Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
Add more filters

Publication year range
1.
Lipids Health Dis ; 23(1): 14, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216994

ABSTRACT

Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.


Subject(s)
Atherosclerosis , Lipoproteins, VLDL , Humans , Lipoproteins, LDL , Receptors, LDL/genetics , Cholesterol , Angiopoietin-Like Protein 3
2.
J Lipid Res ; 64(9): 100426, 2023 09.
Article in English | MEDLINE | ID: mdl-37586604

ABSTRACT

In the past 20 years, PCSK9 has been shown to play a pivotal role in LDL cholesterol metabolism and cardiovascular health by inducing the lysosomal degradation of the LDL receptor. PCSK9 was discovered by the cloning of genes up-regulated after apoptosis induced by serum deprivation in primary cerebellar neurons, but despite its initial identification in the brain, the precise role of PCSK9 in the nervous system remains to be clearly established. The present article is a comprehensive review of studies published or in print before July 2023 that have investigated the expression pattern of PCSK9, its effects on lipid metabolism as well as its putative roles specifically in the central and peripheral nervous systems, with a special focus on cerebrovascular and neurodegenerative diseases.


Subject(s)
Nervous System , Proprotein Convertase 9 , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Cholesterol, LDL , Receptors, LDL/genetics , Receptors, LDL/metabolism , Brain/metabolism
3.
J Lipid Res ; 64(6): 100380, 2023 06.
Article in English | MEDLINE | ID: mdl-37094639

ABSTRACT

The inducible degrader of LDL receptor (IDOL) acts as a post-transcriptional degrader of the LDL receptor (LDLR). IDOL is functionally active in the liver and in peripheral tissues. We have evaluated IDOL expression in circulating monocytes in subjects with and without type 2 diabetes and determined whether changes in IDOL expression could affect macrophage function like cytokine production in vitro. One hundred forty individuals with type 2 diabetes and 110 healthy control subjects were recruited. Cellular expression of IDOL and LDLR in peripheral blood CD14+ monocytes was measured by flow cytometry. The expression of intracellular IDOL was lower in individuals with diabetes than control (21.3 ± 4.6 mean fluorescence intensity × 1,000 vs. 23.8 ± 6.2, P < 0.01), and this was accompanied by an increase in cell surface LDLR (5.2 ± 3.0 mean fluorescence intensity × 1,000 vs. 4.3 ± 1.5, P < 0.01), LDL binding, and intracellular lipid (P < 0.01). IDOL expression correlated with HbA1c (r = -0.38, P < 0.01) and serum fibroblast growth factor-21 (FGF21) (r = -0.34, P < 0.01). Multivariable regression analysis, including age, sex, BMI, smoking, HbA1c, and log(FGF21), showed that HbA1c and FGF21 were significant independent determinants of IDOL expression. IDOL knockdown human monocyte-derived macrophages produced higher concentrations of interleukin 1 beta, interleukin 6, and TNFα than control macrophages upon stimulation with lipopolysaccharide (all P < 0.01). In conclusion, the expression of IDOL in CD14+ monocytes was decreased in type 2 diabetes and was associated with glycemia and serum FGF21 concentration.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/metabolism , Glycated Hemoglobin , Ubiquitin-Protein Ligases/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Liver/metabolism
4.
J Lipid Res ; 64(11): 100451, 2023 11.
Article in English | MEDLINE | ID: mdl-37777014

