Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Proc Natl Acad Sci U S A ; 120(5): e2214655120, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36689658

ABSTRACT

In parallel with pronounced cooling in the oceans, vast areas of the continents experienced enhanced aridification and restructuring of vegetation and animal communities during the Late Miocene. Debate continues over whether pCO2-induced global cooling was the primary driver of this climate and ecosystem upheaval on land. Here we present an 8 to 5 Ma land surface temperatures (LST) record from East Asia derived from paleosol carbonate clumped isotopes and integrated with climate model simulations. The LST cooled by ~7 °C between 7.5 and 5.7 Ma, followed by rapid warming across the Miocene-Pliocene transition (5.5 to 5 Ma). These changes occurred synchronously with variations in alkenone and Mg/Ca-based sea surface temperatures and with hydroclimate and ecosystem shifts in East Asia, highlighting a global climate forcing mechanism. Our modeling experiments additionally demonstrate that pCO2-forced cooling would have altered moisture transfer and pathways and driven extensive aridification in East Asia. We, thus, conclude that the East Asian hydroclimate and ecosystem shift was primarily controlled by pCO2-forced global cooling between 8 and 5 Ma.


Subject(s)
Carbon Dioxide , Ecosystem , Animals , Climate , Asia, Eastern , Temperature
2.
Proc Natl Acad Sci U S A ; 119(45): e2204986119, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36322766

ABSTRACT

The modern Pacific Ocean hosts the largest oxygen-deficient zones (ODZs), where oxygen concentrations are so low that nitrate is used to respire organic matter. The history of the ODZs may offer key insights into ocean deoxygenation under future global warming. In a 12-My record from the southeastern Pacific, we observe a >10‰ increase in foraminifera-bound nitrogen isotopes (15N/14N) since the late Miocene (8 to 9 Mya), indicating large ODZs expansion. Coinciding with this change, we find a major increase in the nutrient content of the ocean, reconstructed from phosphorus and iron measurements of hydrothermal sediments at the same site. Whereas global warming studies cast seawater oxygen concentrations as mainly dependent on climate and ocean circulation, our findings indicate that modern ODZs are underpinned by historically high concentrations of seawater phosphate.


Subject(s)
Foraminifera , Seawater , Oceans and Seas , Pacific Ocean , Oxygen/analysis , Nutrients
3.
Dokl Biol Sci ; 517(1): 73-76, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955886

ABSTRACT

Fragments of two skulls of young cetotheriid baleen whales were described from the Fortep'yanka 2 locality (Russia, Republic of Adygea, Maikop district, Fortep'yanka River valley, Upper Miocene, Upper Sarmatian, Blinovskaya Formation). The finds were attributed to Kurdalagonus maicopicus (Spasskii, 1951) based on the morphology of the posterior (mastoid) process of the petrosal bone, the structure of the posterior edge of the temporal fossa, and the S-like shape of the supraoccipital ridges. The skull proportions and the degree of suture closure made it possible to determine the individual age of the whales within a year. New finds significantly complement the data on the structure of the sutures of the lateral wall of the skull and age-related variability of cranial morphology in representatives of the genus Kurdalagonus.


Subject(s)
Fossils , Skull , Animals , Skull/anatomy & histology , Fossils/anatomy & histology , Russia , Whales/anatomy & histology , Cranial Sutures/anatomy & histology
4.
Naturwissenschaften ; 110(5): 42, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37584870

ABSTRACT

We describe two large predators from the hominoid-bearing Khorat sand pits, Nakhon Ratchasima Province, northeastern Thailand: a new genus of pantherine, Pachypanthera n. gen., represented by partial mandible and maxilla and an indeterminate sabre-toothed cat, represented by a fragment of upper canine. The morphological characters of Pachypanthera n. gen., notably the large and powerful canine, the great robustness of the mandibular body, the very deep fossa for the m. masseter, the zigzag HSB enamel pattern, indicate bone-cracking capacities. The genus is unique among Felidae as it has one of the most powerful and robust mandibles ever found. Moreover, it may be the oldest known pantherine, as other Asian pantherines are dated back to the early Pliocene. The taxa we report here are the only carnivorans known from the late Miocene of Thailand. Although the material is rather scarce, it brings new insights to the evolutionary history of Neogene mammals of Southeast Asia, in a geographic place which is partly "terra incognita."


