Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(15): 4061-4077.e17, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38878777

ABSTRACT

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.


Subject(s)
Inflammation , Intracellular Signaling Peptides and Proteins , NAD , Animals , Mice , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , NAD/metabolism , Humans , Immunity, Innate , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Mice, Knockout , Signal Transduction , HEK293 Cells , Inflammasomes/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Toll-Like Receptors/metabolism , Male , Cytokines/metabolism , Calcium-Binding Proteins
2.
Immunity ; 48(2): 271-285.e5, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466757

ABSTRACT

Stem cells are critical for the maintenance of many tissues, but whether their integrity is maintained in the face of immunity is unclear. Here we found that cycling epithelial stem cells, including Lgr5+ intestinal stem cells, as well as ovary and mammary stem cells, were eliminated by activated T cells, but quiescent stem cells in the hair follicle and muscle were resistant to T cell killing. Immune evasion was an intrinsic property of the quiescent stem cells resulting from systemic downregulation of the antigen presentation machinery, including MHC class I and TAP proteins, and is mediated by the transactivator NLRC5. This process was reversed upon stem cell entry into the cell cycle. These studies identify a link between stem cell quiescence, antigen presentation, and immune evasion. As cancer-initiating cells can derive from stem cells, these findings may help explain how the earliest cancer cells evade immune surveillance.


Subject(s)
Hair Follicle/cytology , Immune Evasion , Immunologic Surveillance , Stem Cells/immunology , Animals , Antigen Presentation , Intracellular Signaling Peptides and Proteins/physiology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Muscles/cytology , Receptors, G-Protein-Coupled/physiology , Tumor Escape
3.
Bioessays ; 46(4): e2300109, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461519

ABSTRACT

Antigen presentation to CD8+ T cells by MHC class I molecules is essential for host defense against viral infections. Various mechanisms have evolved in multiple viruses to escape immune surveillance and defense to support viral proliferation in host cells. Through in vitro SARS-CoV-2 infection studies and analysis of COVID-19 patient samples, we found that SARS-CoV-2 suppresses the induction of the MHC class I pathway by inhibiting the expression and function of NLRC5, a major transcriptional regulator of MHC class I genes. In this review, we discuss the molecular mechanisms for suppression of the MHC class I pathway and clinical implications for COVID-19.


Subject(s)
COVID-19 , Genes, MHC Class I , Humans , Trans-Activators/genetics , SARS-CoV-2/genetics , COVID-19/genetics , Histocompatibility Antigens Class I , Intracellular Signaling Peptides and Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 120(24): e2218955120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279268

ABSTRACT

Major histocompatibility complex (MHC) class I and II molecules play critical roles in the activation and regulation of adaptive immunity through antigen presentation to CD8+ and CD4+ T cells, respectively. Strict regulation of MHC expression is critical for proper immune responses. CIITA (MHC class II transactivator), an NLR (nucleotide-binding domain, leucine-rich-repeat containing) protein, is a master regulator of MHC class II (MHC-II) gene transcription. Although it has been known that CIITA activity is regulated at the transcriptional and protein levels, the mechanism to determine CIITA protein level has not been elucidated. Here, we show that FBXO11 is a bona fide E3 ligase of CIITA and regulates CIITA protein level through ubiquitination-mediated degradation. A nonbiased proteomic approach for CIITA-binding protein identified FBXO11, a member of the Skp1-Cullin-1-F-box E3 ligase complex, as a binding partner of CIITA but not MHC class I transactivator, NLRC5. The cycloheximide chase assay showed that the half-life of CIITA is mainly regulated by FBXO11 via the ubiquitin-proteasome system. The expression of FBXO11 led to the reduced MHC-II at the promoter activity level, transcriptional level, and surface expression level through downregulation of CIITA. Moreover, human and mouse FBXO11-deficient cells display increased levels of MHC-II and related genes. In normal and cancer tissues, FBXO11 expression level is negatively correlated with MHC-II. Interestingly, the expression of FBXO11, along with CIITA, is associated with prognosis of cancer patients. Therefore, FBXO11 is a critical regulator to determine the level of MHC-II, and its expression may serve as a biomarker for cancer.


