ABSTRACT
Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect." Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice. This behavioral change is supported by three causally linked plasticity events in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10 days of winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, transient local connectivity strengthening, and a delayed excitability increase. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the same cascade of plasticity events observed during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning, ultimately leading to increased "aggressiveness" in repeated winners.
ABSTRACT
In poikilotherms, temperature changes challenge the integration of physiological function. Within the complex nervous systems of the behaviorally sophisticated coleoid cephalopods, these problems are substantial. RNA editing by adenosine deamination is a well-positioned mechanism for environmental acclimation. We report that the neural proteome of Octopus bimaculoides undergoes massive reconfigurations via RNA editing following a temperature challenge. Over 13,000 codons are affected, and many alter proteins that are vital for neural processes. For two highly temperature-sensitive examples, recoding tunes protein function. For synaptotagmin, a key component of Ca2+-dependent neurotransmitter release, crystal structures and supporting experiments show that editing alters Ca2+ binding. For kinesin-1, a motor protein driving axonal transport, editing regulates transport velocity down microtubules. Seasonal sampling of wild-caught specimens indicates that temperature-dependent editing occurs in the field as well. These data show that A-to-I editing tunes neurophysiological function in response to temperature in octopus and most likely other coleoids.
Subject(s)
Octopodiformes , Proteome , Animals , Proteome/metabolism , Octopodiformes/genetics , RNA Editing , Temperature , Nervous System/metabolism , Adenosine Deaminase/metabolism , RNA/metabolismABSTRACT
Accurately predicting an outcome requires that animals learn supporting and conflicting evidence from sequential experience. In mammals and invertebrates, learned fear responses can be suppressed by experiencing predictive cues without punishment, a process called memory extinction. Here, we show that extinction of aversive memories in Drosophila requires specific dopaminergic neurons, which indicate that omission of punishment is remembered as a positive experience. Functional imaging revealed co-existence of intracellular calcium traces in different places in the mushroom body output neuron network for both the original aversive memory and a new appetitive extinction memory. Light and ultrastructural anatomy are consistent with parallel competing memories being combined within mushroom body output neurons that direct avoidance. Indeed, extinction-evoked plasticity in a pair of these neurons neutralizes the potentiated odor response imposed in the network by aversive learning. Therefore, flies track the accuracy of learned expectations by accumulating and integrating memories of conflicting events.
Subject(s)
Extinction, Psychological , Memory , Animals , Appetitive Behavior , Calcium/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Drosophila melanogaster , Female , Mushroom Bodies/cytology , Mushroom Bodies/physiology , Neuronal PlasticityABSTRACT
RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP.
Subject(s)
Biological Evolution , Cephalopoda/genetics , RNA Editing , Transcriptome , Adenosine Deaminase/metabolism , Amino Acid Sequence , Animals , Cephalopoda/classification , Cephalopoda/metabolism , Nervous System/metabolism , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Sequence AlignmentABSTRACT
Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.
Subject(s)
Myelin Sheath/physiology , Adenosine Triphosphate/metabolism , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Axons/physiology , Central Nervous System/metabolism , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Cytoskeleton/ultrastructure , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Glucose/metabolism , Humans , Inflammation , Leukoencephalopathies/metabolism , Leukoencephalopathies/pathology , Mice , Microscopy, Electron , Myelin Proteins/physiology , Neuronal Plasticity , Oligodendroglia/physiology , Peripheral Nervous System/metabolism , Schwann Cells/physiology , Synaptic Transmission/physiologyABSTRACT
Cortical neurons exhibit multiple timescales related to dynamics of spontaneous fluctuations (intrinsic timescales) and response to task events (seasonal timescales) in addition to selectivity to task-relevant signals. These timescales increase systematically across the cortical hierarchy, for example, from parietal to prefrontal and cingulate cortex, pointing to their role in cortical computations. It is currently unknown whether these timescales are inherent properties of neurons and/or depend on training in a specific task and if the latter, how their modulations contribute to task performance. To address these questions, we analyzed single-cell recordings within five subregions of the prefrontal cortex (PFC) of male macaques before and after training on a working-memory task. We found fine-grained but opposite gradients of intrinsic and seasonal timescales that mainly appeared after training. Intrinsic timescales decreased whereas seasonal timescales increased from posterior to anterior subregions within both dorsal and ventral PFC. Moreover, training was accompanied by increases in proportions of neurons that exhibited intrinsic and seasonal timescales. These effects were comparable to the emergence of response selectivity due to training. Finally, task selectivity accompanied opposite neural dynamics such that neurons with task-relevant selectivity exhibited longer intrinsic and shorter seasonal timescales. Notably, neurons with longer intrinsic and shorter seasonal timescales exhibited superior population-level coding, but these advantages extended to the delay period mainly after training. Together, our results provide evidence for plastic, fine-grained gradients of timescales within PFC that can influence both single-cell and population coding, pointing to the importance of these timescales in understanding cognition.
