Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
Add more filters

Publication year range
1.
J Ultrasound Med ; 43(6): 1025-1036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38400537

ABSTRACT

OBJECTIVES: To complete the task of automatic recognition and classification of thyroid nodules and solve the problem of high classification error rates when the samples are imbalanced. METHODS: An improved k-nearest neighbor (KNN) algorithm is proposed and a method for automatic thyroid nodule classification based on the improved KNN algorithm is established. In the improved KNN algorithm, we consider not only the number of class labels for various classes of data in KNNs, but also the corresponding weights. And we use the Minkowski distance measure instead of the Euclidean distance measure. RESULTS: A total of 508 ultrasound images of thyroid nodules, including 415 benign nodules and 93 malignant nodules, were used in the paper. Experimental results show the improved KNN has 0.872549 accuracy, 0.867347 precision, 1 recall, and 0.928962 F1-score. At the same time, we also considered the influence of different distance weights, the value of k, different distance measures on the classification results. CONCLUSIONS: A comparison result shows that our method has a better performance than the traditional KNN and other classical machine learning methods.


Subject(s)
Algorithms , Thyroid Nodule , Ultrasonography , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/classification , Humans , Ultrasonography/methods , Reproducibility of Results , Thyroid Gland/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods
2.
Sensors (Basel) ; 24(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38544093

ABSTRACT

This study introduces an innovative approach for fault diagnosis of a multistage centrifugal pump (MCP) using explanatory ratio (ER) linear discriminant analysis (LDA). Initially, the method addresses the challenge of background noise and interference in vibration signals by identifying a fault-sensitive frequency band (FSFB). From the FSFB, raw hybrid statistical features are extracted in time, frequency, and time-frequency domains, forming a comprehensive feature pool. Recognizing that not all features adequately represent MCP conditions and can reduce classification accuracy, we propose a novel ER-LDA method. ER-LDA evaluates feature importance by calculating the explanatory ratio between interclass distance and intraclass scatteredness, facilitating the selection of discriminative features through LDA. This fusion of ER-based feature assessment and LDA yields the novel ER-LDA technique. The resulting selective feature set is then passed into a k-nearest neighbor (K-NN) algorithm for condition classification, distinguishing between normal, mechanical seal hole, mechanical seal scratch, and impeller defect states of the MCP. The proposed technique surpasses current cutting-edge techniques in fault classification.

3.
Sensors (Basel) ; 24(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001180

ABSTRACT

The high sensitivity and picosecond time resolution of single-photon avalanche diodes (SPADs) can improve the operational range and imaging accuracy of underwater detection systems. When an underwater SPAD imaging system is used to detect targets, backward-scattering caused by particles in water often results in the poor quality of the reconstructed underwater image. Although methods such as simple pixel accumulation have been proven to be effective for time-photon histogram reconstruction, they perform unsatisfactorily in a highly scattering environment. Therefore, new reconstruction methods are necessary for underwater SPAD detection to obtain high-resolution images. In this paper, we propose an algorithm that reconstructs high-resolution depth profiles of underwater targets from a time-photon histogram by employing the K-nearest neighbor (KNN) to classify multiple targets and the background. The results contribute to the performance of pixel accumulation and depth estimation algorithms such as pixel cross-correlation and ManiPoP. We use public experimental data sets and underwater simulation data to verify the effectiveness of the proposed algorithm. The results of our algorithm show that the root mean square errors (RMSEs) of land targets and simulated underwater targets are reduced by 57.12% and 23.45%, respectively, achieving high-resolution single-photon depth profile reconstruction.