Subject(s)
F-Box Proteins , Neoplasms , Animals , Humans , Mice , F-Box Proteins/genetics , Genes, MHC Class II , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , HLA Antigens , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Proteomics , Trans-Activators/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
J Biol Chem ; 300(5): 107205, 2024 May.
Article in English | MEDLINE | ID: mdl-38519032

ABSTRACT

Major histocompatibility complex (MHC) class I molecules play an essential role in regulating the adaptive immune system by presenting antigens to CD8 T cells. CITA (MHC class I transactivator), also known as NLRC5 (NLR family, CARD domain-containing 5), regulates the expression of MHC class I and essential components involved in the MHC class I antigen presentation pathway. While the critical role of the nuclear distribution of NLRC5 in its transactivation activity has been known, the regulatory mechanism to determine the nuclear localization of NLRC5 remains poorly understood. In this study, a comprehensive analysis of all domains in NLRC5 revealed that the regulatory mechanisms for nuclear import and export of NLRC5 coexist and counterbalance each other. Moreover, GCN5 (general control non-repressed 5 protein), a member of HATs (histone acetyltransferases), was found to be a key player to retain NLRC5 in the nucleus, thereby contributing to the expression of MHC class I. Therefore, the balance between import and export of NLRC5 has emerged as an additional regulatory mechanism for MHC class I transactivation, which would be a potential therapeutic target for the treatment of cancer and virus-infected diseases.


Subject(s)
Active Transport, Cell Nucleus , Histocompatibility Antigens Class I , Intracellular Signaling Peptides and Proteins , Transcriptional Activation , Humans , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , MCF-7 Cells , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics
6.
Mol Med ; 30(1): 32, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424494

ABSTRACT

BACKGROUND: Endothelial-to-Mesenchymal Transformation (EndMT) plays key roles in endothelial dysfunction during the pathological progression of atherosclerosis; however, its detailed mechanism remains unclear. Herein, we explored the biological function and mechanisms of upstream stimulating factor 1 (USF1) in EndMT during atherosclerosis. METHODS: The in vivo and in vitro atherosclerotic models were established in high fat diet-fed ApoE-/- mice and ox-LDL-exposed human umbilical vein endothelial cells (HUVECs). The plaque formation, collagen and lipid deposition, and morphological changes in the aortic tissues were evaluated by hematoxylin and eosin (HE), Masson, Oil red O and Verhoeff-Van Gieson (EVG) staining, respectively. EndMT was determined by expression levels of EndMT-related proteins. Target molecule expression was detected by RT-qPCR and Western blotting. The release of pro-inflammatory cytokines was measured by ELISA. Migration of HUVECs was detected by transwell and scratch assays. Molecular mechanism was investigated by dual-luciferase reporter assay, ChIP, and Co-IP assays. RESULTS: USF1 was up-regulated in atherosclerosis patients. USF1 knockdown inhibited EndMT by up-regulating CD31 and VE-Cadherin, while down-regulating α-SMA and vimentin, thereby repressing inflammation, and migration in ox-LDL-exposed HUVECs. In addition, USF1 transcriptionally activated ubiquitin-specific protease 14 (USP14), which promoted de-ubiquitination and up-regulation of NLR Family CARD Domain Containing 5 (NLRC5) and subsequent Smad2/3 pathway activation. The inhibitory effect of sh-USF1 or sh-USP14 on EndMT was partly reversed by USP14 or NLRC5 overexpression. Finally, USF1 knockdown delayed atherosclerosis progression via inhibiting EndMT in mice. CONCLUSION: Our findings indicate the contribution of the USF1/USP14/NLRC5 axis to atherosclerosis development via promoting EndMT, which provide effective therapeutic targets.