Subject(s)
Memory, Short-Term , Prefrontal Cortex , Animals , Male , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Macaca , Neurons/physiology , PrimatesABSTRACT
The developed human brain shows remarkable plasticity following perceptual learning, resulting in improved visual sensitivity. However, such improvements commonly require extensive stimuli exposure. Here we show that efficiently enhancing visual perception with minimal stimuli exposure recruits distinct neural mechanisms relative to standard repetition-based learning. Participants (n = 20, 12 women, 8 men) encoded a visual discrimination task, followed by brief memory reactivations of only five trials each performed on separate days, demonstrating improvements comparable with standard repetition-based learning (n = 20, 12 women, 8 men). Reactivation-induced learning engaged increased bilateral intraparietal sulcus (IPS) activity relative to repetition-based learning. Complementary evidence for differential learning processes was further provided by temporal-parietal resting functional connectivity changes, which correlated with behavioral improvements. The results suggest that efficiently enhancing visual perception with minimal stimuli exposure recruits distinct neural processes, engaging higher-order control and attentional resources while leading to similar perceptual gains. These unique brain mechanisms underlying improved perceptual learning efficiency may have important implications for daily life and in clinical conditions requiring relearning following brain damage.
Subject(s)
Neuronal Plasticity , Visual Perception , Humans , Female , Male , Neuronal Plasticity/physiology , Visual Perception/physiology , Adult , Young Adult , Magnetic Resonance Imaging , Photic Stimulation/methods , Learning/physiology , Brain Mapping , Parietal Lobe/physiologyABSTRACT
Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.
Subject(s)
Brain , Finches , Gene Regulatory Networks , Nesting Behavior , Animals , Finches/genetics , Finches/physiology , Brain/metabolism , Brain/physiology , Female , Male , Social Behavior , TranscriptomeABSTRACT
Table tennis players have adaptive visual and sensorimotor networks, which are the key brain regions to acquire environmental information and generate motor output. This study examined 20 table tennis players and 21 control subjects through ultrahigh field 7 Tesla magnetic resonance imaging. First, we measured percentage amplitude of fluctuation across five different frequency bands and found that table tennis players had significantly lower percentage amplitude of fluctuation values than control subjects in 18 brain regions, suggesting enhanced stability of spontaneous brain fluctuation amplitudes in visual and sensorimotor networks. Functional connectional analyses revealed increased static functional connectivity between two sensorimotor nodes and other frontal-parietal regions among table tennis players. Additionally, these players displayed enhanced dynamic functional connectivity coupled with reduced static connectivity between five nodes processing visual and sensory information input, and other large-scale cross-regional areas. These findings highlight that table tennis players undergo neural adaptability through a dual mechanism, characterized by global stability in spontaneous brain fluctuation amplitudes and heightened flexibility in visual sensory networks. Our study offers novel insights into the mechanisms of neural adaptability in athletes, providing a foundation for future efforts to enhance cognitive functions in diverse populations, such as athletes, older adults, and individuals with cognitive impairments.
Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Young Adult , Brain/physiology , Brain/diagnostic imaging , Female , Adult , Tennis/physiology , Athletes , Brain Mapping/methods , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Adaptation, Physiological/physiology , AdolescentABSTRACT
The gastropod mollusk Aplysia is an important model for cellular and molecular neurobiological studies, particularly for investigations of molecular mechanisms of learning and memory. We developed an optimized assembly pipeline to generate an improved Aplysia nervous system transcriptome. This improved transcriptome enabled us to explore the evolution of cognitive capacity at the molecular level. Were there evolutionary expansions of neuronal genes between this relatively simple gastropod Aplysia (20,000 neurons) and Octopus (500 million neurons), the invertebrate with the most elaborate neuronal circuitry and greatest behavioral complexity? Are the tremendous advances in cognitive power in vertebrates explained by expansion of the synaptic proteome that resulted from multiple rounds of whole genome duplication in this clade? Overall, the complement of genes linked to neuronal function is similar between Octopus and Aplysia. As expected, a number of synaptic scaffold proteins have more isoforms in humans than in Aplysia or Octopus. However, several scaffold families present in mollusks and other protostomes are absent in vertebrates, including the Fifes, Lev10s, SOLs, and a NETO family. Thus, whereas vertebrates have more scaffold isoforms from select families, invertebrates have additional scaffold protein families not found in vertebrates. This analysis provides insights into the evolution of the synaptic proteome. Both synaptic proteins and synaptic plasticity evolved gradually, yet the last deuterostome-protostome common ancestor already possessed an elaborate suite of genes associated with synaptic function, and critical for synaptic plasticity.