Subject(s)
Carnivora , Felidae , Hominidae , Animals , Felidae/anatomy & histology , Fossils , Muscimol , Sand , Thailand
5.
Dokl Biol Sci ; 511(1): 277-279, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37833587

ABSTRACT

Coprolites of the seal Pachyphoca volkodavi from the Upper Miocene deposits (Kherson) of the Fortepyanka locality (Republic of Adygea) were studied. Two out of five seal coprolites contained a structure resembling fish muscle tissue and included objects with morphology of trematode metacercariae. Obviously, the larvae of the parasite got into the digestive tract of seals from the fish they ate. Microscopic analysis of the coprolites did not reveal helminth eggs, which indicates possible absence of infection.


Subject(s)
Fish Diseases , Seals, Earless , Trematoda , Trematode Infections , Animals , Metacercariae , Fishes/parasitology , Larva , Trematode Infections/parasitology
6.
Mol Phylogenet Evol ; 177: 107628, 2022 12.
Article in English | MEDLINE | ID: mdl-36096462

ABSTRACT

The global herbaceous flora is probably shaped by both ancient and/or recent diversification, companied with the impacts from geographic differences between the Northern and Southern Hemispheres. Therefore, its biogeographic pattern with respect to temporal and spatial divergence is far from full understanding. Tribe Rubieae, the largest herbaceous tribe in the woody-dominant Rubiaceae, provides an excellent opportunity for studying the macroevolution of worldwide colonization. Here, we aim to reconstruct the evolutionary history of Rubieae with regard to climate fluctuation and geological history in the Cenozoic. A total of 204 samples of Rubieae representing all the distribution areas of the tribe were used to infer its phylogenetic and biogeographic histories based on two nrDNA and six cpDNA regions. The ancestral area of Rubieae was reconstructed using a time-calibrated phylogeny in RASP and diversification rates were inferred using Bayesian analysis of macroevolutionary mixtures (BAMM). Our results show Rubieae probably originated in European region during the middle Oligocene, with the two subtribes separating at 26.8 million years ago (Ma). All the genera in Rubieae formed separate clades between 24.79 and 6.23 Ma. The ancestral area of the subtribe Rubiinae was the Madrean-Tethyan plant belt and the North Atlantic land bridge (NALB) provided passage between North America and Europe for Rubiinae. The subtribe Galiinae clade originated in Europe/central Asia during the late Oligocene. Two diversification shifts were detected within Rubieae in the late Neogene. Most extant Rubieae species diverged recently during the Neogene within clades that generally were established during the late Paleogene. The tribe shows complex migration/dispersal patterns within the North Hemisphere combined with multiple recent dispersals into Southern Hemisphere. Our results highlighted the important role of recent biogeographic diversification in the Northern Hemisphere in shaping the modern global herbaceous flora during the latest and rapid worldwide expansion in the Neogene.


Subject(s)
Rubiaceae , Bayes Theorem , Phylogeny , Phylogeography , Plants , Rubiaceae/genetics
7.
Proc Natl Acad Sci U S A ; 116(20): 9747-9752, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31036635

ABSTRACT

Near-modern ecosystems were established as a result of rapid ecological adaptation and climate change in the Late Miocene. On land, Late Miocene aridification spread in tandem with expansion of open habitats including C4 grassland ecosystems. Proxy records for the central Andes spanning the Late Miocene cooling (LMC) show the reorganization of subtropical ecosystems and hydroclimate in South America between 15 and 35°S. Continental pedogenic carbonates preserved in Neogene basins record a general increase of δ18O and δ13C values from pre-LMC to post-LMC, most robustly occurring in the subtropics (25 to 30°S), suggesting aridification and a shift toward a more C4-plant-dominated ecosystem. These changes are closely tied to the enhancement of the Hadley circulation and moisture divergence away from the subtropics toward the Intertropical Convergence Zone as revealed by climate model simulations with prescribed sea-surface temperatures (SSTs) reflecting different magnitudes of LMC steepening of equator-to-pole temperature gradient and CO2 decline.