4.
Sensors (Basel) ; 24(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39204960

ABSTRACT

Sleep is a vital physiological process for human health, and accurately detecting various sleep states is crucial for diagnosing sleep disorders. This study presents a novel algorithm for identifying sleep stages using EEG signals, which is more efficient and accurate than the state-of-the-art methods. The key innovation lies in employing a piecewise linear data reduction technique called the Halfwave method in the time domain. This method simplifies EEG signals into a piecewise linear form with reduced complexity while preserving sleep stage characteristics. Then, a features vector with six statistical features is built using parameters obtained from the reduced piecewise linear function. We used the MIT-BIH Polysomnographic Database to test our proposed method, which includes more than 80 h of long data from different biomedical signals with six main sleep classes. We used different classifiers and found that the K-Nearest Neighbor classifier performs better in our proposed method. According to experimental findings, the average sensitivity, specificity, and accuracy of the proposed algorithm on the Polysomnographic Database considering eight records is estimated as 94.82%, 96.65%, and 95.73%, respectively. Furthermore, the algorithm shows promise in its computational efficiency, making it suitable for real-time applications such as sleep monitoring devices. Its robust performance across various sleep classes suggests its potential for widespread clinical adoption, making significant advances in the knowledge, detection, and management of sleep problems.


Subject(s)
Algorithms , Electroencephalography , Polysomnography , Signal Processing, Computer-Assisted , Sleep Stages , Sleep Wake Disorders , Humans , Electroencephalography/methods , Sleep Stages/physiology , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/physiopathology , Polysomnography/methods , Female , Male , Adult , Databases, Factual
5.
Sensors (Basel) ; 24(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38610560

ABSTRACT

Dynamic wireless charging (DWC) has emerged as a viable approach to mitigate range anxiety by ensuring continuous and uninterrupted charging for electric vehicles in motion. DWC systems rely on the length of the transmitter, which can be categorized into long-track transmitters and segmented coil arrays. The segmented coil array, favored for its heightened efficiency and reduced electromagnetic interference, stands out as the preferred option. However, in such DWC systems, the need arises to detect the vehicle's position, specifically to activate the transmitter coils aligned with the receiver pad and de-energize uncoupled transmitter coils. This paper introduces various machine learning algorithms for precise vehicle position determination, accommodating diverse ground clearances of electric vehicles and various speeds. Through testing eight different machine learning algorithms and comparing the results, the random forest algorithm emerged as superior, displaying the lowest error in predicting the actual position.

6.
Sensors (Basel) ; 24(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39123855

ABSTRACT

The detection performance of radar is significantly impaired by active jamming and mutual interference from other radars. This paper proposes a radio signal modulation recognition method to accurately recognize these signals, which helps in the jamming cancellation decisions. Based on the ensemble learning stacking algorithm improved by meta-feature enhancement, the proposed method adopts random forests, K-nearest neighbors, and Gaussian naive Bayes as the base-learners, with logistic regression serving as the meta-learner. It takes the multi-domain features of signals as input, which include time-domain features including fuzzy entropy, slope entropy, and Hjorth parameters; frequency-domain features, including spectral entropy; and fractal-domain features, including fractal dimension. The simulation experiment, including seven common signal types of radar and active jamming, was performed for the effectiveness validation and performance evaluation. Results proved the proposed method's performance superiority to other classification methods, as well as its ability to meet the requirements of low signal-to-noise ratio and few-shot learning.

7.
Sensors (Basel) ; 24(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39124050

ABSTRACT

To improve the performance of roller bearing fault diagnosis, this paper proposes an algorithm based on subtraction average-based optimizer (SABO), variational mode decomposition (VMD), and weighted Manhattan-K nearest neighbor (WMH-KNN). Initially, the SABO algorithm uses a composite objective function, including permutation entropy and mutual information entropy, to optimize the input parameters of VMD. Subsequently, the optimized VMD is used to decompose the signal to obtain the optimal decomposition characteristics and the corresponding intrinsic mode function (IMF). Finally, the weighted Manhattan function (WMH) is used to enhance the classification distance of the KNN algorithm, and WMH-KNN is used for fault diagnosis based on the optimized IMF features. The performance of the SABO-VMD and WMH-KNN models is verified through two experimental cases and compared with traditional methods. The results show that the accuracy of motor-bearing fault diagnosis is significantly improved, reaching 97.22% in Dataset 1, 98.33% in Dataset 2, and 99.2% in Dataset 3. Compared with traditional methods, the proposed method significantly reduces the false positive rate.