Subject(s)
Atherosclerosis , Endothelial-Mesenchymal Transition , Humans , Mice , Animals , Signal Transduction , Atherosclerosis/metabolism , Human Umbilical Vein Endothelial Cells , Up-Regulation , Upstream Stimulatory Factors/metabolism , Upstream Stimulatory Factors/pharmacology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism
7.
Cancer Immunol Immunother ; 73(1): 10, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231444

ABSTRACT

The antigen processing machinery (APM) components needed for a tumor cell to present an antigen to a T cell are expressed at low levels in solid tumors, constituting an important mechanism of immune escape. More than most other solid tumors, head and neck squamous cell carcinoma (HNSCC) cells tend to have low APM expression, rendering them insensitive to immune checkpoint blockade and most other forms of immunotherapy. In HNSCC, this APM deficiency is largely driven by high levels of EGFR and SHP2, leading to low expression and activation of STAT1; however, recent studies suggest that p53, which is often mutated in HNSCCs, may also play a role. In the current study, we aimed to investigate the extent to which STAT1 and p53 individually regulate APM component expression in HNSCC cells. We found that in cells lacking functional p53, APM expression could still be induced by interferon-gamma or DNA-damaging chemotherapy (cisplatin) as long as STAT1 expression remained intact; when both transcription factors were knocked down, APM component expression was abolished. When we bypassed these deficient pathways by rescuing the expression of NLRC5, APM expression was also restored. These results suggest that dual loss of functional STAT1 and p53 may render HNSCC cells incapable of processing and presenting antigens, but rescue of downstream NLRC5 expression may be an attractive strategy for restoring sensitivity to T cell-based immunotherapy.


Subject(s)
Antigen Presentation , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Tumor Suppressor Protein p53/genetics , Head and Neck Neoplasms/genetics , Cisplatin , STAT1 Transcription Factor/genetics , Intracellular Signaling Peptides and Proteins
8.
BMC Med ; 22(1): 351, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218863

ABSTRACT

BACKGROUND: Endometriosis is well known as a chronic inflammatory disease. The development of endometriosis is heavily influenced by the estrogen receptor ß (ERß), while NOD-like receptors (NLRs) family CARD domain-containing 5 (NLRC5) exhibits anti-inflammatory properties during endometriosis. However, whether NLRC5-mediated anti-inflammation is involved in the ERß-mediated endometriosis is still uncertain. This study aimed to assess that relation. METHODS: Nine cases of eutopic endometrial tissue and ten cases of ectopic endometrial tissue were collected from patients with endometriosis, and endometrial samples from ten healthy fertile women were analyzed, and the expression levels of ERß were quantified using immunohistochemistry (IHC). Subsequently, we constructed mouse model of endometriosis by intraperitoneal injection. We detected the expression of ERß, NLRC5, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-10 and measured the volume of ectopic lesions in mice with endometriosis. In vitro, human endometrial stromal cells (hESCs) were transfected respectively with ERß-overexpressing and NLRC5-overexpressing plasmids. We then assessed the expression of ERß and NLRC5 using quantitative real-time PCR (qRT-PCR) and western blot analysis. Furthermore, we measured the concentrations of TNF-α, IL-6, and IL-10 in the cell culture supernatant through enzyme-linked immunosorbent assay (ELISA). Additionally, we evaluated the migration and invasion ability of hESCs using transwell and wound healing assays. RESULTS: Inhibition of NLRC5 expression promotes the development of ectopic lesions in mice with endometriosis, upregulates the expression of pro-inflammatory factors TNF-α and IL-6, and downregulates the expression of anti-inflammatory factor IL-10. The high expression of NLRC5 in endometriosis depended on the ERß overexpression. And ERß promoted the migration of hESCs partially depend on inflammatory microenvironment. Lastly, NLRC5 overexpression inhibited ERß-mediated development and inflammatory response of endometriosis. CONCLUSIONS: Our results suggest that the innate immune molecule NLRC5-mediated anti-inflammation participates in ERß-mediated endometriosis development, and partly clarifies the pathological mechanism of endometriosis, expanding our knowledge of the specific molecules related to the inflammatory response involved in endometriosis and potentially providing a new therapeutic target for endometriosis.