8.
Mol Phylogenet Evol ; 157: 107069, 2021 04.
Article in English | MEDLINE | ID: mdl-33421615

ABSTRACT

The tribe Arvicanthini (Muridae: Murinae) is a highly diversified group of rodents (ca. 100 species) and with 18 African genera (plus one Asiatic) represents probably the most successful adaptive radiation of extant mammals in Africa. They colonized a broad spectrum of habitats (from rainforests to semi-deserts) in whole sub-Saharan Africa and their members often belong to most abundant parts of mammal communities. Despite intensive efforts, the phylogenetic relationships among major lineages (i.e. genera) remained obscured, which was likely caused by the intensive radiation of the group, dated to the Late Miocene. Here we used genomic scale data (377 nuclear loci; 581,030 bp) and produced the first fully resolved species tree containing all currently delimited genera of the tribe. Mitogenomes were also extracted, and while the results were largely congruent, there was less resolution at basal nodes of the mitochondrial phylogeny. Results of a fossil-based divergence dating analysis suggest that the African radiation started early after the colonization of Africa by a single arvicanthine ancestor from Asia during the Messinian stage (ca. 7 Ma), and was likely linked with a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forest, while many others successfully colonized broad spectrum of new open habitats (e.g. savannas, wetlands or montane moorlands) that appeared at the beginning of Pliocene. One lineage even evolved partially arboricolous life style in savanna woodlands, which allowed them to re-colonize equatorial forests. We also discuss delimitation of genera in Arvicanthini and propose corresponding taxonomic changes.


Subject(s)
Cell Nucleus/genetics , Genome, Mitochondrial , Murinae/classification , Murinae/genetics , Africa South of the Sahara , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Databases as Topic , Genetic Loci , Phylogeny , Species Specificity
9.
Mol Phylogenet Evol ; 163: 107263, 2021 10.
Article in English | MEDLINE | ID: mdl-34273505

ABSTRACT

The tribe Praomyini is a diversified group including 64 species and eight extant rodent genera. They live in a broad spectrum of habitats across whole sub-Saharan Africa. Members of this tribe are often very abundant, they have a key ecological role in ecosystems, they are hosts of many potentially pathogenic microorganisms and comprise numerous agricultural pests. Although this tribe is well supported by both molecular and morphological data, its intergeneric relationships and the species contents of several genera are not yet fully resolved. Recent molecular data suggest that at least three genera in current sense are paraphyletic. However, in these studies the species sampling was sparse and the resolution of relationships among genera was poor, probably due to a fast radiation of the tribe dated to the Miocene and insufficient amount of genetic data. Here we used genomic scale data (395 nuclear loci = 610,965 bp long alignment and mitogenomes = 14,745 bp) and produced the first fully resolved species tree containing most major lineages of the Praomyini tribe (i.e. all but one currently delimited genera and major intrageneric clades). Results of a fossil-based divergence dating analysis suggest that the radiation started during the Messinian stage (ca. 7 Ma) and was likely linked to a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forests, while many others adapted to a broad spectrum of new open lowland and montane habitats that appeared at the beginning of Pliocene. Our analyses clearly confirmed the presence of three polyphyletic genera (Praomys, Myomyscus and Mastomys). We review current knowledge of these three genera and suggest corresponding taxonomic changes. To keep genera monophyletic, we propose taxonomic re-arrangements and delimit four new genera. Furthermore, we discovered a new highly divergent genetic lineage of Praomyini in southwestern Ethiopia, which is described as a new species and genus.


Subject(s)
Ecosystem , Murinae , Animals , Biological Evolution , Ethiopia , Phylogeny
10.
J Evol Biol ; 33(1): 57-66, 2020 01.
Article in English | MEDLINE | ID: mdl-31541555

