Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468682

ABSTRACT

Growth of plastic waste in the natural environment, and in particular in the oceans, has raised the accumulation of polystyrene and other polymeric species in eukyarotic cells to the level of a credible and systemic threat. Oligomers, the smallest products of polymer degradation or incomplete polymerization reactions, are the first species to leach out of macroscopic or nanoscopic plastic materials. However, the fundamental mechanisms of interaction between oligomers and polymers with the different cell components are yet to be elucidated. Simulations performed on lipid bilayers showed changes in membrane mechanical properties induced by polystyrene, but experimental results performed on cell membranes or on cell membrane models are still missing. We focus here on understanding how embedded styrene oligomers affect the phase behavior of model membranes using a combination of scattering, fluorescence, and calorimetric techniques. Our results show that styrene oligomers disrupt the phase behavior of lipid membranes, modifying the thermodynamics of the transition through a spatial modulation of lipid composition.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , Lipid Bilayers/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Polystyrenes/chemistry , Seawater/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Deuterium/chemistry , Humans , Kinetics , Phase Transition , Temperature , Thermodynamics , Water Pollution
2.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894127

ABSTRACT

The refractive index of a liquid serves as a fundamental parameter reflecting its composition, thereby enabling the determination of component concentrations in various fields such as chemical research, the food industry, and environmental monitoring. Traditional methods for refractive index (RI) measurement rely on light deflection angles at interfaces between the liquid and a material with a known refractive index. In this paper, the authors present a new differential refractometer for the highly sensitive measurement of RI differences between two liquid samples. Using a configuration with two cells equipped with flat parallel plates as measuring elements, the instrument facilitates accurate analysis. Namely, the sensor signals from both the solution and the solvent cuvette are generated simultaneously with one laser pulse, reducing the possible fluctuations in the laser radiation intensity. Our evaluation shows the high sensitivity of RI measurements <7×10-6), so this differential refractometer can be proposed not only as a high-sensitivity sensing tool that can be used for mobile detection of nanoparticles in solution samples but also to determine the level of environmental nano-pollution using water (including rain, snow) samples from various natural as well as industrial sources, thus helping to solve some important environmental problems.

3.
Bull Environ Contam Toxicol ; 108(4): 694-701, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34724101

ABSTRACT

This study reports the implications of silver nanoparticles (AgNPs) and cow-dung contamination on water quality and oxidative perturbations in antioxidant biomarkers in the exposed Clarias gariepinus. Sixteen samples of C. gariepinus were exposed to fresh-water, 0.75 mg/mL each of AgNPs, cow-dung and a mixture of AgNPs-cow dung dosed water for 10 days. Cow-dung significantly (p < 0.05) depleted dissolved oxygen (DO) and increased biochemical oxygen demand (BOD) by 14% and 75% respectively. The trends of abundance and bioaccumulation of Ag in C. gariepinus exposed to different treatments followed kidney > muscle > gill > liver, implying the kidney was the worst affected organ. The AgNPs significantly (p < 0.05) perturbed vital organs in C. gariepinus by altering activities of antioxidant biomarkers, whereas AgNPs-cow dung had reduced perturbations implying organic matter bound Ag+ to reduce toxicity. These results conclude that AgNPs posed a challenging environment for C. gariepinus to thrive.


Subject(s)
Catfishes , Metal Nanoparticles , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Bioaccumulation , Catfishes/metabolism , Cattle , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
4.
Plant Physiol Biochem ; 207: 108370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271861

ABSTRACT

Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.


Subject(s)
Ecosystem , Nanoparticles , Plant Development , Nanoparticles/toxicity , Photosynthesis , Agriculture , Plants , Soil
5.
Plant Physiol Biochem ; 210: 108604, 2024 May.
Article in English | MEDLINE | ID: mdl-38608505

ABSTRACT

The rapid advancement of nanotechnology has led to unprecedented innovations across diverse industries, including pharmaceuticals, agriculture, cosmetics, electronics, textiles, and food, owing to the unique properties of nanoparticles. The extensive production and unregulated release of synthetic nanoparticles may contribute to nanopollution within the ecosystem. In the agricultural sector, nanotechnology is increasingly utilized to improve plant productivity, enhance resistance to stressors, and reduce the usage of chemicals. However, the uncontrolled discharge of nanoparticles into the natural environment raises concerns regarding possible plant toxicological impacts. The review focuses on the translocation of these particles within the plants, emphasizing their phytotoxicological effects at morphological, physiological, biochemical, and molecular levels. Eventhough the beneficial aspects of these nanoparticles are evident, excessive usage of nanoparticles at higher concentrations may lead to potential adverse effects. The phytotoxicity resulting from excessive amounts of nanoparticles affects seed germination and biomass production, disrupts the photosynthesis system, induces oxidative stress, impacts cell membrane integrity, alters gene expression, causes DNA damage, and leads to epigenetic variations in plants. Nanoparticles are found to directly associate with the cell membrane and cell organelles, leading to the dissolution and release of toxic ions, generation of reactive oxygen species (ROS) and subsequent oxidative stress. The present study signifies and accumulates knowledge regarding the application of nanoparticles in agriculture and illustrates a clear picture of their possible impacts on plants and soil microbes, thereby paving the way for future developments in nano-agrotechnology. The review concludes by addressing current challenges and proposing future directions to comprehend and mitigate the possible biological risks associated with nanoparticles in agriculture.


Subject(s)
Nanoparticles , Plants , Nanoparticles/toxicity , Nanoparticles/chemistry , Plants/drug effects , Plants/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects
6.
Plant Physiol Biochem ; 210: 108598, 2024 May.
Article in English | MEDLINE | ID: mdl-38608503

ABSTRACT

Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.


Subject(s)
Ecosystem , Nanoparticles , Plants , Plants/metabolism , Plants/drug effects , Nanoparticles/metabolism , Photosynthesis/drug effects
7.
Chemosphere ; 302: 134746, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35489464

ABSTRACT

Nanoparticles are immensely diverse both in terms of quality and sources of emission into the environment. Nowadays, nanotechnologies are developing and growing at a rapid pace without specific rules and regulations, leading to a severe effect on environment and affecting the labours in outdoor and indoor workplaces. The continue and enormous use of NPs for industrial and commercial purposes, has put a pressing need to think whether the increasing use of these NPs could overcome the severe environmental effects and unknown human health risks. Only a few studies have been carried out to assess the toxic effect of these NPs resulting from their direct or indirect exposure. There is in an increasing clamour to consider environmental implications of NPs and to monitor the outcome of NP during use in biological testing. There remain many open questions for consideration. An adequate research is required to determine the real toxic effect of these NPs on environment and human health. In this review, we have discussed the negative effects of NPs on environment and biosphere at large and the future research required.


Subject(s)
Environmental Pollution , Nanoparticles , Humans , Nanoparticles/toxicity , Nanotechnology
8.
Sci Total Environ ; 811: 152249, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34896497

ABSTRACT

The main focus of this review is to discuss the current advancement in nano-metallic caused phytotoxicity on living organisms and current challenges in crops. Nanostructured materials provide new tools in agriculture to boost sustainable food production, but the main concern is that large-scale production and release of nanomaterials (NMs) into the ecosystem is a rising threat to the surrounding environment that is an urgent challenge to be addressed. The usage of NMs directly influences the transport pathways within plants, which directly relates to their stimulatory/ inhibitory effects. Because of the unregulated nanoparticles (NMs) exposure to soil, they are adsorbed at the root surface, followed by uptake and inter/intracellular mobility within the plant tissue, while the aerial exposure is taken up by foliage, mostly through cuticles, hydathodes, stigma, stomata, and trichomes, but the actual mode of NMs absorption into plants is still unclear. NMs-plant interactions may have stimulatory or inhibitory effects throughout their life cycle depending on their composition, size, concentration, and plant species. Although many publications on NMs interactions with plants have been reported, the knowledge on their uptake, translocation, and bioaccumulation is still a question to be addressed by the scientific community. One of the critical aspects that must be discovered and understood is detecting NMs in soil and the uptake mechanism in plants. Therefore, the nanopollution in plants has yet to be completely understood regarding its impact on plant health, making it yet another artificial environmental influence of unknown long-term consequences. The present review summarizes the uptake, translocation, and bioaccumulation of NMs in plants, focusing on their inhibitory effects and mechanisms involved within plants.


Subject(s)
Ecosystem , Nanostructures , Bioaccumulation , Nanostructures/toxicity , Plants , Soil
9.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34684978

ABSTRACT

The use of nano-enabled products (NEPs) can release engineered nanomaterials (ENMs) into water resources, and the increasing commercialisation of NEPs raises the environmental exposure potential. The current study investigated the release of ENMs and their characteristics from six commercial products (sunscreens, body creams, sanitiser, and socks) containing nTiO2, nAg, and nZnO. ENMs were released in aqueous media from all investigated NEPs and were associated with ions (Ag+ and Zn2+) and coating agents (Si and Al). NEPs generally released elongated (7-9 × 66-70 nm) and angular (21-80 × 25-79 nm) nTiO2, near-spherical (12-49 nm) and angular nAg (21-76 × 29-77 nm), and angular nZnO (32-36 × 32-40 nm). NEPs released varying ENMs' total concentrations (ca 0.4-95%) of total Ti, Ag, Ag+, Zn, and Zn2+ relative to the initial amount of ENMs added in NEPs, influenced by the nature of the product and recipient water quality. The findings confirmed the use of the examined NEPs as sources of nanopollution in water resources, and the physicochemical properties of the nanopollutants were determined. Exposure assessment data from real-life sources are highly valuable for enriching the robust environmental risk assessment of nanotechnology.

10.
Environ Sci Pollut Res Int ; 27(16): 19650-19660, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32221830

ABSTRACT

Uses of iron oxide nanoparticles have increased in the last decade. The increased application marked a concern regarding their fate and behavior in the environment. Especially towards the aquatic ecosystems, as the ultimate descend of these iron oxide nanoparticles are aquatic bodies. The greater surface area per mass compared with larger-sized materials of the same chemistry renders these nanoparticles biologically more active. Therefore, it is imperative to assess their eco-toxicogical impact on aquatic eco-systems. In the present study, comparative assessment of iron oxide nanoparticles and their bulk counterpart have been monitored using Coelastrella terrestris up to 40 days. Interestingly, study reveals the potential of Coelastrella terrestris as tool for the bioremediation of iron nanoparticles to combat nano-pollution. Adsorption/absorption kinetics measured after 25 days of treatments with iron oxide nanoparticle and its bulk counterpart revealed higher absorption levels in comparison to the adsorption with maximum accumulation factor (AF) of 2.984 at 50 mg L-1 in nano-form. Iron oxide absorption was found linearly related with concentration in both cases (y = 11.313x-12.165, R2 = 0.8691 in nano; y = 6.35x-5.74, R2 = 0.8128 in bulk). However, 50-mg L-1 nanoparticle concentration was perceived sub-lethal for the algae with 33.33% algal growth reduction under nano and 27.77% under bulk counterpart. Other biochemical parameters, i.e., SOD, CAT, MDA, and lipid quantification, were also quantified to correlate the state of metabolism of treated algal cells in comparison to the control and these exhibited reduction in algal growth due to oxidative stress. Morphological changes were monitored through SEM and TEM.


Subject(s)
Metal Nanoparticles , Microalgae , Nanoparticles , Ecosystem , Ferric Compounds
11.
Environ Pollut ; 255(Pt 3): 113358, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31614246

ABSTRACT

The genus Artemia sp. has been accepted as a reliable model organism for aquatic toxicity and nanotoxicity experiments, as far as the ISO TS 20787 has recently been published to standardize nanotoxicity test with this organism. Experimental and environmental conditions may affect the toxicity of nanomaterials on aquatic organisms including Artemia sp. nauplii. In this study, acute toxicity effects of silver nanoparticles (AgNPs) on the nauplii of Artemia salina was investigated under various conditions (e.g. different lights, salinities, temperatures, volume and agitation of exposure media and instar stages of nauplii). The EC values were calculated using Probit program and all data were analyzed statistically by SPSS software. At all test conditions, the immobilization rate of Artemia nauplii increased in a concentration-dependent manner (P < 0.05). The sensitivity of instar stage II to different concentrations of AgNPs was significantly higher than instar I (P < 0.05). The toxicity effect of AgNPs was affected by alteration of environmental conditions, so that the effective concentration (EC) values for instar I of A. salina decreased with increasing water temperature, decreasing water salinity and in continuous darkness condition. The EC50 value of AgNPs was significantly lower in 100 mL beakers (21.35 ±â€¯5.67 mg L-1) than 10 mL well plates (42.44 ±â€¯11.30 mg L-1). Agitation of exposure media did not affect the toxicity of AgNPs. The results indicated that the experimental and environmental conditions influence on the toxicity of AgNPs in the nauplii of A. salina.


Subject(s)
Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Artemia/drug effects , Nanostructures , Salinity , Silver/toxicity
12.
Front Plant Sci ; 8: 832, 2017.
Article in English | MEDLINE | ID: mdl-28580002

ABSTRACT

The particles within the size range of 1 and 100 nm are known as nanoparticles (NPs). NP-containing wastes released from household, industrial and medical products are emerging as a new threat to the environment. Plants, being fixed to the two major environmental sinks where NPs accumulate - namely water and soil, cannot escape the impact of nanopollution. Recent studies have shown that plant growth, development and physiology are significantly affected by NPs. But, the effect of NPs on plant secondary metabolism is still obscure. The induction of reactive oxygen species (ROS) following interactions with NPs has been observed consistently across plant species. Taking into account the existing link between ROS and secondary signaling messengers that lead to transcriptional regulation of secondary metabolism, in this perspective we put forward the argument that ROS induced in plants upon their interaction with NPs will likely interfere with plant secondary metabolism. As plant secondary metabolites play vital roles in plant performance, communication, and adaptation, a comprehensive understanding of plant secondary metabolism in response to NPs is an utmost priority.

13.
Environ Sci Pollut Res Int ; 22(23): 19297-306, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26490887

ABSTRACT

The aims of this study are (1) to discuss the mechanism of nanoparticle lifecycle and estimate the impacts of its associated pollution on environment and human health; and (2) to provide recommendation to policy makers on how to leverage nanopollution and human health along with the rapid development of economics in China. Manufactured nanoparticles (MNPs) could either directly or indirectly impair human health and the environment. Exposures to MNP include many ways, such as via inhalation, ingestion, direct contact, or the use of consumer products over the lifecycle of the product. In China, the number of people exposed to MNP has been increasing year by year. To better provide medical care to people exposed to MNP, the Chinese government has established many disease control and prevention centers over China. However, the existing facilities and resources for controlling MNP are still not enough considering the number of people impacted by MNP and the number of ordinary workers in the MNP related industry applying for their occupational identification through the Center for Disease Control and Prevention. China should assess the apparent risk environment and human health being exposed to MNP and develop action plans to reduce the possibility of direct contacts between human beings and the emerging nanomaterials. In addition, we suggest more comprehensive studies on the MNP behavior and the development of quantitative approaches to measure MNP transport, and persistence should be carried out.


Subject(s)
Air Pollutants/analysis , Environmental Pollution/analysis , Metal Nanoparticles/analysis , Particulate Matter/analysis , Air Pollutants/toxicity , China , Environmental Monitoring , Humans , Metal Nanoparticles/toxicity , Particulate Matter/toxicity , Risk Assessment
14.
Indian Dermatol Online J ; 4(4): 267-72, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24350003

ABSTRACT

NANOTECHNOLOGY (NANO: One billionth) is a novel arena with promising applications in the field of medicine, especially pharmaceuticals for safe and targeted drug delivery. The skin is a phenomenal tool for investigation of nanocarriers for drug delivery for topical and dermatological application. The physicochemical characteristics of the nanoparticles, such as rigidity, hydrophobicity, size and charge are crucial to the skin permeation mechanism. Many nanocarriers such as polymeric, inorganic and lipid nanoparticles and nanoemulsions have been developed and some like carbon nanotubes and fullerenes still need further exploration for future use in skin care and dermatological treatments. Risks of nanopollution and cytotoxicity also need to be kept in mind while exploring various nanoparticles for medical use.

SELECTION OF CITATIONS
SEARCH DETAIL