Subject(s)
Endometriosis , Estrogen Receptor beta , Intracellular Signaling Peptides and Proteins , Adult , Animals , Female , Humans , Mice , Disease Models, Animal , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Endometrium/metabolism , Endometrium/pathology , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Immunohistochemistry , Inflammation , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
9.
J Pathol ; 259(4): 402-414, 2023 04.
Article in English | MEDLINE | ID: mdl-36640261

ABSTRACT

Mucosa-associated lymphoid tissue (MALT) lymphoma is a B-cell tumour that develops over many decades in the stomachs of individuals with chronic Helicobacter pylori infection. We developed a new mouse model of human gastric MALT lymphoma in which mice with a myeloid-specific deletion of the innate immune molecule, Nlrc5, develop precursor B-cell lesions to MALT lymphoma at only 3 months post-Helicobacter infection versus 9-24 months in existing models. The gastric B-cell lesions in the Nlrc5 knockout mice had the histopathological features of the human disease, notably lymphoepithelial-like lesions, centrocyte-like cells, and were infiltrated by dendritic cells (DCs), macrophages, and T-cells (CD4+ , CD8+ and Foxp3+ ). Mouse and human gastric tissues contained immune cells expressing immune checkpoint receptor programmed death 1 (PD-1) and its ligand PD-L1, indicating an immunosuppressive tissue microenvironment. We next determined whether CD40L, overexpressed in a range of B-cell malignancies, may be a potential drug target for the treatment of gastric MALT lymphoma. Importantly, we showed that the administration of anti-CD40L antibody either coincident with or after establishment of Helicobacter infection prevented gastric B-cell lesions in mice, when compared with the control antibody treatment. Mice administered the CD40L antibody also had significantly reduced numbers of gastric DCs, CD8+ and Foxp3+ T-cells, as well as decreased gastric expression of B-cell lymphoma genes. These findings validate the potential of CD40L as a therapeutic target in the treatment of human gastric B-cell MALT lymphoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Lymphoma, B-Cell, Marginal Zone , Stomach Neoplasms , Animals , Mice , B-Lymphocytes , CD40 Ligand , Forkhead Transcription Factors/metabolism , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Helicobacter pylori/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lymphoma, B-Cell, Marginal Zone/drug therapy , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, B-Cell, Marginal Zone/prevention & control , Stomach Neoplasms/pathology , Tumor Microenvironment
10.
Cancer Sci ; 114(12): 4511-4520, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37991442

ABSTRACT

Eribulin inhibits microtubule polymerization and improves the overall survival of patients with recurrent metastatic breast cancer. A subgroup analysis revealed a low neutrophil to lymphocyte ratio (NLR) (<3) to be a prognostic factor of eribulin treatment. We thus hypothesized that eribulin might be related to the immune response for breast cancer cells and we analyzed the effects of eribulin on the immune system. Immunohistochemical staining revealed that human leukocyte antigen (HLA) class I expression was increased in clinical samples after eribulin treatment. In vitro assays revealed that eribulin treatment increased HLA class I expression in breast cancer line cells. RNA-sequencing demonstrated that eribulin treatment increased the expression of the NOD-like family CARD domain-containing 5 (NLRC5), a master regulator of HLA class I expression. Eribulin treatment increased the NY-ESO-1-specific T-cell receptor (TCR) transduced T (TCR-T) cell response for New York oesophageal squamous cell carcinoma 1 (NY-ESO-1) overexpressed breast cancer cells. The eribulin and TCR-T combined therapy model revealed that eribulin and immunotherapy using TCR-T cells has a synergistic effect. In summary, eribulin increases the expression of HLA class 1 via HLA class 1 transactivatior NLRC5 and eribulin combination with immunotherapy can be effective for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , NLR Proteins , Caspase Activation and Recruitment Domain , Neoplasm Recurrence, Local , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm , HLA Antigens , Intracellular Signaling Peptides and Proteins/metabolism
11.
J Neuroinflammation ; 20(1): 96, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072793