ABSTRACT

Obesity is a major global public health issue involving dyslipidemia, oxidative stress, inflammation, and increased risk of CVD. Weight loss reduces this risk, but the biochemical underpinnings are unclear. We explored how obesity and weight loss after bariatric surgery influence LDL interactions that trigger proatherogenic versus antiatherogenic processes. LDL was isolated from plasma of six patients with severe obesity before (basal) and 6-12 months after bariatric surgery (basal BMI = 42.7 kg/m2; 6-months and 12-months postoperative BMI = 34.1 and 30 kg/m2). Control LDL were from six healthy subjects (BMI = 22.6 kg/m2). LDL binding was quantified by ELISA; LDL size and charge were assessed by chromatography; LDL biochemical composition was determined. Compared to controls, basal LDL showed decreased nonatherogenic binding to LDL receptor, which improved postoperatively. Conversely, basal LDL showed increased binding to scavenger receptors LOX1 and CD36 and to glycosaminoglycans, fibronectin and collagen, which is proatherogenic. One year postoperatively, this binding decreased but remained elevated, consistent with elevated lipid peroxidation. Serum amyloid A and nonesterified fatty acids were elevated in basal and postoperative LDL, indicating obesity-associated inflammation. Aggregated and electronegative LDL remained elevated, suggesting proatherogenic processes. These results suggest that obesity-induced inflammation contributes to harmful LDL alterations that probably increase the risk of CVD. We conclude that in obesity, LDL interactions with cell receptors and extracellular matrix shift in a proatherogenic manner but are partially reversed upon postoperative weight loss. These results help explain why the risk of CVD increases in obesity but decreases upon weight loss.


Subject(s)
Bariatric Surgery , Cardiovascular Diseases , Humans , Receptors, LDL/metabolism , Obesity/surgery , Inflammation , Extracellular Matrix/metabolism , Weight Loss , Lipoproteins, LDL/metabolism
5.
Nutr Metab Cardiovasc Dis ; 33(12): 2317-2325, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37805309

ABSTRACT

AIMS: Refractory hypercholesterolemia (RH), caused primarily by the loss-of-function mutation of LDL receptor (LDLR) gene seen in HoFH and HeFH patients, remains a major risk factor for atherosclerotic cardiovascular disease (ASCVD). Statin and ezetimibe combination therapy lower circulating LDL by 30% in HoFH patients. PCSK9 mAB, being an LDLR-dependent therapy, is not effective in HoFH, but lowers LDL by 25% in HeFH patients. A maximum reduction of 50% was noted in HoFH patients treated with ANGPTL3 mAB, which was not enough to achieve therapeutic goal of LDL. Therefore, new approaches are warranted to offer hopes to individuals intolerant to higher dose statins and not able to achieve recommended LDL level. DATA SYNTHESIS: New approaches to lower LDL include gene therapy and gene editing. AAV-based gene therapy has shown encouraging results in animal models. Using CRISPR/Cas9-mediated genome/base editing, gain of function and loss of function have been successfully done in animal models. Recent progress in the refinement of genome/base editing has overcome the issues of off-target mutagenesis with ∼1% mutagenesis in case of PCSK9 and almost no off-target mutagenesis in inactivating ANGPTL3 in animal models showing 50% reduction in cholesterol. Current approaches using CRISPR-Cas9 genome/base editing targeting LDLR-dependent and LDLR-independent pathways are underway. CONCLUSIONS: The new information on gain of LDLR function and inactivation of ANGPTL3 together with developments in genome/base editing technology to overcome off-target insertion and deletion mutagenesis offer hope to refractory hypercholesterolemic individuals who are at a higher risk of developing ASCVD.


Subject(s)
Homozygous Familial Hypercholesterolemia , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Animals , Humans , Hypercholesterolemia/diagnosis , Hypercholesterolemia/genetics , Hypercholesterolemia/therapy , Proprotein Convertase 9/genetics , Proprotein Convertase 9/therapeutic use , Gene Editing , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Angiopoietin-Like Protein 3
6.
Proc Natl Acad Sci U S A ; 117(28): 16401-16408, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601215

ABSTRACT

Proteins have evolved by incorporating several structural units within a single polypeptide. As a result, multidomain proteins constitute a large fraction of all proteomes. Their domains often fold to their native structures individually and vectorially as each domain emerges from the ribosome or the protein translocation channel, leading to the decreased risk of interdomain misfolding. However, some multidomain proteins fold in the endoplasmic reticulum (ER) nonvectorially via intermediates with nonnative disulfide bonds, which were believed to be shuffled to native ones slowly after synthesis. Yet, the mechanism by which they fold nonvectorially remains unclear. Using two-dimensional (2D) gel electrophoresis and a conformation-specific antibody that recognizes a correctly folded domain, we show here that shuffling of nonnative disulfide bonds to native ones in the most N-terminal region of LDL receptor (LDLR) started at a specific timing during synthesis. Deletion analysis identified a region on LDLR that assisted with disulfide shuffling in the upstream domain, thereby promoting its cotranslational folding. Thus, a plasma membrane-bound multidomain protein has evolved a sequence that promotes the nonvectorial folding of its upstream domains. These findings demonstrate that nonvectorial folding of a multidomain protein in the ER of mammalian cells is more coordinated and elaborated than previously thought. Thus, our findings alter our current view of how a multidomain protein folds nonvectorially in the ER of living cells.


