Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Plant Dis ; 107(10): 3079-3084, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36995771

ABSTRACT

Field experiments were conducted during the fall-winter seasons of 2017 to 2018 and 2018 to 2019 to evaluate the efficacy of various fungicides to control Neofabraea leaf lesion of olive. Field trials were conducted in the highly susceptible cultivar Arbosana in a commercial, super-high-density orchard in San Joaquin County, California. Up to eight fungicidal products were applied using an air blast backpack sprayer, and their efficacy was compared with different application strategies. Results showed that most products were effective in reducing infection by the pathogens and limiting disease severity. Overall, best disease control was achieved by thiophanate-methyl, cyprodinil, difenoconazole + cyprodinil, and chlorothalonil, providing up to 75% reduction in disease severity. Copper hydroxide did not control the disease. In 2018 to 2019, the fungicides difenoconazole + cyprodinil and ziram were evaluated in additional field trials using different application strategies (single, dual, and combined applications) suitable for pathogen resistance management. Results showed that both products provided significant reduction in disease severity (∼50%), although no differences in efficacy were found between the two products nor between the different application strategies. Both products performed equally using one or two applications at 2-week intervals following harvest.


Subject(s)
Ascomycota , Fungicides, Industrial , Olea , Fungicides, Industrial/pharmacology , Plant Leaves , California
2.
Plant J ; 100(6): 1148-1162, 2019 12.
Article in English | MEDLINE | ID: mdl-31436867

ABSTRACT

Terpenes are important compounds in plant trophic interactions. A meta-analysis of GC-MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)-α-farnesene. Four quantitative trait loci (QTLs) for α-farnesene production in ripe fruit were identified in a segregating 'Royal Gala' (RG) × 'Granny Smith' (GS) population with one major QTL on linkage group 10 co-locating with the MdAFS1 (α-farnesene synthase-1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC-MS analysis of headspace and solvent-extracted terpenes showing that cold-treated GS apples produced higher levels of (E,E)-α-farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)-α-farnesene. To evaluate the role of (E,E)-α-farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post-harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)-α-farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post-inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)-α-farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.


Subject(s)
Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Malus/genetics , Malus/metabolism , Plant Diseases/immunology , Sesquiterpenes/metabolism , Colletotrichum/pathogenicity , Disease Resistance , Down-Regulation , Fungi/pathogenicity , Gas Chromatography-Mass Spectrometry , Genetic Linkage , Genotype , Penicillium/pathogenicity , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Quantitative Trait Loci , RNA Interference/immunology , Terpenes/metabolism
3.
Plant Dis ; 103(12): 3018-3030, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31545699

ABSTRACT

California produces over 95% of the olives grown in the United States. In 2017, California's total bearing acreage for olives was 14,570 hectares producing 192,000 tons of olives valued at $186.6 million. During the early spring of 2016, unusual leaf and shoot lesions were detected in olive trees from superhigh-density orchards in the Northern San Joaquin and Sacramento valleys of California. Affected trees displayed numerous leaf and shoot lesions developing at wounds created by mechanical harvesters. The 'Arbosana' cultivar was highly affected by the disease, whereas the disease was sporadic in 'Arbequina' and not found in 'Koroneiki' cultivar. Two fungal species, Neofabraea kienholzii and Phlyctema vagabunda, were found to be consistently associated with the disease, and Koch's postulates were completed. Species identity was confirmed by morphology and molecular data of the partial large subunit rDNA, the internal transcribed spacer region, and partial beta-tubulin region. The disease signs and symptoms are described and illustrated.


Subject(s)
Ascomycota , Olea , Plant Leaves , Plant Shoots , Ascomycota/cytology , Ascomycota/genetics , Ascomycota/physiology , California , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Olea/microbiology , Plant Leaves/microbiology , Plant Shoots/microbiology
4.
Can J Microbiol ; 64(1): 57-68, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29084390

ABSTRACT

A rolling-circle amplification (RCA) method with padlock probes targeted on EF-1α regions was developed for rapid detection of apple bull's-eye rot pathogens, including Neofabraea malicorticis, N. perennans, N. kienholzii, and N. vagabunda (synonym: N. alba). Four padlock probes (PLP-Nm, PLP-Np, PLP-Nk, and PLP-Nv) were designed and tested against 28 samples, including 22 BER pathogen cultures, 4 closely related species, and 2 unrelated species that may cause serious apple decays. The assay successfully identified all the bull's-eye rot pathogenic fungi at the level of species, while no cross-reaction was observed in all target species and no false-positive reaction was observed with all strains used for reference. This study showed that the use of padlock probes and the combination of probe signal amplification by RCA provided an effective and sensitive method for the rapid identification of Neofabraea spp. The method could therefore be a useful tool for monitoring bull's-eye rot pathogens in port quarantine and orchard epidemiological studies.


Subject(s)
Ascomycota/genetics , Malus/microbiology , Microbiological Techniques/methods , Nucleic Acid Amplification Techniques , Peptide Elongation Factor 1/genetics , Ascomycota/classification , Species Specificity
5.
Microorganisms ; 9(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525588

ABSTRACT

The contribution of the apple microbiome to the production chain of apple was so far largely unknown. Here, we describe the apple fruit microbiome and influences on its composition by parameters such as storage season, storage duration, storage technology, apple variety, and plant protection schemes. A combined culturing and metabarcoding approach revealed significant differences in the abundance, composition, and diversity of the apple fruit microbiome. We showed that relatively few genera contribute a large portion of the microbiome on fruit and that the fruit microbiome changes during the storage season depending on the storage conditions. In addition, we show that the plant protection regime has an influence on the diversity of the fruit microbiome and on the dynamics of pathogenic fungal genera during the storage season. For the genus Neofabraea, the quantitative results from the metabarcoding approach were validated with real-time PCR. In conclusion, we identified key parameters determining the composition and temporal changes of the apple fruit microbiome, and the main abiotic driving factors of microbiome diversity on apple fruit were characterized.

6.
Plants (Basel) ; 9(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630736

ABSTRACT

Fungal storage rots like blue mould, grey mould, bull's eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi.

7.
Front Microbiol ; 10: 2502, 2019.
Article in English | MEDLINE | ID: mdl-31781054

ABSTRACT

Postharvest food decay is one major issue for today's food loss along the supply chain. Hot water treatment (HWT), a sustainable method to reduce pathogen-induced postharvest fruit decay, has been proven to be effective on a variety of crops. However, the microbiome response to HWT is still unknown, and the role of postharvest microbiota for fruit quality is largely unexplored. To study both, we applied a combined approach of metabarcoding analysis and real time qPCR for microbiome tracking. Overall, HWT was highly effective in reducing rot symptoms on apples under commercial conditions, and induced only slight changes to the fungal microbiota, and insignificantly affected the bacterial community. Pathogen infection, however, significantly decreased the bacterial and fungal diversity, and especially rare taxa were almost eradicated in diseased apples. Here, about 90% of the total fungal community was composed by co-occurring storage pathogens Neofabraea alba and Penicillium expansum. Additionally, the prokaryote to eukaryote ratio, almost balanced in apples before storage, was shifted to 0.6% bacteria and 99.4% fungi in diseased apples, albeit the total bacterial abundance was stable across all samples. Healthy stored apples shared 18 bacterial and 4 fungal taxa that were not found in diseased apples; therefore, defining a health-related postharvest microbiome. In addition, applying a combined approach of HWT and a biological control consortium consisting of Pantoea vagans 14E4, Bacillus amyloliquefaciens 14C9 and Pseudomonas paralactis 6F3, were proven to be efficient in reducing both postharvest pathogens. Our results provide first insights into the microbiome response to HWT, and suggest a combined treatment with biological control agents.

SELECTION OF CITATIONS
SEARCH DETAIL