8.
J Biol Phys ; 50(2): 181-196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466526

ABSTRACT

Epilepsy is a type of brain disorder triggered by an abrupt electrical imbalance of neuronal networks. An electroencephalogram (EEG) is a diagnostic tool to capture the underlying brain mechanisms and detect seizure onset in epileptic patients. To detect seizures, neurologists need to manually monitor EEG recordings for long periods, which is challenging and susceptible to errors depending on expertise and experience. Therefore, automatic identification of seizure and seizure-free EEG signals becomes essential. This study introduces a method based on the features extracted from the phase space reconstruction for classifying seizure and seizure-free EEG signals. The computed features are derived from the elliptical area and interquartile range of the Euclidean distance by varying percentage values of data points ranging from 50 to 100%. We consider two public datasets and evaluate these features in each EEG epoch that includes the healthy, interictal, preictal, and ictal stages of epileptic subjects, utilizing the K-nearest neighbor classifier for classification. Results show that the features have higher values during the seizure than the seizure-free EEG signals and healthy subjects. Furthermore, the proposed features can effectively discriminate seizure EEG signals from the seizure-free and normal subjects with 100% accuracy, sensitivity, and specificity in both datasets. Likewise, the classification between the preictal stage and seizure EEG signals attains 98% accuracy. Overall, the reconstructed phase space features significantly enhance the accuracy of detecting epileptic EEG signals compared with existing methods. This advancement holds great potential in assisting neurologists in swiftly and accurately diagnosing epileptic seizures from EEG signals.


Subject(s)
Electroencephalography , Seizures , Signal Processing, Computer-Assisted , Electroencephalography/methods , Humans , Seizures/diagnosis , Seizures/physiopathology , Automation
9.
BMC Bioinformatics ; 24(1): 84, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879188

ABSTRACT

BACKGROUND: A cell exhibits a variety of responses to internal and external cues. These responses are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single cell. In the past 20 years, many groups worked on reconstructing the topological structure of GRNs from large-scale gene expression data using a variety of inference algorithms. Insights gained about participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (MI) is a widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear and non-linear) between any number of variables (n-dimensions). However, the use of MI with continuous data (for example, normalized fluorescence intensity measurement of gene expression levels) is sensitive to data size, correlation strength and underlying distributions, and often requires laborious and, at times, ad hoc optimization. RESULTS: In this work, we first show that estimating MI of a bi- and tri-variate Gaussian distribution using k-nearest neighbor (kNN) MI estimation results in significant error reduction as compared to commonly used methods based on fixed binning. Second, we demonstrate that implementing the MI-based kNN Kraskov-Stoögbauer-Grassberger (KSG) algorithm leads to a significant improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of Relatedness (CLR). Finally, through extensive in-silico benchmarking we show that a new inference algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with the KSG-MI estimator, outperforms commonly used methods. CONCLUSIONS: Using three canonical datasets containing 15 synthetic networks, the newly developed method for GRN reconstruction-which combines CMIA, and the KSG-MI estimator-achieves an improvement of 20-35% in precision-recall measures over the current gold standard in the field. This new method will enable researchers to discover new gene interactions or better choose gene candidates for experimental validations.


Subject(s)
Algorithms , Gene Regulatory Networks , Cluster Analysis
10.
J Neurosci Res ; 101(1): 112-129, 2023 01.
Article in English | MEDLINE | ID: mdl-36196621

ABSTRACT

Neurons and glia are the two main cell classes in the nervous systems of most animals. Although functionally distinct, neurons and glia are both characterized by multiple branching arbors stemming from the cell bodies. Glial processes are generally known to form smaller trees than neuronal dendrites. However, the full extent of morphological differences between neurons and glia in multiple species and brain regions has not yet been characterized, nor is it known whether these cells can be reliably distinguished based on geometric features alone. Here, we show that multiple supervised learning algorithms deployed on a large database of morphological reconstructions can systematically classify neuronal and glial arbors with nearly perfect accuracy and precision. Moreover, we report multiple morphometric properties, both size related and size independent, that differ substantially between these cell types. In particular, we newly identify an individual morphometric measurement, Average Branch Euclidean Length that can robustly separate neurons from glia across multiple animal models, a broad diversity of experimental conditions, and anatomical areas, with the notable exception of the cerebellum. We discuss the practical utility and physiological interpretation of this discovery.


Subject(s)
Neuroglia , Neurons , Animals , Neurons/physiology , Brain , Machine Learning , Biomarkers
11.
Sensors (Basel) ; 23(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37631793

ABSTRACT

Predicting attacks in Android malware devices using machine learning for recommender systems-based IoT can be a challenging task. However, it is possible to use various machine-learning techniques to achieve this goal. An internet-based framework is used to predict and recommend Android malware on IoT devices. As the prevalence of Android devices grows, the malware creates new viruses on a regular basis, posing a threat to the central system's security and the privacy of the users. The suggested system uses static analysis to predict the malware in Android apps used by consumer devices. The training of the presented system is used to predict and recommend malicious devices to block them from transmitting the data to the cloud server. By taking into account various machine-learning methods, feature selection is performed and the K-Nearest Neighbor (KNN) machine-learning model is proposed. Testing was carried out on more than 10,000 Android applications to check malicious nodes and recommend that the cloud server block them. The developed model contemplated all four machine-learning algorithms in parallel, i.e., naive Bayes, decision tree, support vector machine, and the K-Nearest Neighbor approach and static analysis as a feature subset selection algorithm, and it achieved the highest prediction rate of 93% to predict the malware in real-world applications of consumer devices to minimize the utilization of energy. The experimental results show that KNN achieves 93%, 95%, 90%, and 92% accuracy, precision, recall and f1 measures, respectively.

12.
Sensors (Basel) ; 23(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36772580

ABSTRACT

The dynamic behavior of a Powered Two-Wheeler (PTW) is much more complicated than that of a car, which is due to the strong coupling between the longitudinal and lateral dynamics produced by the large roll angles. This makes the analysis of the dynamics, and therefore the design and synthesis of the controller, particularly complex and difficult. In relation to assistance in dangerous situations, several recent manuscripts have suggested devices with limitations of cornering velocity by proposing restrictive models. However, these models can lead to repulsion by the users of PTW vehicles, significantly limiting vehicle performance. In the present work, the authors developed an Advanced Rider-cornering Assistance System (ARAS) based on the skills learned by riders running across curvilinear trajectories using Artificial Intelligence (AI) and Neural Network (NN) techniques. New algorithms that allow the value of velocity to be estimated by prediction accuracy of up to 99.06% were developed using the K-Nearest Neighbor (KNN) Machine Learning (ML) technique.

13.
Sensors (Basel) ; 23(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37837066

ABSTRACT

Power transformers are essential apparatuses used to transfer electrical energy from one voltage-level circuit to another. For reliable systems, preventive maintenance of the transformers is required to ensure good services of all mechanical, electrical, and insulation parts. Oil-immersed paper is most often used for transformer insulation. To ensure such good insulation performance and for assessing insulation conditions, advanced transformer sensing, monitoring, and effective assessment techniques are required. This paper introduces an effective technique for assessing the insulation conditions in power transformers, which are crucial for ensuring reliable energy transfer. The method utilizes advanced transformer sensing and monitoring, focusing on oil-immersed paper insulation commonly used in transformers. The technique employs dielectric response sensing, obtained from frequency-domain spectroscopy tests, to estimate degrees of polymerization (DP) and percentages of moisture content (PMCs) in the oil-immersed paper insulation. These parameters are well-known indicators of insulation performance. The approach is based on the weighted k-nearest neighbor regression, using a database of dielectric loss factors at low frequency and oil conductivities. To overcome limited data availability, linear interpolation and extrapolation techniques are applied to enlarge the database. Experimental verification and comparison with a previously developed method demonstrate the proposed technique's superiority in accuracy and complexity. The maximum deviations of DP and PMC in the validation cases are 6.2% and 18.7%, respectively. In addition, to evaluate the validity of our proposed method in the case of a real power transformer, a comparative analysis of the DP and PMC values determined by the proposed method with those obtained through a previously developed and complicated approach was performed. The predicted results indicate that the DP and PMC values of the oil-immersed insulation fall within the ranges of 800 to 1000 and 1.5 to 2.0, respectively, which agree with the results determined by the complicated approach and closely align with real conditions. By offering a reliable and advanced means of assessing insulation conditions, this technique contributes to the preventive maintenance and overall efficiency of power transformers.

14.
Sensors (Basel) ; 23(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904896

ABSTRACT

Heart rate variability (HRV) features support several clinical applications, including sleep staging, and ballistocardiograms (BCGs) can be used to unobtrusively estimate these features. Electrocardiography is the traditional clinical standard for HRV estimation, but BCGs and electrocardiograms (ECGs) yield different estimates for heartbeat intervals (HBIs), leading to differences in calculated HRV parameters. This study examines the viability of using BCG-based HRV features for sleep staging by quantifying the impact of these timing differences on the resulting parameters of interest. We introduced a range of synthetic time offsets to simulate the differences between BCG- and ECG-based heartbeat intervals, and the resulting HRV features are used to perform sleep staging. Subsequently, we draw a relationship between the mean absolute error in HBIs and the resulting sleep-staging performances. We also extend our previous work in heartbeat interval identification algorithms to demonstrate that our simulated timing jitters are close representatives of errors between heartbeat interval measurements. This work indicates that BCG-based sleep staging can produce accuracies comparable to ECG-based techniques such that at an HBI error range of up to 60 ms, the sleep-scoring error could increase from 17% to 25% based on one of the scenarios we examined.


Subject(s)
BCG Vaccine , Ballistocardiography , Heart Rate/physiology , Electrocardiography/methods , Sleep Stages/physiology , Algorithms
15.
Sensors (Basel) ; 23(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37631671

ABSTRACT

The internet of things (IoT) technology presents an intelligent way to improve our lives and contributes to many fields such as industry, communications, agriculture, etc. Unfortunately, IoT networks are exposed to many attacks that may destroy the entire network and consume network resources. This paper aims to propose intelligent process automation and an auto-configured intelligent automation detection model (IADM) to detect and prevent malicious network traffic and behaviors/events at distributed multi-access edge computing in an IoT-based smart city. The proposed model consists of two phases. The first phase relies on the intelligent process automation (IPA) technique and contains five modules named, specifically, dataset collection and pre-processing module, intelligent automation detection module, analysis module, detection rules and action module, and database module. In the first phase, each module composes an intelligent connecting module to give feedback reports about each module and send information to the next modules. Therefore, any change in each process can be easily detected and labeled as an intrusion. The intelligent connection module (ICM) may reduce the search time, increase the speed, and increase the security level. The second phase is the dynamic adaptation of the attack detection model based on reinforcement one-shot learning. The first phase is based on a multi-classification technique using Random Forest Trees (RFT), k-Nearest Neighbor (K-NN), J48, AdaBoost, and Bagging. The second phase can learn the new changed behaviors based on reinforced learning to detect zero-day attacks and malicious events in IoT-based smart cities. The experiments are implemented using a UNSW-NB 15 dataset. The proposed model achieves high accuracy rates using RFT, K-NN, and AdaBoost of approximately 98.8%. It is noted that the accuracy rate of the J48 classifier achieves 85.51%, which is lower than the others. Subsequently, the accuracy rates of AdaBoost and Bagging based on J48 are 98.9% and 91.41%, respectively. Additionally, the error rates of RFT, K-NN, and AdaBoost are very low. Similarly, the proposed model achieves high precision, recall, and F1-measure high rates using RFT, K-NN, AdaBoost, and Bagging. The second phase depends on creating an auto-adaptive model through the dynamic adaptation of the attack detection model based on reinforcement one-shot learning using a small number of instances to conserve the memory of any smart device in an IoT network. The proposed auto-adaptive model may reduce false rates of reporting by the intrusion detection system (IDS). It can detect any change in the behaviors of smart devices quickly and easily. The IADM can improve the performance rates for IDS by maintaining the memory consumption, time consumption, and speed of the detection process.

16.
Sensors (Basel) ; 23(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36772118

ABSTRACT

Machine learning has the potential to enhance damage detection and prediction in materials science. Machine learning also has the ability to produce highly reliable and accurate representations, which can improve the detection and prediction of damage compared to the traditional knowledge-based approaches. These approaches can be used for a wide range of applications, including material design; predicting material properties; identifying hidden relationships; and classifying microstructures, defects, and damage. However, researchers must carefully consider the appropriateness of various machine learning algorithms, based on the available data, material being studied, and desired knowledge outcomes. In addition, the interpretability of certain machine learning models can be a limitation in materials science, as it may be difficult to understand the reasoning behind predictions. This paper aims to make novel contributions to the field of material engineering by analyzing the compatibility of dynamic response data from various material structures with prominent machine learning approaches. The purpose of this is to help researchers choose models that are both effective and understandable, while also enhancing their understanding of the model's predictions. To achieve this, this paper analyzed the requirements and characteristics of commonly used machine learning algorithms for crack propagation in materials. This analysis assisted the authors in selecting machine learning algorithms (K nearest neighbor, Ridge, and Lasso regression) to evaluate the dynamic response of aluminum and ABS materials, using experimental data from previous studies to train the models. The results showed that natural frequency was the most significant predictor for ABS material, while temperature, natural frequency, and amplitude were the most important predictors for aluminum. Crack location along samples had no significant impact on either material. Future work could involve applying the discussed techniques to a wider range of materials under dynamic loading conditions.

17.
Molecules ; 28(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36838950

ABSTRACT

The aim of this study was to determine volatile compounds in red wines of Zweigelt and Rondo varieties using HS-SPME/GC-MS and to find a marker and/or a classification model for the assessment of varietal authenticity. The wines were produced by using five commercial yeast strains and two types of malolactic fermentation. Sixty-seven volatile compounds were tentatively identified in the test wines; they represented several classes: 9 acids, 24 alcohols, 2 aldehydes, 19 esters, 2 furan compounds, 2 ketones, 1 sulfur compound and 8 terpenes. 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) was found to be a variety marker for Zweigelt wines, since it was detected in all the Zweigelt wines, but was not present in the Rondo wines at all. The relative concentrations of volatiles were used as an input data set, divided into two subsets (training and testing), to the support vector machine (SVM) and k-nearest neighbor (kNN) algorithms. Both machine learning methods yielded models with the highest possible classification accuracy (100%) when the relative concentrations of all the test compounds or alcohols alone were used as input data. An evaluation of the importance value of subsets consisting of six volatile compounds with the highest potential to distinguish between the Zweigelt and Rondo varieties revealed that SVM and kNN yielded the best classification models (F-score of 1, accuracy of 100%) when 3-ethyl-4-methylpentan-1-ol or 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) or subsets containing one or both of them were used. Moreover, the best SVM model (F-score of 1) was built with a subset containing 2-phenylethyl acetate and 3-(methylsulfanyl)propan-1-ol.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Wine/analysis , Poland , Volatile Organic Compounds/analysis , Principal Component Analysis , Alcohols/analysis , Saccharomyces cerevisiae , Fermentation , Odorants/analysis
18.
Environ Monit Assess ; 195(11): 1367, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875717

ABSTRACT

The soil's physical and mechanical (SPM) properties have significant impacts on soil processes, such as water flow, nutrient movement, aeration, microbial activity, erosion, and root growth. To digitally map some SPM properties at four global standard depths, three machine learning algorithms (MLA), namely, random forest, Cubist, and k-nearest neighbor, were employed. A total of 200-point observation was designed with the aim of a field survey across the Marvdasht Plain in Fars Province, Iran. After sampling from topsoil (0 to 30 cm) and subsoil depths (30 to 60 cm), the samples were transferred to the laboratory to determine the mean weight diameter (MWD) and geometric mean diameter (GMD) of aggregates in the laboratory. In addition, shear strength (SS) and penetration resistance (PR) were measured directly during the field survey. In parallel, 79 environmental factors were prepared from topographic and remote sensing data. Four soil variables were also included in the modeling process, as they were co-located with SPM properties based on expert opinion. For selecting the most influential covariates, the variance inflation factor (VIF) and Boruta methods were employed. Two covariate dataset scenarios were used to assess the impact of soil and environmental factors on the modeling of SPM properties including SPM and environmental covariates (scenario 1) and SPM, environmental covariates, and soil variables (scenario 2). From all covariates, nine soil and environmental factors were selected for modeling the SPM properties, of which four of them were the soil variables, three were related to remote sensing, and two factors had topographic sources. The results indicated that scenario 2 outperformed in all standard depths. The findings suggested that clay and SOM are key factors in predicting SPM, highlighting the importance of considering soil variables in addition to environmental covariates for enhancing the accuracy of machine learning prediction. The k-nearest neighbor algorithm was found to be highly effective in predicting SPM, while the random forest algorithm yielded the highest R2 value (0.92) for penetration resistance properties at 15-30 depth. Overall, the approach used in this research has the potential to be extended beyond the Marvdasht Plain of Fars Province, Iran, as well as to other regions worldwide with comparable soil-forming factors. Moreover, this study provides a valuable framework for the digital mapping of SPM properties, serving as a guide for future studies seeking to predict SPM properties. Globally, the output of this research has important significance for soil management and conservation efforts and can facilitate the development of sustainable agricultural practices.


Subject(s)
Environmental Monitoring , Soil , Iran , Environmental Monitoring/methods , Clay , Agriculture
19.
Environ Monit Assess ; 195(11): 1349, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861796

ABSTRACT

This study attempted to develop a computer-based software for monitoring the traffic noise under heterogeneous traffic condition at the morning peak (MP), off peak (OP), and evening peak (EP) periods of mid-block sections of mid-sized city in India. Traffic noise dataset of 776 (LAeq, 1hr) were collected from 23 locations of Gorakhpur mid-sized city in the state of Uttar Pradesh in India. K-nearest neighbor (K-NN) algorithm was adopted for traffic noise prediction modeling. Moreover, principal component analysis (PCA) technique was used for the dimensionality reduction and to overcome the problem of multi-collinearity. The developed model exhibits R2 value of 0.81, 0.78, and 0.77 in the MP, OP, and EP, respectively, for Leq, and a value of 0.86, 0.80, and 0.84 for L10. The proposed model can predict more than 94% observations within an accuracy of ±3%. Ultimately, a user-friendly noise level calculator named "Traffic Noise Prediction Calculator for Heterogeneous Traffic (TNPC-H)" was developed for the benefit of field engineers and policy planners.


Subject(s)
Noise, Transportation , Environmental Monitoring/methods , Cities , India , Algorithms
20.
Entropy (Basel) ; 25(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36673268

ABSTRACT

The K-nearest neighbor (KNN) algorithm is one of the most extensively used classification algorithms, while its high time complexity limits its performance in the era of big data. The quantum K-nearest neighbor (QKNN) algorithm can handle the above problem with satisfactory efficiency; however, its accuracy is sacrificed when directly applying the traditional similarity measure based on Euclidean distance. Inspired by the Polar coordinate system and the quantum property, this work proposes a new similarity measure to replace the Euclidean distance, which is defined as Polar distance. Polar distance considers both angular and module length information, introducing a weight parameter adjusted to the specific application data. To validate the efficiency of Polar distance, we conducted various experiments using several typical datasets. For the conventional KNN algorithm, the accuracy performance is comparable when using Polar distance for similarity measurement, while for the QKNN algorithm, it significantly outperforms the Euclidean distance in terms of classification accuracy. Furthermore, the Polar distance shows scalability and robustness superior to the Euclidean distance, providing an opportunity for the large-scale application of QKNN in practice.

SELECTION OF CITATIONS
SEARCH DETAIL