Subject(s)
Endoplasmic Reticulum/metabolism , Receptors, LDL/chemistry , Receptors, LDL/genetics , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/genetics , HeLa Cells , Humans , Protein Biosynthesis , Protein Conformation , Protein Domains , Protein Folding , Receptors, LDL/metabolism
7.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511194

ABSTRACT

Familial hypercholesterolemia (FH) is an autosomal-dominant disorder caused mainly by substitutions in the low-density lipoprotein receptor (LDLR) gene, leading to an increased risk of premature cardiovascular diseases. Tremendous advances in sequencing techniques have resulted in the discovery of more than 3000 variants of the LDLR gene, but not all of them are clinically relevant. Therefore, functional studies of selected variants are needed for their proper classification. Here, a single-cell, kinetic, fluorescent LDL uptake assay was applied for the functional analysis of LDLR variants in a model of an LDLR-deficient human cell line. An LDLR-defective HEK293T cell line was established via a CRISPR/Cas9-mediated luciferase-puromycin knock-in. The expressing vector with the LDLR gene under the control of the regulated promoter and with a reporter gene has been designed to overproduce LDLR variants in the host cell. Moreover, an LDLR promoter-luciferase knock-in reporter system has been created in the human cell line to study transcriptional regulation of the LDLR gene, which can serve as a simple tool for screening and testing new HMG CoA reductase-inhibiting drugs for atherosclerosis therapy. The data presented here demonstrate that the obtained LDLR-deficient human cell line HEK293T-ldlrG1 and the dedicated pTetRedLDLRwt expression vector are valuable tools for studying LDL internalization and functional analysis of LDLR and its genetic variants. Using appropriate equipment, LDL uptake to a single cell can be measured in real time. Moreover, the luciferase gene knock-in downstream of the LDLR promotor allows the study of promoter regulation in response to diverse conditions or drugs. An analysis of four known LDLR variants previously classified as pathogenic and benign was performed to validate the LDLR-expressing system described herein with the dedicated LDLR-deficient human cell line, HEK293T-ldlrG1.


Subject(s)
Atherosclerosis , Hyperlipoproteinemia Type II , Receptors, LDL , Humans , HEK293 Cells , Hyperlipoproteinemia Type II/genetics , Lipoproteins, LDL , Receptors, LDL/genetics , Receptors, LDL/metabolism
8.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511618

ABSTRACT

Here, we present evidence that caveolae-mediated endocytosis using LDLR is the pathway for SARS-CoV-2 virus internalization in the ocular cell line ARPE-19. Firstly, we found that, while Angiotensin-converting enzyme 2 (ACE2) is expressed in these cells, blocking ACE2 by antibody treatment did not prevent infection by SARS-CoV-2 spike pseudovirions, nor did antibody blockade of extracellular vimentin and other cholesterol-rich lipid raft proteins. Next, we implicated the role of cholesterol homeostasis in infection by showing that incubating cells with different cyclodextrins and oxysterol 25-hydroxycholesterol (25-HC) inhibits pseudovirion infection of ARPE-19. However, the effect of 25-HC is likely not via cholesterol biosynthesis, as incubation with lovastatin did not appreciably affect infection. Additionally, is it not likely to be an agonistic effect of 25-HC on LXR receptors, as the LXR agonist GW3965 had no significant effect on infection of ARPE-19 cells at up to 5 µM GW3965. We probed the role of endocytic pathways but determined that clathrin-dependent and flotillin-dependent rafts were not involved. Furthermore, 20 µM chlorpromazine, an inhibitor of clathrin-mediated endocytosis (CME), also had little effect. In contrast, anti-dynamin I/II antibodies blocked the entry of SARS-CoV-2 spike pseudovirions, as did dynasore, a noncompetitive inhibitor of dynamin GTPase activity. Additionally, anti-caveolin-1 antibodies significantly blocked spike pseudotyped lentiviral infection of ARPE-19. However, nystatin, a classic inhibitor of caveolae-dependent endocytosis, did not affect infection while indomethacin inhibited only at 10 µM at the 48 h time point. Finally, we found that anti-LDLR antibodies block pseudovirion infection to a similar degree as anti-caveolin-1 and anti-dynamin I/II antibodies, while transfection with LDLR-specific siRNA led to a decrease in spike pseudotyped lentiviral infection, compared to scrambled control siRNAs. Thus, we conclude that SARS-CoV-2 spike pseudovirion infection in ARPE-19 cells is a dynamin-dependent process that is primarily mediated by LDLR.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/pharmacology , Cholesterol/metabolism , Clathrin/metabolism , Dynamin II , Lipoproteins, LDL/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , Virus Internalization
9.
J Lipid Res ; 63(1): 100160, 2022 01.
Article in English | MEDLINE | ID: mdl-34902367

