ABSTRACT
Lilium brownii (L. brownii) is a plant that can be used for both medicine and food. Its bulbs are commonly used to treat neurological disorders like depression, insomnia, and Parkinson's disease (PD). However, the mechanism by which it treats PD is not yet fully understood. This study aims to investigate the possible mechanism of L. brownii extract in treating PD and to compare the efficacy of ethanol and aqueous extracts of L. brownii. In this study, mice with PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) were given L. brownii extracts for 30 days, and the effects of both extracts were then evaluated. Our study demonstrated that both extracts of L. brownii effectively improved motor dysfunction in PD mice induced by MPTP. Additionally, they increased the number of neurons in the substantia nigra region of the mice. Moreover, both extracts reduced levels of malondialdehyde (MDA) and ferrous ion (Fe2+), while increasing levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum. They also influenced the expression of proteins associated with the p62-Keap1-Nrf2 pathway. Interestingly, while both extracts had similar behavioral effects, the ethanol extract appeared to have a more significant impact on individual proteins in the p62-Keap1-Nrf2 pathway compared to the aqueous extract, possibly due to its higher phenolic acid glyceride content. In conclusion, L. brownii shows promise as an effective and safe treatment for PD.
Subject(s)
Lilium , Neuroprotective Agents , Plant Extracts , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice , Male , Mice, Inbred C57BL , Disease Models, Animal , Oxidative Stress/drug effectsABSTRACT
Bulbs of Lilium brownii, commonly known as "Bai-he" in China, serve both edible and medicinal purposes in clinical practice. In this study, two new isospirostanol-type saponins were isolated from L. brownii, and their structures were identified by spectroscopic method, and absolute configurations were elucidated by comprehensive analysis of spectral data obtained from combined acid hydrolysis. Two compounds were finally identified as 3-O-[α-L-rhamnopyranosyl-(1â2)-ß-D-glucopyranoside]-(22R,25R)-5α-spirosolane-3ß-ol (1) and 3-O-{α-L-rhamnopyranosyl-(1â2)-[ß-D-glucopyranosyl-(1â4)]-ß-D-glucopyranoside}-(22R,25R)-5α-spirosolane-3ß-ol (2), respectively. Further, we found that compound 2 significantly suppressed the proliferation of SMMC-7721 and HepG2 cells with IC50 values of 26.3±1.08â µM and 30.9±1.59â µM, whereas compound 1 didn't inhibit both of the two hepatocellular carcinoma. Subsequently, compound 2 effectively decreased the levels of interleukin-1ß and tumor necrosis factor-α and the expression of Bcl-2, and increased the expression of Bax and Caspase-3 proteins. Which indicated that the anti-hepatocellular carcinoma effect of compound 2 involves reducing the level of inflammation and inducing apoptosis.
Subject(s)
Apoptosis , Cell Proliferation , Lilium , Liver Neoplasms , Plant Roots , Saponins , Humans , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Cell Proliferation/drug effects , Lilium/chemistry , Plant Roots/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Apoptosis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Drug Screening Assays, Antitumor , Cell Line, Tumor , Spirostans/pharmacology , Spirostans/chemistry , Spirostans/isolation & purification , Structure-Activity Relationship , Dose-Response Relationship, Drug , Interleukin-1beta/metabolism , Interleukin-1beta/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Hep G2 Cells , Molecular Structure , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Molecular ConformationABSTRACT
Baihe is a commonly used Chinese medicine for the treatment of neurological disorders. Clinically, the bulbs of Lilium brownii are used to act as Baihe. In the study, two new phenylpropanoid compounds including 3-O-acetyl-1-O-caffeoylglycerol (1) and 3-O-acetyl-1-O-p-coumaroylglycerol (2) were isolated from the bulbs of L. brownii. Their structures were identified by spectroscopic method and the effect on monoamine oxidase activity was determined using an enzyme labeling method. The results show 1 and 2 have anti-monoamine oxidase activity with 20.96 % and 22.31 % inhibition rates at 50â µg/ml, respectively.
Subject(s)
Lilium , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Lilium/chemistry , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/isolation & purification , Molecular Structure , Plant Roots/chemistry , Structure-Activity Relationship , Dose-Response Relationship, DrugABSTRACT
The bulbs of Lilium brownii var. viridulum (LB) are commonly used as both traditional Chinese medicines and popular functional food for many centuries in China. Previous studies reported that the extract of lily bulbs exhibited anti-inflammatory activity both in vivo and in vitro, but its active components and associated molecular mechanisms remain elusive. In the present study, using bioassay-guided isolation method, two phenylpropenoid acylglycerols, 1-O-feruloyl-2-O-p-coumaroylglycerol (1) and 1,3-O-diferuloylglycerol (2), were obtained and identified from the chloroform fraction of LB. Both compounds 1 and 2 significantly decreased the production of nitrite oxide (NO) in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells in a dose-dependent manner with half maximal inhibitory concentration (IC50) values of 9.12 ± 0.72 µM and 12.01 ± 1.07 µM, respectively. They also inhibited the production of prostaglandin E2 (PGE2) and several other pro-inflammatory cytokines, such as interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Furthermore, compounds 1 and 2 downregulated the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). They also inhibited the nuclear translocation of nuclear factor-κB (NF-κB) p65 subunit and suppressed mitogen-activated protein kinases (MAPKs) pathway. Taken these data together, compounds 1 and 2 exhibited anti-inflammatory activities through acting on the NF-κB and MAPKs pathway. This research provides the first evidence on the major bioactive constituents and related molecular mechanisms of LB as an anti-inflammatory agent. Our findings also advanced the understanding of LB as a traditional herbal medicine for the prevention and treatment of inflammation.
Subject(s)
Anti-Inflammatory Agents/isolation & purification , Lilium/chemistry , NF-kappa B/metabolism , Plant Extracts/isolation & purification , Plant Roots/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Mice , Nitric Oxide/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , RAW 264.7 CellsABSTRACT
Homogeneous polysaccharide (LBP) was extracted and purified from the bulblets of Lilium brownii var. viridulum Baker with a molecular weight of 312 kDa. The monosaccharides are composed of mannose and glucose, and the corresponding molar ratios are 0.582 and 0.418, respectively. FT-IR, LC-MS, NMR, GC-MS and HPAEC were used to analyze the functional groups, glycosidic linkages and chemical structure of LBP, which was a 1-4-linked glucomannan and contained a dodecasaccharide repeating units of â4)-ß-D-Manp-(1 â 4)-ß-D-Manp-(1 â 4)-ß-D-Manp-(1 â 4)-ß-D-Glcp-(1 â 4)-ß-D-Manp-(1 â 4)-ß-D-Manp-(1 â 4)-ß-D-Glcp-(1 â 4)-α-D-Glcp-(1 â 4)-ß-D-Glcp-(1 â 4)-ß-D-Glcp-(1 â 4)-ß-D-Manp-(1 â 4)-ß-D-Manp-(1 â . In vitro experimental results showed that LBP had noble biocompatibility, and a low dose of 5 µg/mL LBP significantly up-regulated the mRNA expression of TNF-α, iNOS, IL-6, IL-1ß and Toll-like receptors family (TLRs) in RAW 264.7 cells. In conclusion, LBP played an important role in immunomodulation, and further studies on the specific immunomodulatory mechanisms of LBP on RAW 264.7 cells are still needed.
Subject(s)
Lilium , Lilium/chemistry , Spectroscopy, Fourier Transform Infrared , Mannans/pharmacology , Mannans/chemistry , Polysaccharides/chemistryABSTRACT
Lilium brownii F. E. Brown ex Miellez var. viridulum Baker (Longya lily) is a variety of Lilium brownii F.E. Br. ex Miellez. We used HS-SPME and GC-MS to screened the tissues of L. brownii roots, stems, bulbs, and leaves and obtained 2,4-DTBP as an autotoxic substance for subsequent analysis. 2,4-DTBP was highly autotoxic in some treatment groups. Based on changes in physiological indicators, we carried out transcriptomic analysis to investigate the mechanisms of autotoxicity of substances on L. brownii and obtained 188,505 Unigenes. GO and KEGG enrichment analyses showed that L. brownii responded differently to different concentrations and treatment times of 2,4-DTBP. We observed significant changes in genes associated with ROS, phytohormones, and MAPK signaling cascades. 2,4-DTBP affects chloroplasts, the integrity of the respiratory electron transport chain, and ribosomes, causing L. brownii autotoxicity. Our findings provide a practical genomic resource for future research on L. brownii autotoxicity and evidence for the mechanism of action of autotoxic substances.