ABSTRACT

Parkinson's disease (PD) is mainly characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and neuroinflammation mediated by overactivated microglia and astrocytes. NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5) has been reported to participate in various immune disorders, but its role in neurodegenerative diseases remains unclear. In the current study, we found that the expression of NLRC5 was increased in the nigrostriatal axis of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced PD, as well as in primary astrocytes, microglia and neurons exposed to different neurotoxic stimuli. In an acute MPTP-induced PD model, NLRC5 deficiency significantly reduced dopaminergic system degeneration and ameliorated motor deficits and striatal inflammation. Furthermore, we found that NLRC5 deficiency decreased the expression of the proinflammatory genes IL-1ß, IL-6, TNF-α and COX2 in primary microglia and primary astrocytes treated with neuroinflammatory stimuli and reduced the inflammatory response in mixed glial cells in response to LPS treatment. Moreover, NLRC5 deficiency suppressed activation of the NF-κB and MAPK signaling pathways and enhanced the activation of AKT-GSK-3ß and AMPK signaling in mixed glial cells. Furthermore, NLRC5 deficiency increased the survival of primary neurons treated with MPP+ or conditioned medium from LPS-stimulated mixed glial cells and promoted activation of the NF-κB and AKT signaling pathways. Moreover, the mRNA expression of NLRC5 was decreased in the blood of PD patients compared to healthy subjects. Therefore, we suggest that NLRC5 promotes neuroinflammation and dopaminergic degeneration in PD and may serve as a marker of glial activation.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/genetics , Parkinson Disease/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , NLR Proteins/metabolism , Lipopolysaccharides/metabolism , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt/metabolism , Microglia/metabolism , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
12.
J Virol ; 96(7): e0015822, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35311551

ABSTRACT

Major histocompatibility complex class I (MHC-I) and MHC-II molecules, mainly being responsible for the processing and presentation of intracellular or extracellular antigen, respectively, are critical for antiviral immunity. Here, we reported that porcine deltacoronavirus (PDCoV) with the zoonotic potential and potential spillover from pigs to humans, upregulated the expressions of porcine MHC-I (swine leukocyte antigen class I, SLA-I) molecules and SLA-I antigen presentation associated genes instead of porcine MHC-II (SLA-II) molecules both in primary porcine enteroids and swine testicular (ST) cells at the late stage of infection, and this finding was verified in vivo. Moreover, the induction of SLA-I molecules by PDCoV infection was mediated through enhancing the expression of NOD-like receptor (NLR) family caspase recruitment domain-containing 5 (NLRC5). Mechanistic studies demonstrated that PDCoV infection robustly elevated retinoic acid-inducible gene I (RIG-I) expression, and further initiated the downstream type I interferon beta (IFN-ß) production, which led to the upregulation of NLRC5 and SLA-I genes. Likewise, interferon regulatory factor 1 (IRF1) elicited by PDCoV infection directly activated the promoter activity of NLRC5, resulting in an increased expression of NLRC5 and SLA-I upregulation. Taken together, our findings advance our understanding of how PDCoV manipulates MHC molecules, and knowledge that could help inform the development of therapies and vaccines against PDCoV. IMPORTANCE MHC-I molecules play a crucial role in antiviral immunity by presenting intracellular antigens to CD8+T lymphocytes and eliminating virus-infected cells by natural killer cells' "missing-self recognition." However, the manipulation of MHC molecules by coronaviruses remains poorly understood. Here, we demonstrated that PDCoV, a zoonotic potential coronavirus efficiently infecting cells from broad species, greatly increased the expressions of porcine MHC-I (SLA-I) molecules and MHC-I antigen presentation associated genes but not porcine MHC-II (SLA-II) molecules both in vitro and in vivo. Mechanistically, the upregulation of MHC-I molecules by PDCoV infection required the master transactivator of MHC-I, NLRC5, which was mediated not only by RIG-I-initiated type I IFN signaling pathway but also by IRF1 induced by PDCoV as it could activate NLRC5 promoter activity. These results provide significant insights into the modification of the MHC class I pathway and may provide a potential therapeutic intervention for PDCoV.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Histocompatibility Antigens Class I , Animals , Coronavirus Infections/immunology , Deltacoronavirus/immunology , Gene Expression Regulation/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Swine
13.
Toxicol Appl Pharmacol ; 461: 116406, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36708882