ABSTRACT

A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease.


Subject(s)
Microfilament Proteins , Muscle Proteins
10.
J Physiol ; 600(8): 1889-1911, 2022 04.
Article in English | MEDLINE | ID: mdl-35156712

ABSTRACT

Circulating bilirubin is associated with reduced serum cholesterol concentrations in humans and in hyperbilirubinaemic Gunn rats. However, mechanisms contributing to hypocholesterolaemia remain unknown. Therefore, this study aimed to investigate cholesterol synthesis, transport and excretion in mutant Gunn rats. Adult Gunn and control rats were assessed for daily faecal sterol excretion using metabolic cages, and water was supplemented with [1-13 C]-acetate to determine cholesterol synthesis. Bile was collected to measure biliary lipid secretion. Serum and liver were collected for biochemical analysis and for gene/protein expression using RT-qPCR and western blot, respectively. Additionally, serum was collected and analysed from juvenile rats. A significant interaction of sex, age and phenotype on circulating lipids was found with adult female Gunn rats reporting significantly lower cholesterol and phospholipids. Female Gunn rats also demonstrated elevated cholesterol synthesis, greater biliary lipid secretion and increased total faecal cholesterol and bile acid excretion. Furthermore, they possessed increased hepatic low-density lipoprotein (LDL) receptor and SREBP2 expression. In contrast, there were no changes to sterol metabolism in adult male Gunn rats. This is the first study to demonstrate elevated faecal sterol excretion in female hyperbilirubinaemic Gunn rats. Increased sterol excretion creates a negative intestinal sterol balance that is compensated for by increased cholesterol synthesis and LDL receptor expression. Therefore, reduced circulating cholesterol is potentially caused by increased hepatic uptake via the LDL receptor. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome). KEY POINTS: Female adult hyperbilirubinaemic (Gunn) rats demonstrated lower circulating cholesterol, corroborating human studies that report a negative association between bilirubin and cholesterol concentrations. Furthermore, female Gunn rats had elevated sterol excretion creating a negative intestinal sterol balance that was compensated for by elevated cholesterol synthesis and increased hepatic low-density lipoprotein (LDL) receptor expression. Therefore, elevated LDL receptor expression potentially leads to reduced circulating cholesterol levels in female Gunn rats providing an explanation for the hypocholesterolaemia observed in humans with elevated bilirubin levels. This study also reports a novel interaction of sex with the hyperbilirubinaemic phenotype on sterol metabolism because changes were only reported in females and not in male Gunn rats. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome).