ABSTRACT

The "early-burst" model of adaptive radiation predicts an early increase in phenotypic disparity concurrent with lineage diversification. Although most studies report a lack of this coupled pattern, the underlying processes are not identified. The continental radiation of Hemidactylus geckos from Peninsular India includes morphologically diverse species that occupy various microhabitats. This radiation began diversifying ~36 Mya with an early increase in lineage diversification. Here, we test the "early-burst" hypothesis by investigating the presence of ecomorphs and examining the pattern of morphological diversification in a phylogenetic framework. Two ecomorphs-terrestrial and scansorial species-that vary significantly in body size and toepad size were identified. Unlike the prediction of the "early-burst" model, we find that disparity in toepad morphology accumulated more recently ~14 Mya and fit the Ornstein-Ulhenbeck model. Ancestral state reconstruction of the two ecomorphs demonstrates that terrestrial lineages evolved independently at least five times from scansorial ancestors, with the earliest diversification in terrestrial lineages 19-12 Mya. Our study demonstrates a delayed increase in morphological disparity as a result of the evolution of terrestrial ecomorphs. The diversification of terrestrial lineages is concurrent with the establishment of open habitat and grasslands in Peninsular India, suggesting that the appearance of this novel resource led to the adaptive diversification.


Subject(s)
Ecosystem , Lizards/classification , Phylogeny , Adaptation, Physiological , Animals , Genetic Speciation , India , Lizards/anatomy & histology
11.
J Hum Evol ; 147: 102866, 2020 10.
Article in English | MEDLINE | ID: mdl-32862123

ABSTRACT

Apart from a juvenile hominoid, the locality of Shuitangba (southwestern China, 6.5-6.0 Ma) has yielded a mandible and proximal femur attributed to the colobine genus Mesopithecus. A complete colobine calcaneus also accompanies this material, but its association with the other Mesopithecus material remains to be confirmed. These fossil elements are very important as they represent the oldest known colobines from East Asia, extend the dispersal of Mesopithecus to southwestern China, and underscore its close affinities and potential ancestry to the odd-nosed colobines. The present article focuses on the functional morphology of this complete calcaneus to reconstruct the positional habits, infer the paleocology, and understand the dispersal patterns of this fossil colobine. The studied characters corroborate the attribution of this element to colobines and support potential affinities with the Mesopithecus remains of the same locality. Functionally, characters such as the long and narrow tuber calcanei, the short proximal calcaneal region, and the relatively extended and long and narrow proximal calcaneoastragalar facet appear to enable habitual pedal flexion with conjunct inversion that accommodate the foot on diversely oriented and differently sized arboreal substrates. On the other hand, the relatively short distal calcaneal region is functionally related to (mainly terrestrial) quadrupedal activities, wherein thrust and rapid flexion are required. This combination of characters suggests that the Shuitangba colobine could move at ease on arboreal substrates and was also able to occasionally use terrestrial substrates. The potential affinities of this calcaneus to Mesopithecus and its positional profile most likely imply an eastward migration via forested corridors. In Shuitangba, this fossil colobine could trophically and positionally exploit a wide range of habitats successfully coexisting with resident hominoids.


Subject(s)
Calcaneus/anatomy & histology , Colobinae/anatomy & histology , Fossils/anatomy & histology , Animals , Biological Evolution , China
12.
J Anim Ecol ; 89(5): 1230-1241, 2020 05.
Article in English | MEDLINE | ID: mdl-31955425

ABSTRACT

Many tropical environments experience cyclical seasonal changes, frequently with pronounced wet and dry seasons, leading to a highly uneven temporal distribution of resources. Short-lived animals inhabiting such environments often show season-specific adaptations to cope with alternating selection pressures. African Bicyclus butterflies show strong seasonal polyphenism in a suite of phenotypic and life-history traits, and their adults are thought to undergo reproductive diapause associated with the lack of available larval host plants during the dry season. Using 3 years of longitudinal field data for three species in Malawi, dissections demonstrated that one forest species reproduces continuously, whereas two savannah species undergo reproductive diapause in the dry season, either with or without pre-diapause mating. Using additional data from field-collected and museum samples, we then documented the same three mating strategies for a further 37 species. Phylogenetic analyses indicated that the ancestral state was a non-diapausing forest species, and that habitat preference and mating strategy evolved in a correlated fashion. Bicyclus butterflies underwent rapid diversification during the Late Miocene, coinciding with expansions into more open savannah habitat. We conclude that the ability to undergo reproductive diapause was a key trait that facilitated colonization and eventual radiation into savannahs in the Late Miocene.


Subject(s)
Butterflies , Diapause, Insect , Diapause , Radiation , Animals , Phylogeny , Reproduction , Seasons
13.
Dokl Biol Sci ; 491(1): 63-66, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32483712

ABSTRACT

Fragments of four Zygiocetus sp. whale skeletons from the Melek-Chesme locality at the Kerch Peninsula are described. This is the first finding of the representatives of this genus in Crimea.


Subject(s)
Fossils , Whales , Animals , Russia , Skeleton/anatomy & histology , Skull/anatomy & histology , Whales/anatomy & histology
14.
J Hum Evol ; 132: 32-46, 2019 07.
Article in English | MEDLINE | ID: mdl-31203850

ABSTRACT

Castell de Barberà, located in the Vallès-Penedès Basin (NE Iberian Peninsula), is one of the few European sites where pliopithecoids (Barberapithecus) and hominoids (cf. Dryopithecus) co-occur. The dating of this Miocene site has proven controversial. A latest Aragonian (MN7+8, ca. 11.88-11.18 Ma) age was long accepted by most authors, despite subsequent reports of hipparionin remains that signaled a Vallesian age. On the latter basis, Castell de Barberà was recently correlated to the early Vallesian (MN9, ca. 11.18-10.3 Ma) on tentative grounds. Uncertainties about the provenance of the Hippotherium material and the lack of magnetostratigraphic data precluded more accurate dating. After decades of inactivity, fieldwork was resumed in 2014-2015 at Castell de Barberà, including the original layer (CB-D) that previously delivered most of the fossils. Here we report magnetostratigraphic results for the original outcrop and another nearby section. Our results indicate that CB-D is located in a normal polarity magnetozone in the middle of a short (∼20 m-thick) stratigraphic section. The composite magnetostratigraphic section (∼50 m) has as many as four to six magnetozones. These multiple reversals, coupled with the in situ recovery of a Hippotherium humerus from CB-D in 2015, make it unlikely that any of the sampled normal polarity magnetozones correlate with the long normal polarity subchron C5n.2n (11.056-9.984 Ma), which is characteristic of the early Vallesian. Our results support instead a correlation of CB-D with C5r.1n (11.188-11.146 Ma), where the Aragonian/Vallesian boundary is situated, and therefore indicate an earliest Vallesian age of ∼11.2 Ma for Castell de Barberà. Our results settle the longstanding debate about the Aragonian vs. Vallesian age of this site, which appears roughly coeval with the Creu de Conill 20 locality (11.18 Ma), where hipparionins are first recorded in the Vallès-Penedès Basin.


Subject(s)
Biological Evolution , Fossils , Geologic Sediments/analysis , Primates , Animals , Spain
15.
Am J Phys Anthropol ; 170(2): 295-307, 2019 10.
Article in English | MEDLINE | ID: mdl-31339568

ABSTRACT

OBJECTIVES: This study aims to virtually reconstruct the deformed face (XIR-1) and maxilla (RPl-128) of the Late Miocene hominoid Ouranopithecus macedoniensis from Greece, through the application of mirror-imaging and segmentation. Additionally, analysis was conducted through 3D geometric morphometrics, utilizing a comparative sample of fossil hominoids, extant great apes (Gorilla, Pan, and Pongo) and humans, so as to explore shape variation and phenetic similarities between them. MATERIALS AND METHODS: High-resolution computed tomography was used to create digital representations of the XIR-1 and RPl-128 specimens. The virtual reconstruction of the XIR-1 cranium was achieved by mirror-imaging, while the RPl-128 maxilla was virtually segmented and reattached in a correct anatomical position. Anatomical landmarks were registered in three dimensions on a comparative sample of adult crania of extant great apes, humans and fossil hominoids. The data were processed with Procrustes superimposition and analyzed using multivariate statistics methods. RESULTS: Results show that Ouranopithecus macedoniensis falls within or close to the Gorilla convex hull in the principal component analyses, and it is closer to the mean Procrustes shape distance of primarily Gorilla. Both specimens, XIR-1 and RPl-128, are classified as Gorilla based on discriminant function analyses. DISCUSSION: The results of our geometric morphometrics analyses indicate that Ouranopithecus macedoniensis is morphologically more similar to Gorilla than to Homo, Pan, or Pongo, results that can contribute to the evaluation of existing hypotheses about its phylogenetic position.


