Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 581
Filter
Add more filters

Publication year range
1.
J Comput Chem ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847556

ABSTRACT

Herein, we present a density functional theory with dispersion correction (DFT-D) calculations that focus on the intercalation of ionic liquids (ILs) electrolytes into the two-dimensional (2D) Ti3C2Tx MXenes. These ILs include the cation 1-ethyl-3-methylimidazolium (Emim+), accompanied by three distinct anions: bis(trifluoromethylsulfonyl)imide (TFSA-), (fluorosulfonyl)imide (FSA-) and fluorosulfonyl(trifluoromethanesulfonyl)imide (FTFSA-). By altering the surface termination elements, we explore the intricate geometries of IL intercalation in neutral, negative, and positive pore systems. Accurate estimation of charge transfer is achieved through five population analysis models, such as Hirshfeld, Hirshfeld-I, DDEC6 (density derived electrostatic and chemical), Bader, and VDD (voronoi deformation density) charges. In this work, we recommend the DDEC6 and Hirshfeld-I charge models, as they offer moderate values and exhibit reasonable trends. The investigation, aimed at visualizing non-covalent interactions, elucidates the role of cation-MXene and anion-MXene interactions in governing the intercalation phenomenon of ionic liquids within MXenes. The magnitude of this role depends on two factors: the specific arrangement of the cation, and the nature of the anionic species involved in the process.

2.
Small ; 20(26): e2309905, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258408

ABSTRACT

The rare combination of metallic conductivity and surface redox activity enables 2D MXenes as versatile charge storage hosts for the design of high-rate electrochemical energy storage devices. However, high charge density metal ions including but not limited to Ca+2 and Mg+2 pose challenges such as sluggish solid-state diffusion and also inhibiting the charge transfer across electrode-electrolyte interfaces. In this work, free-standing hybrid electrode architectures based on 2D titanium carbide-cationic perylene diimide (Ti3C2Tx@cPDI) via supramolecular self-assembly are developed. Secondary bonding interactions such as dipole-dipole and hydrogen bonding between Ti3C2Tx and cPDI are investigated by zeta potential and Fourier-transformed infrared (FTIR) spectroscopy . Ti3C2Tx@cPDI free-standing electrodes show typical volumetric capacitance up to 260 F cm-3 in Mg2+ and Ca2+ aqueous electrolytes at charging times scales from 3 minutes to a few seconds. Three-dimensional (3D) Bode maps are constructed to understand the charge storage dynamics of Ti3C2Tx@cPDI hybrid electrode in an aqueous Ca-ion electrolyte. ,Pseudocapacitance is solely contributed by the nanoscale distribution of redox-active cPDI supramolecular polymers across 2D Ti3C2Tx. This study opens avenues for the design of a wide variety of MXene@redox active organic charge hosts for high-rate pseudocapacitive energy storage devices.

3.
Small ; : e2402434, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970554

ABSTRACT

Exosomes are nanovesicles secreted by cells, which play a crucial role in various pathological processes. Exosomes have shown great promise as tumor biomarkers because of the abundant secretion during tumor formation. The development of a convenient, efficient, and cost-effective method for simultaneously enriching and detecting exosomes is of utmost importance for both basic research and clinical applications. In this study, an aptamer-functionalized magnetic Ti3C2 composite material (Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA) is prepared for the simultaneous enrichment and detection of exosomes. CD63 aptamers are utilized to recognize and capture the exosomes, followed by magnetic separation. The exosomes are then released by cleaving the disulfide bonds of DSP. Compared to traditional methods, Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA exhibited superior efficiency in enriching exosomes while preserving their structural and functional integrity. Detection of exosome concentration is achieved through the fluorescence quenching of Ti3C2 and the competitive binding between the exosomes and a fluorescently labeled probe. This method exhibited a low detection limit of 4.21 × 104 particles mL-1, a number that is comparable to the state-of-the-art method in the detection of exosomes. The present study demonstrates a method of simultaneous enrichment and detection of exosomes with a high sensitivity, accuracy, specificity, and cost-effectiveness providing significant potential for clinical research and diagnosis.