Subject(s)
Aplysia , Biological Evolution , Cognition , Synapses , Animals , Aplysia/genetics , Aplysia/metabolism , Neuronal Plasticity/genetics , Neurons/metabolism , Protein Isoforms/genetics , Proteome , Synapses/metabolism , TranscriptomeABSTRACT
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the mesoscale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a mesoscale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the mesoscale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Neuronal Plasticity , Video Games , Humans , Neuronal Plasticity/physiology , Connectome/methods , Male , Adult , Brain/physiology , Brain/diagnostic imaging , Young Adult , Female , Nerve Net/physiology , Nerve Net/diagnostic imaging , Models, NeurologicalABSTRACT
Neurons in the stellate ganglion (SG) provide sympathetic innervation to the heart, brown adipose tissue (BAT), and other organs. Sympathetic innervation to the heart becomes hyperactive following myocardial infarction (MI). The impact of MI on the morphology of cardiac sympathetic neurons is not known, but we hypothesized that MI would stimulate increased cell and dendritic tree size in cardiac neurons. In this study, we examined the effects of ischemia-reperfusion MI on sympathetic neurons using dual retrograde tracing methods to allow detailed characterization of cardiac- and BAT-projecting neurons. Different fluorescently conjugated cholera toxin subunit B (CTb) tracers were injected into the pericardium and the interscapular BAT pads, respectively. Experimental animals received a 45-min occlusion of the left anterior descending coronary artery and controls received sham surgery. One week later, hearts were collected for assessment of MI infarct and SGs were collected for morphological or electrophysiological analysis. Cardiac-projecting SG neurons from MI mice had smaller cell bodies and shorter dendritic trees compared with sham animals, specifically on the left side ipsilateral to the MI. BAT-projecting neurons were not altered by MI, demonstrating the subpopulation specificity of the response. The normal size and distribution differences between BAT- and cardiac-projecting stellate ganglion neurons were not altered by MI. Patch-clamp recordings from cardiac-projecting left SG neurons revealed increased spontaneous excitatory postsynaptic currents despite the decrease in cell and dendritic tree size. Thus, increased dendritic tree size does not contribute to the enhanced sympathetic neural activity seen after MI.NEW & NOTEWORTHY Myocardial infarction (MI) causes structural and functional changes specifically in stellate ganglion neurons that project to the heart, but not in cells that project to brown adipose fat tissue.
Subject(s)
Myocardial Infarction , Stellate Ganglion , Animals , Mice , Stellate Ganglion/physiology , Heart/innervation , Neurons/physiology , ReperfusionABSTRACT
Fas-Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non-apoptotic functions, is dysregulated in post-mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24-h regulation of FADD (and linked molecular partners: p-ERK/t-ERK ratio, Cdk-5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights-on or inactive period; ZT12, lights-off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p-ERK/t-ERK ratios regulation. Both Cdk-5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24-h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.
Subject(s)
Brain , Prefrontal Cortex , Humans , Rats , Male , Animals , Brain/metabolism , Prefrontal Cortex/metabolism , Hippocampus/metabolism , Fas-Associated Death Domain Protein/metabolismABSTRACT
Memory and learning allow animals to appropriate certain properties of nature with which they can navigate in it successfully. Memory is acquired slowly and consists of two major phases, a fragile early phase (short-term memory, <4 h) and a more robust and long-lasting late one (long-term memory, >4 h). Erythropoietin (EPO) prolongs memory from 24 to 72 h when animals are trained for 5 min in a place recognition task but not when training lasted 3 min (short-term memory). It is not known whether it promotes the formation of remote memory (≥21 days). We address whether the systemic administration of EPO can convert a short-term memory into a long-term remote memory, and the neural plasticity mechanisms involved. We evaluated the effect of training duration (3 or 5 min) on the expression of endogenous EPO and its receptor to shed light on the role of EPO in coordinating mechanisms of neural plasticity using a single-trial spatial learning test. We administered EPO 10 min post-training and evaluated memory after 24 h, 96 h, 15 days, or 21 days. We also determined the effect of EPO administered 10 min after training on the expression of arc and bdnf during retrieval at 24 h and 21 days. Data show that learning induces EPO/EPOr expression increase linked to memory extent, exogenous EPO prolongs memory up to 21 days; and prefrontal cortex bdnf expression at 24 h and in the hippocampus at 21 days, whereas arc expression increases at 21 days in the hippocampus and prefrontal cortex.