ABSTRACT

Steatosis is regarded as an early response of the liver to excessive alcohol consumption, which ultimately results in alcoholic liver disease (ALD). Hepatocytes are the primary drivers of the pathological process known as hepatic damage and steatosis, which is characterized by significant fat accumulation and an abundance of fat vacuoles. NLRs, a family member of pattern recognition receptors, have recently been found to be crucial in liver disorders. In this study, we examined the possible impact of NLRC5, the largest NLR family member, on alcohol-induced fatty liver development using a gene knock-out mouse model. The mouse liver was severely damaged and developed steatosis as a result of chronic and excessive ethanol use, and this damage was prevented by the lack of NLRC5. Additionally, NLRC5 deletion reversed ethanol's ability to increase the serum concentrations of TG, T-CHO, ALT, and AST. Absence of NLRC5 reduced ethanol-stimulated aberrant expression of the vital regulators of lipid synthesis and metabolism, SREBP-1c, FAS and PPAR-α. Furthermore, loss- and gain-of-function research indicated that NLRC5 might affect the autophagy pathway in alcohol-induced hepatic steatosis progression. The functional role of NLRC5 in ALD is obviously impacted by the autophagy inducer rapamycin as well as the autophagy inhibitor 3-MA. Our research showed that NLRC5 was involved in ethanol-induced injury and steatosis of the liver, and may be considered a suitable therapeutic target for treating ALD.


Subject(s)
Fatty Liver, Alcoholic , Fatty Liver , Liver Diseases, Alcoholic , Mice , Animals , Liver , Fatty Liver/drug therapy , Ethanol , Hepatocytes , Fatty Liver, Alcoholic/drug therapy , Fatty Liver, Alcoholic/metabolism , Fatty Liver, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Autophagy , Intracellular Signaling Peptides and Proteins/metabolism
14.
Int J Mol Sci ; 24(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37445853

ABSTRACT

Inclusion body myositis (IBM) is a chronic, mostly treatment-resistant, inflammatory myopathy with a pathology that centers around specific interactions between inflammation and protein accumulation. The study aimed to identify the inflammasome as a key event in the complex network of pathomechanisms. Regulation of the inflammasome was assessed in a well-established pro-inflammatory cell culture model using human myoblasts and primary human myotubes. By quantitative PCR, western blot and immunocytochemistry, inflammasome markers including NLRP3 were assessed in muscle cells exposed to the cytokines IL-1ß and IFN-γ. The data were corroborated by analysis of muscle biopsies from patients with IBM compared to other myositis subtypes. In the cell culture model of IBM, the NLRP3 inflammasome was significantly overexpressed, as evidenced by western blot (p = 0.03) and quantitative PCR (p < 0.01). Target genes that play a role in inflammasome assembly, T-cell migration, and MHC-I expression (p = 0.009) were highly co-upregulated. NLRP3 was significantly overexpressed in muscle biopsies from IBM samples compared to disease controls (p = 0.049), including other inflammatory myopathies. Due to the extraordinary features of the pathogenesis and the pronounced upregulation of NLRP3 in IBM, the inflammasome could serve as a key molecule that drives the inflammatory cascade as well as protein accumulation in the muscle. These data can be useful for future therapeutic developments.


Subject(s)
Myositis, Inclusion Body , Myositis , Humans , Myositis, Inclusion Body/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cells, Cultured , Muscle, Skeletal/metabolism , Myositis/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism
15.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686068

ABSTRACT

Microglia are believed to be the key immune effectors of the central immune microenvironment, and their dysregulation is associated with neuroinflammation and mood disorders. Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain-containing five (NLRC5) is a new member of the Nod-like receptor family. Recently, NLRC5 has been reported to be expressed by microglia. Nonetheless, the exact roles of NLRC5 in microglial activation and its function in depression have not been investigated yet. Herein, we found that reducing NLRC5 decreased lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) in primary cultured microglia and microglial cell lines but not in bone marrow-derived macrophages (BMDMs). In more detail, reducing NLRC5 diminished the secretion of LPS-induced cytokines by attenuating IKKα/ß phosphorylation and inhibiting NF-κB signaling. Moreover, the expression of Nlrc5 in the hippocampus of LPS- or chronic unpredictable mild stress (CUMS)-induced depressive mice was increased. In line with the in vitro findings, Nlrc5 deficiency inhibited microglial activation in the mouse hippocampus and improved LPS- or CUMS-induced depressive-like behaviors. In summary, we demonstrated the critical role of NLRC5 in LPS-induced microglial activation and LPS- or CUMS-induced depressive mouse models.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Mice , Lipopolysaccharides/toxicity , Microglia , Signal Transduction , Cytokines , Intracellular Signaling Peptides and Proteins/genetics
16.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108368

ABSTRACT

Aggressive tumors evade cytotoxic T lymphocytes by suppressing MHC class-I (MHC-I) expression that also compromises tumor responsiveness to immunotherapy. MHC-I defects strongly correlate to defective expression of NLRC5, the transcriptional activator of MHC-I and antigen processing genes. In poorly immunogenic B16 melanoma cells, restoring NLRC5 expression induces MHC-I and elicits antitumor immunity, raising the possibility of using NLRC5 for tumor immunotherapy. As the clinical application of NLRC5 is constrained by its large size, we examined whether a smaller NLRC5-CIITA fusion protein, dubbed NLRC5-superactivator (NLRC5-SA) as it retains the ability to induce MHC-I, could be used for tumor growth control. We show that stable NLRC5-SA expression in mouse and human cancer cells upregulates MHC-I expression. B16 melanoma and EL4 lymphoma tumors expressing NLRC5-SA are controlled as efficiently as those expressing full-length NLRC5 (NLRC5-FL). Comparison of MHC-I-associated peptides (MAPs) eluted from EL4 cells expressing NLRC5-FL or NLRC5-SA and analyzed by mass spectrometry revealed that both NLRC5 constructs expanded the MAP repertoire, which showed considerable overlap but also included a substantial proportion of distinct peptides. Thus, we propose that NLRC5-SA, with its ability to increase tumor immunogenicity and promote tumor growth control, could overcome the limitations of NLRC5-FL for translational immunotherapy applications.


Subject(s)
Gene Expression Regulation , Melanoma, Experimental , Humans , Animals , Mice , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Genes, MHC Class I , Histocompatibility Antigens Class I , Antigen Presentation , Intracellular Signaling Peptides and Proteins/genetics
17.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239938

ABSTRACT

Obesity and its associated metabolic morbidities have been and still are on the rise, posing a major challenge to health care systems worldwide. It has become evident over the last decades that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essentially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR), atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as TNF-alpha (TNF-α) and interleukin (IL)-1ß and the imprinting of immune cells to a pro-inflammatory phenotype in AT play an important role. However, the underlying genetic and molecular determinants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern recognition receptors (PRR), contribute to the development and control of obesity and obesity-associated inflammatory responses. In this article, we review the current state of research on the role of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for NLR-based therapeutic interventions of metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Tumor Necrosis Factor-alpha/metabolism , Diabetes Mellitus, Type 2/genetics , Carrier Proteins , Insulin Resistance/genetics , NLR Proteins/metabolism , Obesity/metabolism , Morbidity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism
18.
Microvasc Res ; 143: 104405, 2022 09.
Article in English | MEDLINE | ID: mdl-35835172

ABSTRACT

In varicose veins, abnormal phenotypic transition and inflammatory response is commonly found in venous smooth muscle cells (VSMCs). We aimed to explore the potential role and mechanism of NLRC5 exerted on VSMCs phenotypic transition and inflammation. NLRC5 expression was detected in varicose veins and platelet-derived growth factor (PDGF)-induced VSMCs by RT-qPCR and Western bolt assays. A loss-of-function assay was performed to evaluate the effects of NLRC5 knockdown on VSMC proliferation, migration, and phenotypic transition. ELISA was used to detect the contents of pro-inflammatory cytokines in the supernatant. The modulation of NLRC5 on TLR4 expression and Wnt/ß-catenin signaling was also evaluated. We found that the expressions of NLRC5 in varicose veins and PDGF-induced VSMCs were upregulated. NLRC5 knockdown inhibited VSMC proliferation and migration. Extracellular matrix transformation was blocked by downregulating NLRC5 with increasing SM-22α expression and MMP-1/TIMP-1 ratio, as well as decreasing OPN and collagen I expressions. Besides, NLRC5 silencing reduced the contents of inflammatory cytokines. Furthermore, we found that NLRC5 regulated TLR4 expression, as well as subsequently activation of Wnt/ß-catenin pathway and nuclear translocation of ß-catenin, which was involved in NLRC5-mediated phenotypic transition and inflammatory in VSMCs. In conclusion, silencing NLRC5 depressed VSMCs' phenotypic transition and inflammation by modulating Wnt/ß-catenin pathway via TLR4. This may provide a theoretical basis for treatment of varicose veins.


Subject(s)
Varicose Veins , beta Catenin , Cell Movement , Cell Proliferation , Cytokines/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Varicose Veins/genetics , beta Catenin/genetics , beta Catenin/metabolism
19.
Cell Mol Life Sci ; 78(5): 2387-2404, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33090288

ABSTRACT

Increasing evidence shows that long non-coding RNAs (lncRNAs) play an important role in a variety of disorders including kidney diseases. It is well recognized that inflammation is the initial step of kidney injury and is largely mediated by nuclear factor Kappa B (NF-κB) signaling. We had previously identified lncRNA-Arid2-IR is an inflammatory lncRNA associated with NF-κB-mediated renal injury. In this study, we examined the regulatory mechanism through which Arid2-IR activates NF-κB signaling. We found that Arid2-IR was differentially expressed in response to various kidney injuries and was induced by transforming growth factor beta 1(TGF-ß1). Using RNA sequencing and luciferase assays, we found that Arid2-IR regulated the activity of NF-κB signal via NLRC5-dependent mechanism. Arid2-IR masked the promoter motifs of NLRC5 to inhibit its transcription. In addition, during inflammatory response, Filamin A (Flna) was increased and functioned to trap Arid2-IR in cytoplasm, thereby preventing its nuclear translocation and inhibition of NLRC5 transcription. Thus, lncRNA Arid2-IR mediates NF-κB-driven renal inflammation via a NLRC5-dependent mechanism and targeting Arid2-IR may be a novel therapeutic strategy for inflammatory diseases in general.


Subject(s)
Inflammation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Kidney/metabolism , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , Transcription, Genetic , Animals , Cells, Cultured , Disease Models, Animal , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Transforming Growth Factor beta1/pharmacology
20.
J Biol Chem ; 295(20): 7018-7032, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32273344

ABSTRACT

Total hip arthroplasty (THA) is a widely-used surgical intervention for treating patients with end-stage degenerative and inflammatory osteoarthropathy. However, wear particles from the artificial titanium joint can induce osteolysis, limiting the long-term survivorship of THA. Monocyte/macrophage lineage cells are the key players in the response to wear particles, and the proinflammatory NF-κB and phosphoinositide 3-kinase (PI3K)-AKT Ser/Thr kinase (AKT)-signaling pathways have been shown to be the most important contributors to wear particle-induced osteolysis. In contrast, ubiquitin-specific protease 14 (USP14) specifically removes the polyubiquitin chains from the nucleotide-binding and oligomerization domain (NOD)-like receptor family Caspase recruitment domain (CARD)-containing 5 (NLRC5) and thereby enhances the NLRC5-mediated inhibition of NF-κB signaling. In this study, we aimed to clarify the role of the USP14-NLRC5 pathway in wear particle-induced osteolysis in vitro and in vivo We found that NLRC5 or USP14 overexpression inhibits titanium particle-induced proinflammatory tumor necrosis factor α (TNFα) production and NF-κB pathway activation, and it also decreases M1 macrophage polarization and PI3K/AKT pathway activation. Of note, NLRC5 and USP14 overexpression attenuated titanium particle-induced cranial osteolysis in mice. In conclusion, the findings of our study indicate that the USP14-NLRC5 pathway inhibits titanium particle-induced osteolysis by suppressing the NF-κB and PI3K/AKT pathways both in vitro and in vivo.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Macrophages , Osteolysis , Signal Transduction/drug effects , Skull , Titanium/toxicity , Ubiquitin Thiolesterase/metabolism , Animals , Cell Line , Hip Prosthesis/adverse effects , Humans , Macrophages/metabolism , Macrophages/pathology , Mice , NF-kappa B/metabolism , Osteolysis/chemically induced , Osteolysis/metabolism , Osteolysis/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Skull/metabolism , Skull/pathology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL