidines/chemistry , Piperidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Arthritis, Rheumatoid/drug therapy , Antirheumatic Agents/chemistry , Antirheumatic Agents/pharmacology , Pharmacophore
SELECTION OF CITATIONS
SEARCH DETAIL