Subject(s)
Erythropoietin , Memory Consolidation , Animals , Brain-Derived Neurotrophic Factor/metabolism , Erythropoietin/pharmacology , Erythropoietin/metabolism , Receptors, Erythropoietin/metabolism , Brain/metabolism , Hippocampus/metabolism , Memory, Long-TermABSTRACT
Reciprocal inhibition (RI) between leg muscles is crucial for smooth movement. Pedaling is a rhythmic movement that can increase RI in healthy individuals. Transcutaneous spinal cord stimulation (tSCS) stimulates spinal neural circuits by targeting the afferent fibers. Pedaling with simultaneous tSCS may modulate the plasticity of the spinal neural circuit and alter neural activity based on movement and muscle engagement. This study investigated the RI changes after pedaling and tSCS and determined the phase of pedaling in which tSCS should be applied for optimal RI modulation in healthy individuals. Eleven subjects underwent three interventions: pedaling combined with tSCS during the early phase of lower extension (phase 1), pedaling combined with tSCS during the late phase of lower flexion (phase 4) of the pedaling cycle, and pedaling combined with sham tSCS. The RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, 15 min, and 30 min after the intervention. RI increased immediately after phase 4 and pedaling combined with sham tSCS, whereas no changes were observed after phase 1. These results demonstrate that tSCS modulates RI changes induced by pedaling in a stimulus phase-dependent manner in healthy individuals. However, the mechanism involved in this intervention needs to be explored to achieve higher efficacy.
Subject(s)
Muscle, Skeletal , Spinal Cord Stimulation , Humans , Male , Adult , Young Adult , Female , Spinal Cord Stimulation/methods , Muscle, Skeletal/physiology , Neural Inhibition/physiology , Spinal Cord/physiology , Electromyography , Bicycling/physiologyABSTRACT
Early auditory deprivation leads to a reorganization of large-scale brain networks involving and extending beyond the auditory system. It has been documented that visuomotor transformation is impaired after early deafness, associated with a hyper-crosstalk between the task-critical frontoparietal network and the default-mode network. However, it remains unknown whether and how the reorganized large-scale brain networks involving the auditory cortex contribute to impaired visuomotor transformation after early deafness. Here, we asked deaf and early hard of hearing participants and normal hearing controls to judge the spatial location of a visual target. Compared with normal hearing controls, the superior temporal gyrus showed significantly increased functional connectivity with the frontoparietal network and the default-mode network in deaf and early hard of hearing participants, specifically during egocentric judgments. However, increased superior temporal gyrus-frontoparietal network and superior temporal gyrus-default-mode network coupling showed antagonistic effects on egocentric judgments. In deaf and early hard of hearing participants, increased superior temporal gyrus-frontoparietal network connectivity was associated with improved egocentric judgments, whereas increased superior temporal gyrus-default-mode network connectivity was associated with deteriorated performance in the egocentric task. Therefore, the data suggest that the auditory cortex exhibits compensatory neuroplasticity (i.e. increased functional connectivity with the task-critical frontoparietal network) to mitigate impaired visuomotor transformation after early auditory deprivation.
Subject(s)
Auditory Cortex , Deafness , Hearing Loss , Humans , Auditory Cortex/diagnostic imaging , Brain Mapping , Brain , Temporal Lobe/diagnostic imaging , Magnetic Resonance ImagingABSTRACT
Phantom Limb Syndrome (PLS) can be defined as the disabling or painful sensation of the presence of a body part that is no longer present after its amputation. Anatomical changes involved in Phantom Limb Syndrome, occurring at peripheral, spinal and brain levels and include the formation of neuromas and scars, dorsal horn sensitization and plasticity, short-term and long-term modifications at molecular and topographical levels. The molecular reorganization processes of Phantom Limb Syndrome include NMDA receptors hyperactivation in the dorsal horn of the spinal column leading to inflammatory mechanisms both at a peripheral and central level. At the brain level, a central role has been recognized for sodium channels, BDNF and adenosine triphosphate receptors. In the paper we discuss current available pharmacological options with a final overview on non-pharmacological options in the pipeline.
Subject(s)
Phantom Limb , Phantom Limb/therapy , Phantom Limb/physiopathology , HumansABSTRACT
Brain derived neurotrophic factor (BDNF) signalling through its high-affinity tropomyosin receptor kinase B (TrkB) is known to have potent effects on motor neuron survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive TrkBF616 rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male TrkBF616 rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 µm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by â¼16 %, reduced the mean PhMN somal surface areas by â¼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by â¼38 %. We conclude that inhibition of TrkB signalling alone in adult TrkBF616 rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.
Subject(s)
Motor Neurons , Signal Transduction , Rats , Male , Female , Animals , Rats, Sprague-Dawley , Motor Neurons/metabolism , Biological Transport , Spinal Cord/metabolism , Receptor, trkB/metabolism , Brain-Derived Neurotrophic Factor/metabolismABSTRACT
This article aims to explore the integration of Louis Cozolino's (2013) andragogical strategies with the tenets of person-centered dementia care practices to enhance dementia care education. The article examines the multiple dimensions of learning in adulthood, highlighting the role of neural plasticity and lifelong brain adaptation in shaping learning and experiential strategies. This in-depth evaluation underscores the significance of tailoring andragogical approaches to the needs of adult learners, who, in this context, are care providers for persons with dementia. This is done through proper understanding of the neurobiological realities and the unique learning needs of adults. Such tailored approaches can be aligned with the brain's adaptive nature by recognizing the intricate interplay of cognitive, emotional, and social dimensions. Highlighting the need for including lessons on the person-centered approach in dementia care education, the paper argues that adult learners - who are essentially part of the dementia care workforce - first need to learn, appreciate, and embrace the approach before applying it in their caregiving practices. This article presents an overarching argument that integration of Cozolino's principles of adult learning with tenets of person-centered dementia care could provide a robust framework for dementia care education.
ABSTRACT
In Drosophila, in vivo functional imaging studies revealed that associative memory formation is coupled to a cascade of neural plasticity events in distinct compartments of the mushroom body (MB). In-depth investigation of the circuit dynamics, however, will require an ex vivo model that faithfully mirrors these events to allow direct manipulations of circuit elements that are inaccessible in the intact fly. The current ex vivo models have been able to reproduce the fundamental plasticity of aversive short-term memory, a potentiation of the MB intrinsic neuron (Kenyon cells [KCs]) responses after artificial learning ex vivo However, this potentiation showed different localization and encoding properties from those reported in vivo and failed to generate the previously reported suppression plasticity in the MB output neurons (MBONs). Here, we develop an ex vivo model using the female Drosophila brain that recapitulates behaviorally evoked plasticity in the KCs and MBONs. We demonstrate that this plasticity accurately localizes to the MB α'3 compartment and is encoded by a coincidence between KC activation and dopaminergic input. The formed plasticity is input-specific, requiring pairing of the conditioned stimulus and unconditioned stimulus pathways; hence, we name it pairing-dependent plasticity. Pairing-dependent plasticity formation requires an intact CaMKII gene and is blocked by previous-night sleep deprivation but is rescued by rebound sleep. In conclusion, we show that our ex vivo preparation recapitulates behavioral and imaging results from intact animals and can provide new insights into mechanisms of memory formation at the level of molecules, circuits, and brain state.SIGNIFICANCE STATEMENT The mammalian ex vivo LTP model enabled in-depth investigation of the hippocampal memory circuit. We develop a parallel model to study the Drosophila mushroom body (MB) memory circuit. Pairing activation of the conditioned stimulus and unconditioned stimulus pathways in dissected brains induces a potentiation pairing-dependent plasticity (PDP) in the axons of α'ß' Kenyon cells and a suppression PDP in the dendrites of their postsynaptic MB output neurons, localized in the MB α'3 compartment. This PDP is input-specific and requires the 3' untranslated region of CaMKII Interestingly, ex vivo PDP carries information about the animal's experience before dissection; brains from sleep-deprived animals fail to form PDP, whereas those from animals who recovered 2 h of their lost sleep form PDP.