Subject(s)
Gilbert Disease , Hypercholesterolemia , Animals , Bilirubin/metabolism , Cholesterol/metabolism , Female , Gilbert Disease/metabolism , Hyperbilirubinemia/metabolism , Hypercholesterolemia/metabolism , Lipoproteins, LDL/metabolism , Liver/metabolism , Male , Rats , Rats, Gunn , Receptors, LDL/genetics , Receptors, LDL/metabolism , Sex Characteristics , Sterols/metabolism
11.
J Biol Chem ; 297(1): 100842, 2021 07.
Article in English | MEDLINE | ID: mdl-34058195

ABSTRACT

The low-density lipoprotein receptor (LDLR) family of receptors are cell-surface receptors that internalize numerous ligands and play crucial role in various processes, such as lipoprotein metabolism, hemostasis, fetal development, etc. Previously, receptor-associated protein (RAP) was described as a molecular chaperone for LDLR-related protein 1 (LRP1), a prominent member of the LDLR family. We aimed to verify this role of RAP for LRP1 and two other LDLR family receptors, LDLR and vLDLR, and to investigate the mechanisms of respective interactions using a cell culture model system, purified system, and in silico modelling. Upon coexpression of RAP with clusters of the ligand-binding complement repeats (CRs) of the receptors in secreted form in insect cells culture, the isolated proteins had increased yield, enhanced folding, and improved binding properties compared with proteins expressed without RAP, as determined by circular dichroism and surface plasmon resonance. Within LRP1 CR-clusters II and IV, we identified multiple sites comprised of adjacent CR doublets, which provide alternative bivalent binding combinations with specific pairs of lysines on RAP. Mutational analysis of these lysines within each of isolated RAP D1/D2 and D3 domains having high affinity to LRP1 and of conserved tryptophans on selected CR-doublets of LRP1, as well as in silico docking of a model LRP1 CR-triplet with RAP, indicated a universal role for these residues in interaction of RAP and LRP1. Consequently, we propose a new model of RAP interaction with LDLR family receptors based on switching of the bivalent contacts between molecules over time in a dynamic mode.


Subject(s)
LDL-Receptor Related Protein-Associated Protein/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Protein Folding , Receptors, LDL/metabolism , DNA Mutational Analysis , Humans , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/chemistry , Molecular Docking Simulation , Protein Binding , Repetitive Sequences, Amino Acid
12.
J Biol Chem ; 296: 100032, 2021.
Article in English | MEDLINE | ID: mdl-33154164

ABSTRACT

Inducible degrader of the low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase mediating degradation of low-density lipoprotein (LDL) receptor (LDLR). IDOL also controls its own stability through autoubiquitination, primarily at lysine 293. Whether IDOL may undergo other forms of posttranslational modification is unknown. In this study, we show that IDOL can be modified by small ubiquitin-like modifier 1 at the K293 residue at least. The SUMOylation of IDOL counteracts its ubiquitination and augments IDOL protein levels. SUMOylation and the associated increase of IDOL protein are effectively reversed by SUMO-specific peptidase 1 (SENP1) in an activity-dependent manner. We further demonstrate that SENP1 affects LDLR protein levels by modulating IDOL. Overexpression of SENP1 increases LDLR protein levels and enhances LDL uptake in cultured cells. On the contrary, loss of SENP1 lowers LDLR levels in an IDOL-dependent manner and reduces LDL endocytosis. Collectively, our results reveal SUMOylation as a new regulatory posttranslational modification of IDOL and suggest that SENP1 positively regulates the LDLR pathway via deSUMOylation of IDOL and may therefore be exploited for the treatment of cardiovascular disease.


Subject(s)
Cysteine Endopeptidases/metabolism , Receptors, LDL/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line , Humans , Protein Processing, Post-Translational , Sumoylation , Ubiquitination
13.
Biochem Biophys Res Commun ; 623: 59-65, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35872543

ABSTRACT

Lectin-like oxidized low-density lipoprotein (ox-LDL) receptor 1 (LOX-1) is a vital scavenger receptor involved in ox-LDL binding, internalization, and subsequent proatherogenic signaling leading to cellular dysfunction and atherosclerotic plaque formation. Existing data suggest that modulation of ox-LDL - LOX-1 interaction can prevent or slow down atherosclerosis. Therefore, we utilized computational methods such as multi-solvent simulation and characterized two top-ranked druggable sites. Using systematic molecular docking followed by atomistic molecular dynamics simulation, we have identified and shortlisted small molecules from the NCI library that target two key binding sites. We demonstrate, using surface plasmon resonance (SPR), that four of the shortlisted molecules bind one-on-one to the purified C-terminal domain (CTLD) of LOX-1 receptor with high affinity (KD), ranging from 4.9 nM to 20.1 µM. Further, we performed WaterMap analysis to understand the role of individual water molecules in small molecule binding and the LOX-1-ligand complex stability. Our data clearly show that LOX-1 is druggable with small molecules. Our study provides strategies to identify novel inhibitors to attenuate ox-LDL - LOX-1 interaction.