Subject(s)
Cephalometry/methods , Imaging, Three-Dimensional/methods , Primates/anatomy & histology , Skull , Animals , Anthropology, Physical , Female , Fossils/anatomy & histology , Fossils/diagnostic imaging , Fossils/history , History, Ancient , Humans , Male , Skull/anatomy & histology , Skull/diagnostic imaging , Tomography, X-Ray Computed
16.
J Hum Evol ; 121: 128-146, 2018 08.
Article in English | MEDLINE | ID: mdl-29754742

ABSTRACT

New material of the Mio-Pliocene colobine Mesopithecus from the Turolian locality of Kryopigi (Greece) is described here. It includes a complete skull with the atlas attached and other dental and postcranial elements representing at least five individuals (four males and one female). The material is compared with Mesopithecus delsoni, Mesopithecus pentelicus, Mesopithecus monspessulanus and intermediate forms from more than a dozen Turolian localities of the Greco-Iranian province. These comparisons support the attribution of the Kryopigi material to M. pentelicus. The chronostratigraphic distribution of Mesopithecus species and intermediate forms suggests that the Kryopigi fauna could be dated as younger than the Perivolaki locality with M. delsoni/pentelicus (7.1-7.3 Ma, MN12) and older than the Dytiko localities with M. aff. pentelicus, M. cf. pentelicus and M. cf. monspessulanus (?middle MN13). The dimensions of the atlas are within the distribution of extant colobines. The skull shows bite-marks, probably caused by the hyaena Adcrocuta eximia.


Subject(s)
Cervical Atlas/anatomy & histology , Colobinae/anatomy & histology , Fossils/anatomy & histology , Skull/anatomy & histology , Animals , Bone and Bones/anatomy & histology , Female , Greece , Male , Tooth/anatomy & histology
17.
J Hum Evol ; 108: 161-175, 2017 07.
Article in English | MEDLINE | ID: mdl-28622928

ABSTRACT

The chronology of dental development and life history of primitive catarrhines provides a crucial comparative framework for understanding the evolution of hominoids and Old World monkeys. Among the extinct groups of catarrhines are the pliopithecoids, with no known descendants. Anapithecus hernyaki is a medium-size stem catarrhine known from Austria, Hungary and Germany around 10 Ma, and represents a terminal lineage of a clade predating the divergence of hominoids and cercopithecoids, probably more than 30 Ma. In a previous study, Anapithecus was characterized as having fast dental development. Here, we used non-destructive propagation phase contrast synchrotron micro-tomography to image several dental microstructural features in the mixed mandibular dentition of RUD 9, the holotype of A. hernyaki. We estimate its age at death to be 1.9 years and describe the pattern, sequence and timing of tooth mineralization. Our results do not support any simplistic correlation between body mass and striae periodicity, since RUD 9 has a 3-day periodicity, which was previously thought unlikely based on body mass estimates in Anapithecus. We demonstrate that the teeth in RUD 9 grew even faster and initiated even earlier in development than suggested previously. Permanent first molars and the canine initiated 49 and 38 days prenatally, respectively. These results contribute to a better understanding of dental development in Anapithecus and may provide a window into the dental development of the last common ancestor of hominoids and cercopithecoids.


Subject(s)
Fossils/anatomy & histology , Hominidae/anatomy & histology , Tooth/growth & development , Age Factors , Animals , Austria , Germany , Humans , Hungary , Synchrotrons
18.
Proc Natl Acad Sci U S A ; 111(46): 16292-6, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25368156