4.
Small ; 20(16): e2308225, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38054781

ABSTRACT

MXenes, an exceptional class of 2D materials, possess high conductivity, adaptable surface chemistry, mechanical strength, and tunable bandgaps, making them attractive for diverse applications. Unlocking the potential of MXenes requires precise control over synthesis methods and surface functionality. Conventionally, fluorine-based etchants are used in MXenes synthesis, posing both environmental concerns and alterations to surface properties, along with the introduction of certain defects. This prompts the exploration of innovative fluorine-free strategies for MXenes synthesis. This review focuses on environmentally friendly, fluorine-free techniques for MXene synthesis, emphasizing mechanisms and recent breakthroughs in alternative etching strategies. The comprehensive coverage includes electrochemical etching, Lewis acid-driven molten salt etching, alkaline/hydrothermal techniques, chemical vapor deposition (CVD), and recent innovative methods. Fluorine-free MXenes synthesis yields terminations such as ─O, ─OH, ─Cl, etc., influencing surface chemistry and improving their properties. The presence of ─OH groups in NaOH etched MXenes boosts their energy storage, while ─Cl functionality from Lewis acidic salts optimizes electrochemical performance. Fluorine-free methods mitigate adverse effects of ─F terminations on MXene conductivity, improving electronic properties and broadening their applications. In addition to traditional approaches, this review delves into novel fluorine-free methods for tailoring MXenes properties. It comprehensively addresses challenges, opportunities, and future perspectives in fluorine-free MXenes.

5.
Small ; 20(4): e2304483, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37730973

ABSTRACT

MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.

6.
Small ; 20(10): e2305972, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880906

ABSTRACT

Dual-functional photo-rechargeable (photo-R) energy storage devices, which acquire stored energy from solar energy harvesting, are being developed to battle the current energy crisis. In this study, these findings on the photo-driven characteristics of MXene-based photocathodes in photo-R zinc-ion capacitors (ZICs) are presented. Along with the pristine Ti3 C2 Tx MXene, tellurium/Ti3 C2 Tx (Te/Ti3 C2 Tx ) hybrid nanostructure is synthesized via facile chemical vapor transport technique to examine them for photocathodes in ZICs. Interestingly, the evaluated self-powered photodetector devices using MXene-based samples revealed a pyro-phototronic behavior introduced into the samples, with higher desirability observed in Te/Ti3 C2 Tx . The photo-R ZICs results exhibited a capacitance enhancement of 50.86% for Te/Ti3 C2 Tx at two scan rates of 5 and 10 mV s-1 under illumination, compared to dark conditions. In contrast, a capacitance enhancement of 30.20% is obtained for the pristine Ti3 C2 Tx at only a 5 mV s-1 scan rate. Furthermore, both samples achieved photo-charging voltage responses of ≈960 mV, and photoconversion efficiencies of 0.01% (for Te/ Ti3 C2 Tx ) and 0.07% (for Ti3 C2 Tx ). These characteristics in MXene-based single photo-R ZICs are significant and considerable with the distinguished integrated photo-R supercapacitors with solar cells, or coupled energy-harvesting and energy-storing devices reported recently in the literature.

7.
Small ; 20(10): e2305730, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37902412

ABSTRACT

One of the difficulties limiting covalent organic frameworks (COFs) from becoming excellent adsorbents is their stacking/aggregation architectures owing to poor morphology/structure control during the synthesis process. Herein, an inorganic-organic nanoarchitectonics strategy to synthesize the MXene/COF heterostructure (Ti3 C2 Tx /TAPT-TFP) is developed by the assembly of ß-ketoenamine-linked COF on the Ti3 C2 Tx MXene nanosheets. The as-prepared Ti3 C2 Tx /TAPT-TFP retains the 2D architecture and high adsorption capacity of MXenes as well as large specific surface area and hierarchical porous structure of COFs. As a proof of concept, the potential of Ti3 C2 Tx /TAPT-TFP for solid-phase microextraction (SPME) of trace organochlorine pesticides (OCPs) is investigated. The Ti3 C2 Tx /TAPT-TFP based SPME method achieves low limits of detection (0.036-0.126 ng g-1 ), wide linearity ranges (0.12-20.0 ng g-1 ), and acceptable repeatabilities for preconcentrating trace OCPs from fruit and vegetable samples. This study offers insights into the potential of constructing COF or MXene-based heterostructures for the microextraction of environmental pollutants.

8.
Small ; 20(6): e2304690, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37794605

ABSTRACT

MXenes are considered a promising negative electrode material for potassium ion batteries (PIBs) in view of their low potassium ion diffusion barrier and excellent electrical conductivity. However, the stacking phenomenon in practical applications severely reduces their active surface and leads to slow K+ diffusion. Herein, a facile composite template method is proposed to construct stacking-resistance 3D carbon-supported Ti3 C2 Tx (3D-C@Ti3 C2 Tx ) hollow spheres. Due to the unique structure, when used as a negative electrode material, as-prepared 3D-C@Ti3 C2 Tx hollow spheres show not only improved rate capability with 160.4 mAh g-1 at 100 mA g-1 and 133.7 mAh g-1 at 500 mA g-1 , but also stable cycling performance with 142.5 mAh g-1 specific capacity remained at 2 A g-1 after 4200 cycles. Furthermore, the full cells with 3D-C@Ti3 C2 Tx anode can operate stably for 1000 cycles at 100 mA g-1 . Moreover, the linear fit analysis demonstrates that 3D-C@Ti3 C2 Tx hollow spheres have a fast and stable capacitive potassium storage mechanism. This method is simple and easy to implement, which provide a feasible path to solve the stacking problem of 2D materials.

9.
Small ; 20(6): e2305645, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37775938

ABSTRACT

The use of photothermal therapy (PTT) with the near-infrared II region (NIR-II: 1000-1700 nm) is expected to be a powerful cancer treatment strategy. It retains the noninvasive nature and excellent temporal and spatial controllability of the traditional PTT, and offers significant advantages in terms of tissue penetration depth, background noise, and the maximum permissible exposure standards for skin. MXenes, transition-metal carbides, nitrides, and carbonitrides are emerging inorganic nanomaterials with natural biocompatibility, wide spectral absorption, and a high photothermal conversion efficiency. The PTT of MXenes in the NIR-II region not only provides a valuable reference for exploring photothermal agents that respond to NIR-II in 2D inorganic nanomaterials, but also be considered as a promising biomedical therapy. First, the synthesis methods of 2D MXenes are briefly summarized, and the laser light source, mechanism of photothermal conversion, and evaluation criteria of photothermal performance are introduced. Second, the latest progress of PTT based on 2D MXenes in NIR-II are reviewed, including titanium carbide (Ti3 C2 ), niobium carbide (Nb2 C), and molybdenum carbide (Mo2 C). Finally, the main problems in the PTT application of 2D MXenes to NIR-II and future research directions are discussed.


Subject(s)
Hyperthermia, Induced , Nanostructures , Photothermal Therapy , Phototherapy/methods , Hyperthermia, Induced/methods , Theranostic Nanomedicine/methods
10.
Small ; 20(9): e2306698, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37840390

ABSTRACT

Hierarchical architecture engineering is desirable in integrating the physical-chemical behaviors and macroscopic properties of materials, which present great potential for developing multifunctional microwave absorption materials. However, the intrinsic mechanisms and correlation conditions among cellular units have not been revealed, which are insufficient to maximize the fusion of superior microwave absorption (MA) and derived multifunctionality. Herein, based on three models (disordered structure, porous structure, lamellar structure) of structural units, a range of MXene-aerogels with variable constructions are fabricated by a top-down ice template method. The aerogel with lamellar structure with a density of only 0.015 g cm-3 exhibits the best MA performance (minimum reflection loss: -53.87 dB, effective absorption bandwidth:6.84 GHz) at a 6 wt.% filling ratio, which is preferred over alternative aerogels with variable configurations. This work elucidates the relationship between the hierarchical architecture and the superior MA performance. Further, the MXene/CoNi Composite aerogel with lamellar structure exhibits >90% compression stretch after 1000 cycles, excellent compressive properties, and elasticity, as well as high hydrophobicity and thermal insulation properties, broadening the versatility of MXene-based aerogel applications. In short, through precise microstructure design, this work provides a conceptually novel strategy to realize the integration of electromagnetic stealth, thermal insulation, and load-bearing capability simultaneously.

11.
Small ; 20(2): e2305250, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661585

ABSTRACT

The detection of toxic, harmful, explosive, and volatile gases cannot be separated from gas sensors, and gas sensors are also used to monitor the greenhouse effect and air pollution. However, existing gas sensors remain with many drawbacks, such as lower sensitivity, lower selectivity, and unstable room temperature detection. Thus, there is an imperative need to find more suitable sensing materials. The emergence of a new 2D layered material MXenes has brought dawn to solve this problem. The multiple advantages of MXenes, namely high specific surface area, enriched terminal functionality groups, hydrophilicity, and good electrical conductivity, make them among the most prolific gas-sensing materials. Therefore, this review paper describes the current main synthesis methods of MXenes materials, and focuses on summarizing and organizing the latest research results of MXenes in gas sensing applications. It also introduces the possible gas sensing mechanisms of MXenes materials on NH3 , NO2 , CH3 , and volatile organic compounds (VOCs). In conclusion, it provides insight into the problems and upcoming challenges of MXenes materials for gas sensing.

12.
Small ; : e2310217, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38361221

ABSTRACT

In this work, multi-layer Ti3 C2 - carbon nanotubes - gold nanoparticles (Ti3 C2 -CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3 C2 , the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7  M with a limit of detection of 6.5 × 10-10  M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.

13.
Chemistry ; 30(24): e202304036, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38298129

ABSTRACT

MXenes have unique properties such as high electrical conductivity, excellent mechanical properties, rich surface chemistry, and convenient processability. These characteristics make them ideal for producing flexible materials with tunable microstructures. This paper reviews the laboratory research progress of flexible MXene and its composite materials for supercapacitors. And introduces the general synthesis method of MXene, as well as the preparation and properties of flexible MXene. By analyzing the current research status, the electrochemical reaction mechanism of MXene was explained from the perspectives of electrolyte and surface terminating groups. This review particularly emphasizes the composite methods of freestanding flexible MXene composite materials. The review points out that the biggest problem with flexible MXene electrodes is severe self-stacking, which reduces the number of chemically active sites, weakens ion accessibility, and ultimately lowers electrochemical performance. Therefore, it is necessary to composite MXene with other electrode materials and design a good microstructure. This review affirms the enormous potential of flexible MXene and its composite materials in the field of supercapacitors. In addition, the challenges and possible improvements faced by MXene based materials in practical applications were also discussed.

14.
Chemistry ; 30(19): e202400255, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38251957

ABSTRACT

First-principles calculations on titania clusters (TiO2)n (n=5 and 10) supported on the pristine Ti2C (0001) surface were carried out to understand the properties of semiconductor/MXene composites with implications in (photo)-catalysis. The reported results reveal a high exothermic interaction accompanied by a substantial charge transfer with a concomitant, notorious, deformation of the titania nanoclusters. The analysis of the density of states analysis of the composite systems evidences a metallic character with titania related states crossing the Fermi level. The picture of the chemical bonds is completed by the analysis of X-Ray Photoelectron Spectra (XPS) features, evidencing clear shifts of the C(1s) and O(1s) related peaks relative to the isolated systems that have a quite complex origin. This detailed analysis provides insights to experimentalists interested in the design and synthesis of these systems with possible applications in catalysis.

15.
Chemistry ; 30(23): e202303978, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38299695

ABSTRACT

A viable alternative to non-renewable hydrocarbon fuels is hydrogen gas, created using a safe, environmentally friendly process like water splitting. An important role in water-splitting applications is played by the development of two-dimensional (2D) layered transition metal chalcogenides (TMDCs), transition metal carbides (MXenes), graphene-derived 2D layered nanomaterials, phosphorene, and hexagonal boron nitride. Advanced synthesis methods and characterization instruments enabled an effective application for improved electrocatalytic water splitting and sustainable hydrogen production. Enhancing active sites, modifying the phase and electronic structure, adding conductive elements like transition metals, forming heterostructures, altering the defect state, etc., can improve the catalytic activity of 2D stacked hybrid monolayer nanomaterials. The majority of global research and development is focused on finding safer substitutes for petrochemical fuels, and this review summarizes recent advancements in the field of 2D monolayer nanomaterials in water splitting for industrial-scale green hydrogen production and fuel cell applications.

16.
Chemphyschem ; : e202400325, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830826

ABSTRACT

MXene has been recently explored as promising electrocatalytic materials to accelerate the electrocatalytic process for hydrogen evolution, but their dynamic stability under electrochemical conditions remains elusive. Here we performed first-principles ab initio molecular dynamics calculations to reveal the electrochemical stability of Ti2CTx MXene in different aqueous environments. The results revealed the high vulnerability of the pure and vacancy-defected Ti2CO2 MXene towards water attack, leading to surface oxidation of MXene under neutral electrochemical conditions that formed adsorbed oxygen species to Ti and the dissociated proton in solution. The surface oxidation of Ti2CO2 could be prevented in the acid condition or in the neutral condition under the negative potential. Differently, the fully F- or OH-functionalized Ti2CF2 and Ti2C(OH)2 as well as the mixed functionalized Ti2C(O0.5OH0.5)2 and Ti2CO1.12F0.88 are highly stable under various electrochemical conditions, which can effectively prevent close contact between water molecules and surface Ti atoms via electronic repulsion or steric hindrance. These findings provide atomic level understanding of the aqueous stability of MXene and provide useful strategies to prevent degradation and achieve highly stable MXenes.

17.
Chemphyschem ; 25(12): e202300605, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38517984

ABSTRACT

The extensive applications of MXenes, a novel type of layered materials known for their favorable characteristics, have sparked significant interest. This research focuses on investigating the influence of surface functionalization on the behavior of Mn2NTx (Tx=O2, F2) MXenes monolayers using the "Density functional theory (DFT) based full-potential linearized augmented-plane-wave (FP-LAPW)" method. We elucidate the differences in the physical properties of Mn2NTx through the influence of F and O surface functional groups. We found that O-termination results in half-metallic behavior, whereas the F-termination evolves metallic characteristics within these MXene systems. Similarly, surface termination has effectively influenced their optical absorption efficiency. For instance, Mn2NO2 and Mn2NF2 effectively absorb UV light ~50.15×104 cm-1 and 37.71×104 cm-1, respectively. Additionally, they demonstrated prominent refraction and reflection characteristics, which are comprehensively discussed in the present work. Our predictions offer valuable perspectives into the optical and electronic characteristics of Mn2NTx-based MXenes, presenting the promising potential for implementing them in diverse optoelectronic devices.

18.
Chemphyschem ; 25(10): e202300993, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38369607

ABSTRACT

We investigated electrochemical nitrogen reduction reaction (eNRR) on MXenes consisting of the vacancy defects in the functional layer using density functional theory calculations. We considered Mo2C, W2C, Mo2N, and W2N MXenes with F, N, and O functionalization and investigated distal and alternative associative pathways. We analyzed these MXenes for eNRR based on N2 adsorption energy, NH3 desorption energy, NRR selectivity, and electrochemical limiting potential. While we find that most of the considered MXenes surfaces are more favorable for eNRR compared to hydrogen evolution, these surfaces also have strong NH3 binding (>-1.0 eV) and thus will be covered with NH3 during operating conditions. Amongst all considered MXenes, only W2NF2 is found to have a low NH3 desorption energy along with low eNRR overpotential and selectivity towards eNRR. The obtained eNRR overpotential and NH3 desorption energy on W2NF2 are superior to those reported for pristine W2N3 as well as functionalized MXenes.

19.
Nanotechnology ; 35(38)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38834036

ABSTRACT

MXenes have been attracting much attention since their introduction due to their amazing properties such as unique structure, good hydrophilicity, metal-grade electrical conductivity, rich surface chemistry, low ionic diffusion resistance, and excellent mechanical strength. It is noteworthy that different synthesis methods have a great influence on the structure and properties of MXenes. In recent years, some modification strategies of MXenes with unique insights have been developed with the increasing research. In summary, this paper reviews and summarizes the recent research progress of MXenes from the perspective of preparation processes (including hydrofluoric acid direct etching, fluoride/concentrated acid hybrid etching, fluoride melt etching, electrochemical etching, alkali-assisted etching and Lewis acid etching strategies), which can provide valuable guidance for the preparation and application of high-performance MXenes-based materials.

20.
Nanotechnology ; 35(15)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38194713

ABSTRACT

Synthesis of Mo2C bare MXenes, without surface terminations groups, via chemical vapor deposition (CVD) on metal foils is scientifically a very intriguing crystal growth process, and there are still challenges and limited fundamental understanding to overcome to obtain high yield and wide crystal size lateral growth. Achieving large area coverage via direct growth is scientifically vital to utilize the full potential of their unique properties in different applications. In this study, we sought to expand the boundaries of the current CVD growth approach for Mo2C MXenes and gain insights into the possibilities and limitations of large area growth, with a particular focus on controlling Mo concentration. We report a facile modification of their typical CVD growth protocol and show its influence on the Mo2C synthesis, with growth times spanning up to 3 h. Specifically, prior to initiating the CVD growth process, we introduced a holding step in temperature at 1095 °C. This proved to be beneficial in increasing the Mo concentration on the liquid Cu growth surface. We achieved an average Mo2C crystals coverage of approximately 50% of the growth substrate area, increased tendency of coalescence and merging of individual flakes, and lateral flake sizes up to 170µm wide. To gain deeper understanding into their CVD growth behavior, we conducted a systematic investigation of the effect of several factors, including (i) a holding step time on Mo diffusion rate through molten Cu, (ii) the Cu foil thickness over the Mo foil, and (iii) the CVD growth time. Phase, chemical and microstructural characterization by x-ray diffraction, x-ray photon spectroscopy, SEM and scanning/transmission electron microscopy revealed that the grown crystals are single phaseα-Mo2C. Furthermore, insights gained from this study sheds light on crucial factors and inherent limitations that are essential to consider and may help guide future research progress in CVD growth of bare MXenes.

SELECTION OF CITATIONS
SEARCH DETAIL