ABSTRACT
Lilium brownii var. viridulum (Longya lily) is an edible vegetable and medicinal plant with the effects of moistening lungs, relieving coughs, and removing phlegm. In this study, a homogenous mannoglucan LLP11 was purified from Longya lily using membrane ultrafiltration followed by ion exchange chromatography. The M w of LLP11 was 12.0 kDa. LLP11 exhibited a backbone of â4)-α-D-Glcp-(1 â and â4)-ß-D-Manp-(1 â with a branch of T-α-D-Glcp-(1 â substituted at C-6 of â4,6)-α-D-Glcp-(1â. During the simulated digestion, LLP11 remained indigestible to digestive enzymes. Furthermore, through its interaction with the gut microbiota, LLP11 was able to significantly boost Bifidobacterium and decrease the harmful bacteria Klebsiella, that was linked to pneumonia. Additionally, LLP11 promoted the growth of B. pseudocatenulatum and B. longum and was utilized to produce acetic acid. Our findings introduced an alternative approach for the investigation of microbiota-targeted polysaccharides and underscored the potential of LLP11 as a prebiotic for supplementary treatment in respiratory diseases.
ABSTRACT
Lilium brownii var. viridulum, known as Longya lily, is a well-known medicinal and edible plant in China. Bulb rot is a common disease in Longya lily cultivation that severely affects the yield and quality of lilies. According field investigations, we found that different Longya lily plants in the same field had different degrees of resistance to root rot. To find the reasons leading to the difference, we performed metabolomic and transcriptomic analyses of Longya lily with different degrees of disease. The transcriptomic analyses showed that the number of differentially expressed genes increased in early and mid-stage infections (LYBH2 and LYBH3), while decreased in late-stage infection (LYBH4). A total of 2309 DEGs showed the same expression trend in diseased bulb compared healthy bulb (LYBH1). The transcription factors (TFs) analysis of DEGs showed that several common TFs, like WRKY, bHLH, AP2/ERF-ERF and MYB, were significantly activated in bulbs after decay. The metabolomic analyses showed that there were 794 differentially accumulated metabolites, and metabolites with significant changes in relative content largely were phenolic acids, followed by flavonoids and amino acids and derivatives. The combined analysis of transcriptome and metabolome indicated that phenylpropanoid biosynthesis pathway was crucial in Longya lily resistance to bulb rot. Therefore, we speculated that the different degree of resistance to bulb rot in Longya lily may be related to the transcript levels of gene and contents of metabolites in the phenylpropanoid biosynthesis pathway. Overall, these results elucidate the molecular responses of Longya lily to bulb rot and lay a theoretical foundation for breeding resistant varieties.
ABSTRACT
Objective: Lilium brownii var. viridulum (LB) and L. lancifolium (LL) are the main sources of medicinal lily (Lilii Bulbus, Baihe in Chinese) in China. However, the functional components of these two species responsible for the treatment efficacy are yet not clear. In order to explore the therapeutic material basis of Lilii Bulbus, we selected L. davidii var. willmottiae (LD) only used for food as the control group to analyze the differences between LD and the other two (LB and LL). Methods: Metabolome and transcriptome were carried out to investigate the differences of active components in LD vs LB and LD vs LL. Data of metabolome and transcriptome was analysed using various analysis methods, such as principal component analysis (PCA), hierarchical cluster analysis (HCA), and so on. Differentially expressed genes (DEGs) were enriched through KEGG and GO enrichment analysis. Results: The PCA and HCA of the metabolome indicated the metabolites were clearly separated and varied greatly in LL and LB contrasted with LD. There were 318 significantly differential metabolites (SDMs) in LD vs LB group and 298 SDMs in LD vs LL group. Compared with LD group, the significant up-regulation of steroidal saponins and steroidal alkaloids were detected both in LB and LL groups, especially in LB group. The HCA of transcriptome indicated that there was significant difference in LB vs LD group, while the difference between LL and LD varied slightly. Additionally, 47 540 DEGs in LD vs LB group and 18 958 DEGs in LD vs LL group were identified. Notably, CYP450s involving in the biosynthesis of steroidal saponins and steroidal alkaloids were detected, and comparing with LD, CYP724, CYP710A, and CYP734A1 in LB and CYP90B in LL were all up-regulated. Conclusion: This study suggested that steroidal saponins and steroidal alkaloids maybe the representative functional components of Lilii Bulbus, which can provide new insights for Lilii Bulbus used in the research and development of classic famous formula.
ABSTRACT
Lilium brownii var. viridulum, commonly called Longya lily, is a well-known flower and vegetable plant in China that has poor tolerance to Botrytis fungal disease. The molecularimprovement has mainly been restricted to an efficient regeneration and transformation system. In this study, the highly efficient regeneration of Longya lily was established through the optimization of embryogenic callus, adventitious shoot and rooting induction. The major factors influencing transformation (antibiotics, Agrobacterium concentration, infection time, suspension solution and coculture medium) were examined. The expression responses of PR promoters (ZmPR4 and BjCHI1) to B. cinerea were assessed in transgenic calli. The results showed that Murashige and Skoog (MS) medium with 1.0 mg·L-1 picloram (PIC) and 0.2 mg·L-1 1-naphthaleneacetic acid (NAA) under light conditions and MS with 0.5 mg·L-1 6-benzylaminopurine (6-BA) and 1.0 mg·L-1 NAA under darkness were optimal for embryogenic callus induction (64.67% rate) and proliferation (3.96 coefficient). Callus inoculation into MS containing 2.0 mg·L-1 thidiazuron (TDZ), 0.4 mg·L-1 NAA, 1.0 mg·L-1 TDZ and 0.5 mg·L-1 NAA led to shooting induction (92.22 of rate) and proliferation (3.28 of coefficient) promotion, respectively. The rooting rate reached 99.00% on MS with 0.3 mg·L-1 NAA. Moreover, a transformation rate of 65.56% was achieved by soaking the callus in Agrobacterium at an OD600 of 0.4 for 10 min in modified MS without NH4NO3 as the suspension solution and coculture medium before selecting 75 mg·L-1 hygromycin and 300 mg·L-1 cefotaxime. Only the BjCHI1 promoter was obviously expressed in transgenic calli. These results could facilitate the generation of Longya lily transgenic plants with improved B. cinerea resistance.
ABSTRACT
Lilium, a perennial crop with great ornamental, medicinal and edible value, has been frequently used as functional food and medicine. Lilium lancifolium Thunb. (L. lancifolium) and Lilium brownii F.E.Brown var.viridulum Baker (L. brownii) are the most used medicinal species in China. However, the flavor compounds of these two species have not yet been clear. Here, metabolomics and transcriptome analysis were used to reveal the difference of the bitter substances of L. lancifolium and L. brownii. Qualitative results indicated that nine compounds are commonly existed in L. lancifolium and L. brownii, while nine compounds are unique in L. lancifolium and eight compounds are unique in L. brownii. Furthermore, quantitative results revealed that the content of regaloside A in L. lancifolium was nearly 2-7 folds higher than that of L. brownii, and the content of regaloside B in L. lancifolium was about 4-16 folds higher than that of L. brownii. Regaloside C and E were not detected in L. brownii. Transcriptome analysis showed that there were 90 unique genes up-regulated in L. lancifolium samples in the pathway of phenylpropanoid biosynthesis and 75 unique genes up-regulated in L. brownii samples, which could be related to the different content and chemical structure specificity of phenylpropanoid glycerol glucosides in L. lancifolium and L. brownii. The results of our in-deep research provide new insights into the bitter substances of L. lancifolium and L. brownii, and a further consideration for the chemical consistency and quality evaluation for Lilii bulbus.
Subject(s)
Lilium , China , Lilium/chemistry , Lilium/genetics , Metabolome , Plant Roots , TranscriptomeABSTRACT
Replant disease caused by continuous cropping obstacles commonly occurs in a Lilium brownii consecutive monoculture. To reveal the mechanisms contributing to the continuous cropping obstacles of L. brownii, four cropping patterns (fallow, L. brownii-rice rotation, newly planted L. brownii, and 2-year L. brownii consecutive monoculture) were designed, and Illumina MiSeq (16S rDNA and ITS) was utilized to detect shifts in the microbial community in the rhizosphere. Our result showed that planting of L. brownii significantly reduced soil pH. Consecutive monoculture of L. brownii can significantly decrease the diversity and abundance of soil bacteria, but markedly increase the diversity and abundance of soil fungi. Under the four planting pattern treatments, the changes in soil pH were consistent with the changes in the Shannon diversity index of soil bacterial communities, whereas we observed a negative correlation between soil pH and Shannon diversity index for fungi. The relative abundance of Lactobacillales significantly increased in soils of L. brownii consecutive monoculture, while Acidobacteriales, Solibacterales, and Xanthomonadales increased in soils of L. brownii-rice rotation and newly planted L. brownii. Collectively, this work aimed to elucidate the relationship between the L. brownii planting patterns and soil microbiome, thereby providing a theoretical basis for screening new biological agents that may contribute to resolving continuous cropping obstacles of L. brownii.