ABSTRACT

The Tibetan Plateau uplift and Cenozoic global cooling are thought to induce enhanced aridification in the Asian interior. Although the onset of Asian desertification is proposed to have started in the earliest Miocene, prevailing desert environment in the Tarim Basin, currently providing much of the Asian eolian dust sources, is only a geologically recent phenomenon. Here we report episodic occurrences of lacustrine environments during the Late Miocene and investigate how the episodic lakes vanished in the basin. Our oxygen isotopic (δ(18)O) record demonstrates that before the prevailing desert environment, episodic changes frequently alternating between lacustrine and fluvial-eolian environments can be linked to orbital variations. Wetter lacustrine phases generally corresponded to periods of high eccentricity and possibly high obliquity, and vice versa, suggesting a temperature control on the regional moisture level on orbital timescales. Boron isotopic (δ(11)B) and δ(18)O records, together with other geochemical indicators, consistently show that the episodic lakes finally dried up at ∼4.9 million years ago (Ma), permanently and irreversibly. Although the episodic occurrences of lakes appear to be linked to orbitally induced global climatic changes, the plateau (Tibetan, Pamir, and Tianshan) uplift was primarily responsible for the final vanishing of the episodic lakes in the Tarim Basin, occurring at a relatively warm, stable climate period.

19.
New Phytol ; 209(4): 1795-806, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26528674

ABSTRACT

The global flora is thought to contain a large proportion of herbs, and understanding the general spatiotemporal processes that shaped the global distribution of these communities is one of the most difficult issues in biogeography. We explored patterns of world-wide biogeography in a species-rich herbaceous group, the paper daisy tribe Gnaphalieae (Asteraceae), based on the hitherto largest taxon sampling, a total of 835 terminal accessions representing 80% of the genera, and encompassing the global geographic range of the tribe, with nuclear internal transcribed spacer (ITS) and external transcribed spacer (ETS) sequences. Biogeographic analyses indicate that Gnaphalieae originated in southern Africa during the Oligocene, followed by repeated migrations into the rest of Africa and the Mediterranean region, with subsequent entries into other continents during various periods starting in the Miocene. Expansions in the late Miocene to Pliocene appear to have been the driving force that shaped the global distribution of the tribe as forests were progressively broken up by the mid-continent aridification and savannas and grasslands expanded into the interior of the major continents. This pattern of recent colonizations may explain the world-wide distribution of many other organisms in open ecosystems and it is highlighted here as an emerging pattern in the evolution of the global flora.


Subject(s)
Asteraceae/physiology , Phylogeny , Geography , Time Factors
20.
Am J Phys Anthropol ; 160(2): 254-71, 2016 06.
Article in English | MEDLINE | ID: mdl-26932906

ABSTRACT

OBJECTIVE: Oreopithecus bambolii was the last hominoid to survive in Europe. The purpose of this investigation was to reconstruct, through stable isotope analyses, Oreopithecus' habitat, subsistence behavior, and changes in habitat that may have led to its extinction. METHODS: Carbon and oxygen stable isotopes from inorganic carbonate in tooth enamel from Oreopithecus and its contemporaneous faunas from localities in Tuscany and Sardinia were sampled. Also the fauna from localities in Tuscany shortly after Oreopithecus went extinct were sampled. RESULTS: Results indicated that Oreopithecus, compared with most modern hominoids, inhabited forests that probably had a more open canopy. At Tuscan localities, Oreopithecus yields some of the highest carbon isotope values but some of the lowest oxygen, suggesting a diet that may have included tubers or aquatic vegetation. Relatively higher oxygen values in Sardinia suggested that its diet included arboreal foods as well. Among modern and fossil hominoids, Oreopithecus only resembled chimpanzees living outside of rainforests. It also resembled Ardipithecus in carbon isotope values, suggesting possible similarities in feeding strategies concordant with shared skeletal features between Oreopithecus and early hominins. Isotope values from post-Oreopithecus faunas indicated a shift to more forested conditions, unlike other hominoid extinctions associated with loss of forest. CONCLUSIONS: Isotopic reconstructions of Oreopithecus' habitat and changes associated with its extinction indicated that its paleoecology was unique among hominoids. However, these reconstructions also suggested that like other hominoids, Oreopithecus was susceptible to changes in seasonality of precipitation, and it may have used wetlands as a buffer to seasonal regimes. Am J Phys Anthropol 160:254-271, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carbon Isotopes/analysis , Ecosystem , Hominidae/physiology , Oxygen Isotopes/analysis , Animals , Diet/history , Extinction, Biological , Fossils , History, Ancient , Italy , Paleontology
SELECTION OF CITATIONS
SEARCH DETAIL