Subject(s)
Atherosclerosis , Lipoproteins, LDL , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Humans , Lipoproteins, LDL/metabolism , Molecular Docking Simulation , Scavenger Receptors, Class E/metabolism
14.
Biochem Biophys Res Commun ; 635: 77-83, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36257195

ABSTRACT

Articular cartilage defects remain the most common and challenging joint disease. Cartilage lacks the self-healing capacity after injury due to its avascularity. Recently, stem cell-based therapy has been applied for cartilage regeneration. However, the critical target for stem cells during chondrogenesis remains unclear. We first reported that LDL receptor-related protein 3 (LRP3) expression was markedly increased during chondrogenesis in stem cells. Furthermore, LRP3 was an effective chondrogenic stimulator, as confirmed by knockdown and overexpression experiments and RNA sequencing. In addition, inhibition of LRP3 suppressed proliferation and induced apoptosis. Therefore, our study first defined a new chondrogenic stimulator, LRP3, with detailed clarification, which provided a novel target for stem cell-based cartilage regeneration.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Chondrogenesis/genetics , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Stem Cells , Cartilage, Articular/metabolism , Apoptosis , Cell Proliferation , Receptors, LDL/metabolism
15.
J Neuroinflammation ; 19(1): 42, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130916

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system (CNS) commonly affecting young adults. There is increasing evidence that environmental factors are important in the development and course of MS. The metabolic syndrome (MetS) which comprises dyslipidemia has been associated with a worse outcome in MS disease. Furthermore, the lipid-lowering drug class of statins has been proposed to improve MS disease course. However, cholesterol is also rate-limiting for myelin biogenesis and promotes remyelination in MS animal models. Thus, the impact of circulating blood cholesterol levels during the disease remains debated and controversial. METHODS: We assessed the role of circulating cholesterol on the murine model of MS, the experimental autoimmune encephalomyelitis (EAE) disease using two different approaches: (1) the mouse model of familial hypercholesterolemia induced by low-density lipoprotein receptor (LDLr) deficiency, and (2) the use of the monoclonal anti-PCSK9 neutralizing antibody alirocumab, which reduces LDLr degradation and consequently lowers blood levels of cholesterol. RESULTS: Elevated blood cholesterol levels induced by LDLr deficiency did not worsen clinical symptoms of mice during EAE. In addition, we observed that the anti-PCSK9 antibody alirocumab did not influence EAE disease course, nor modulate the immune response in EAE. CONCLUSIONS: These findings suggest that blood cholesterol level has no direct role in neuro-inflammatory diseases and that the previously shown protective effects of statins in MS are not related to circulating cholesterol.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Multiple Sclerosis , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/metabolism , Mice , Neuroinflammatory Diseases
16.
J Virol ; 95(17): e0064921, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34105999

ABSTRACT

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in >95% of adults worldwide and are associated with several cancers. We have shown that endogenous cholesterol synthesis supports gammaherpesvirus replication. However, the role of exogenous cholesterol exchange and signaling during infection remains poorly understood. Extracellular cholesterol is carried in the serum by several lipoproteins, including low-density lipoproteins (LDL). The LDL receptor (LDL-R) mediates the endocytosis of these cholesterol-rich LDL particles into the cell, thereby supplying the cell with cholesterol. We found that LDL-R expression attenuates gammaherpesvirus replication during the early stages of the replication cycle, as evident by increased viral gene expression in LDL-R-/- primary macrophages. This was not observed in primary fibroblasts, indicating that the antiviral effects of LDL-R are cell type specific. Increased viral gene expression in LDL-R-/- primary macrophages was due to increased activity of the endogenous cholesterol synthesis pathway. Intriguingly, despite type I interferon-driven increase in LDL-R mRNA levels in infected macrophages, protein levels of LDL-R continually decreased over the single cycle of viral replication. Thus, our study has uncovered an intriguing tug of war between the LDL-R-driven antiviral effect on cholesterol metabolism and the viral targeting of the LDL-R protein. IMPORTANCE LDL-R is a cell surface receptor that mediates the endocytosis of cholesterol-rich low-density lipoproteins, allowing cells to acquire cholesterol exogenously. Several RNA viruses usurp LDL-R function to facilitate replication; however, the role of LDL-R in DNA virus infection remains unknown. Gammaherpesviruses are double-stranded DNA viruses that are associated with several cancers. Here, we show that LDL-R attenuates gammaherpesvirus replication in primary macrophages by decreasing endogenous cholesterol synthesis activity, a pathway known to support gammaherpesvirus replication. In response, LDL-R protein levels are decreased in infected cells to mitigate the antiviral effects, revealing an intriguing tug of war between the virus and the host.


Subject(s)
Cholesterol/biosynthesis , Gammaherpesvirinae/physiology , Herpesviridae Infections/prevention & control , Lipogenesis , Macrophages/metabolism , Receptors, LDL/metabolism , Virus Replication , Animals , Female , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Host-Pathogen Interactions , Interferon Type I/metabolism , Macrophages/pathology , Macrophages/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/genetics , Signal Transduction
17.
Curr Atheroscler Rep ; 24(4): 289-296, 2022 04.
Article in English | MEDLINE | ID: mdl-35107760

ABSTRACT

PURPOSE OF REVIEW: Individuals with familial hypercholesterolemia have very high risk of cardiovascular disease due to lifelong elevations in LDL cholesterol. Elevated lipoprotein(a) is a risk factor for cardiovascular diseases such as myocardial infarction and aortic valve stenosis. It has been proposed to include elevated lipoprotein(a) in the diagnosis of clinical familial hypercholesterolemia. RECENT FINDINGS: Lipoprotein(a) is co-measured in LDL cholesterol, and up to one-quarter of all diagnoses of clinical familial hypercholesterolemia are due to high levels of lipoprotein(a). Further, individuals with both familial hypercholesterolemia and elevated lipoprotein(a) have an extremely high risk of myocardial infarction. We discuss the background for familial hypercholesterolemia and elevated lipoprotein(a) as risk factors for cardiovascular disease and the consequences of the fact that LDL cholesterol measurements/calculations include the cholesterol present in lipoprotein(a). Finally, we discuss the potential of including lipoprotein(a) as part of the diagnosis of familial hypercholesterolemia and in consequence possible treatments.


Subject(s)
Aortic Valve Stenosis , Hyperlipoproteinemia Type II , Myocardial Infarction , Cholesterol, LDL , Humans , Hyperlipoproteinemia Type II/diagnosis , Lipoprotein(a)
18.
FASEB J ; 35(10): e21892, 2021 10.
Article in English | MEDLINE | ID: mdl-34569651

ABSTRACT

Atherosclerosis is a chronic inflammatory disorder of the vasculature regulated by cytokines. We have previously shown that extracellular signal-regulated kinase-1/2 (ERK1/2) plays an important role in serine 727 phosphorylation of signal transducer and activator of transcription-1 (STAT1) transactivation domain, which is required for maximal interferon-γ signaling, and the regulation of modified LDL uptake by macrophages in vitro. Unfortunately, the roles of ERK1/2 and STAT1 serine 727 phosphorylation in atherosclerosis are poorly understood and were investigated using ERK1 deficient mice (ERK2 knockout mice die in utero) and STAT1 knock-in mice (serine 727 replaced by alanine; STAT1 S727A). Mouse Atherosclerosis RT² Profiler PCR Array analysis showed that ERK1 deficiency and STAT1 S727A modification produced significant changes in the expression of 18 and 49 genes, respectively, in bone marrow-derived macrophages, with 17 common regulated genes that included those that play key roles in inflammation and cell migration. Indeed, ERK1 deficiency and STAT1 S727A modification attenuated chemokine-driven migration of macrophages with the former also impacting proliferation and the latter phagocytosis. In LDL receptor deficient mice fed a high fat diet, both ERK1 deficiency and STAT1 S727A modification produced significant reduction in plaque lipid content, albeit at different time points. The STAT1 S727A modification additionally caused a significant reduction in plaque content of macrophages and CD3 T cells and diet-induced cardiac hypertrophy index. In addition, there was a significant increase in plasma IL-2 levels and a trend toward increase in plasma IL-5 levels. These studies demonstrate important roles of STAT1 S727 phosphorylation in particular in the regulation of atherosclerosis-associated macrophage processes in vitro together with plaque lipid content and inflammation in vivo, and support further assessment of its therapeutical potential.


Subject(s)
Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Receptors, LDL/deficiency , STAT1 Transcription Factor/metabolism , Animals , Gene Knock-In Techniques , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Macrophages/pathology , Mice , Mice, Knockout , Phosphorylation , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Receptors, LDL/metabolism , STAT1 Transcription Factor/genetics
19.
J Neurooncol ; 158(3): 413-421, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35612697

ABSTRACT

PURPOSE: Malignant cerebral tumors have poor prognosis and the blood-brain barrier is a major hindrance for most drugs to reach those tumors. Lipid nanoparticles (LDE) that bind to lipoprotein receptors may carry anticancer drugs and penetrate the cells through those receptors that are overexpressed in gliomas. The aim was to investigate the in vivo uptake of LDE by human cerebral tumors. METHODS: Twelve consecutive patients (4 with glioblastomas, 1 meduloblastoma, 1 primary lymphoma, 2 with non-cerebral metastases and 4 with benign tumors) scheduled for tumor excision surgery were injected intravenously, 12 h before surgery, with LDE labeled 14C-cholesterol oleate. Fragments of tumors and of normal head tissues (muscle, periosteum, dura mater) discarded by the surgeon were submitted to lipid extraction and radioactive counting. RESULTS: Tumor LDE uptake (range: 10-283 d.p.m./g of tissue) was not lower than that of normal tissues (range: 20-263 d.p.m./g). Malignant tumor uptake was threefold greater than benign tumor uptake (140 ± 93 vs 46 ± 18 d.p.m./g, p < 0.05). Results show that LDE can concentrate in brain malignant tumors and may be used to carry drugs directed against those tumors. CONCLUSION: As LDE was previously shown to markedly decrease drug toxicity this new therapeutic strategy should be tested in future trials.


Subject(s)
Nanoparticles , Drug Delivery Systems , Emulsions , Humans , Liposomes
20.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162992

ABSTRACT

Chronic liver diseases are commonly associated with dysregulated cholesterol metabolism. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease of the proprotein convertase family that is mainly synthetized and secreted by the liver, and represents one of the key regulators of circulating low-density lipoprotein (LDL) cholesterol levels. Its ability to bind and induce LDL-receptor degradation, in particular in the liver, increases circulating LDL-cholesterol levels in the blood. Hence, inhibition of PCSK9 has become a very potent tool for the treatment of hypercholesterolemia. Besides PCSK9 limiting entry of LDL-derived cholesterol, affecting multiple cholesterol-related functions in cells, more recent studies have associated PCSK9 with various other cellular processes, including inflammation, fatty acid metabolism, cancerogenesis and visceral adiposity. It is increasingly becoming evident that additional roles for PCSK9 beyond cholesterol homeostasis are crucial for liver physiology in health and disease, often contributing to pathophysiology. This review will summarize studies analyzing circulating and hepatic PCSK9 levels in patients with chronic liver diseases. The factors affecting PCSK9 levels in the circulation and in hepatocytes, clinically relevant studies and the pathophysiological role of PCSK9 in chronic liver injury are discussed.


Subject(s)
Liver Diseases/metabolism , Proprotein Convertase 9/blood , Proprotein Convertase 9/metabolism , Cholesterol, LDL/blood , Gene Expression Regulation , Homeostasis , Humans , Liver/metabolism , Liver Diseases/blood , Receptors, LDL/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL