Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Res ; 249: 118360, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38325779

ABSTRACT

For human health and environment safety, it is of great significance to develop novel materials with high effectiveness for removal of lead from not only aqueous solutions but also human body and traditional Chinese medicines. Here, functional kiwi peel composite, manganese dioxide decorated kiwi peel powder (MKPP), is proposed for the removal of Pb2+ effectively. The adsorption of Pb2+ in aqueous solution is a highly selective and endothermic process and kinetically follows a pseudo-second-order model, which can reach equilibrium with the capacity of 192.7 mg/g within 10 min. Comprehensive factors of hydration energy, charge-to-radius ratio and softness of Pb2+ make a stronger affinity between MKPP and Pb2+. The possible adsorption mechanism involves covalent bond, electrostatic force and chelation, etc. MKPP can be efficiently regenerated and reused with high adsorption efficiency after five cycles. Besides, MKPP can remove over 97% of Pb2+ from real water samples. MKPP can also alleviate lead poisoning to a certain extent and make the Pb level of TCM extract meet the safety standard. This work highlights that MKPP is a promising adsorbent for the removal of Pb2+ and provides an efficient strategy for reusing kiwi peel as well as dealing with the problem of Pb pollution.


Subject(s)
Drugs, Chinese Herbal , Lead , Manganese Compounds , Oxides , Water Pollutants, Chemical , Lead/isolation & purification , Lead/chemistry , Manganese Compounds/chemistry , Adsorption , Oxides/chemistry , Drugs, Chinese Herbal/chemistry , Humans , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Medicine, Chinese Traditional , Water Purification/methods
2.
Molecules ; 28(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513184

ABSTRACT

In this study, pristine kiwi peel (KP) and nitric acid modified kiwi peel (NA-KP) based adsorbents were prepared and evaluated for selective removal of cationic dye. The morphology and chemical structure of KP and NA-KP were fully characterized and compared, and results showed nitric acid modification introduced more functional groups. Moreover, the adsorption kinetics and isotherms of malachite green (MG) by KP and NA-KP were investigated and discussed. The results showed that the adsorption process of MG onto KP followed a pseudo-second-order kinetic model and the Langmuir isotherm model, while the adsorption process of MG onto NA-KP followed a pseudo-first-order kinetic model and the Freundlich isotherm model. Notably, the Langmuir maximum adsorption capacity of NA-KP was 580.61 mg g-1, which was superior to that of KP (297.15 mg g-1). Furthermore, thermodynamic studies demonstrated the feasible, spontaneous, and endothermic nature of the adsorption process of MG by NA-KP. Importantly, NA-KP showed superior selectivity to KP towards cationic dye MG against anionic dye methyl orange (MO). When the molar ratio of MG/MO was 1:1, the separation factor (αMG/MO) of NA-KP was 698.10, which was 5.93 times of KP. In addition, hydrogen bonding, π-π interactions, and electrostatic interaction played important roles during the MG adsorption process by NA-KP. This work provided a low-cost, eco-friendly, and efficient option for the selective removal of cationic dye from dyeing wastewater.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Nitric Acid , Rosaniline Dyes/chemistry , Thermodynamics , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118857, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32877850

ABSTRACT

The valorization, resource generation and the functional characteristic exploration of domestic waste still face enormous challenges. Kiwi peels, a common kind of fruit waste, contain a large amount of phenolic substances, including polyphenols, flavonoids, etc., which can be explored and reused in food and biomedical fields. By ultrasonic assisted extraction technology, we obtained conversional fluorescence kiwi peel phenolic extracts (PE) which possessed gradient magenta fluorescence relying on the content of ethanol in the solution, as well as strong antioxidant activity. Besides, metal ions sensing assay revealed that PE can specifically sense Hg2+ and Cu2+ (LOD: 1.16 and 0.17 µM, respectively) accompanied with a fluorescence conversion from magenta fluorescence to blue. Moreover, employing the prepared PE as fluorescent probes, imaging of HeLa cells can be easily achieved with satisfactory resolution. Additionally, PE was incorporated into the gelatin matrix, successfully fabricating a green, edible degradable film with excellent antioxidant activity.


Subject(s)
Antioxidants , Mercury , Flavonoids , Fruit/chemistry , HeLa Cells , Humans , Phenols/analysis , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL