Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.759
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(36): e2322399121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39190343

ABSTRACT

Religious fundamentalism, characterized by rigid adherence to a set of beliefs putatively revealing inerrant truths, is ubiquitous across cultures and has a global impact on society. Understanding the psychological and neurobiological processes producing religious fundamentalism may inform a variety of scientific, sociological, and cultural questions. Research indicates that brain damage can alter religious fundamentalism. However, the precise brain regions involved with these changes remain unknown. Here, we analyzed brain lesions associated with varying levels of religious fundamentalism in two large datasets from independent laboratories. Lesions associated with greater fundamentalism were connected to a specific brain network with nodes in the right orbitofrontal, dorsolateral prefrontal, and inferior parietal lobe. This fundamentalism network was strongly right hemisphere lateralized and highly reproducible across the independent datasets (r = 0.82) with cross-validations between datasets. To explore the relationship of this network to lesions previously studied by our group, we tested for similarities to twenty-one lesion-associated conditions. Lesions associated with confabulation and criminal behavior showed a similar connectivity pattern as lesions associated with greater fundamentalism. Moreover, lesions associated with poststroke pain showed a similar connectivity pattern as lesions associated with lower fundamentalism. These findings are consistent with the current understanding of hemispheric specializations for reasoning and lend insight into previously observed epidemiological associations with fundamentalism, such as cognitive rigidity and outgroup hostility.


Subject(s)
Nerve Net , Humans , Male , Female , Nerve Net/physiopathology , Nerve Net/pathology , Middle Aged , Brain/physiopathology , Brain/pathology , Adult , Religion , Magnetic Resonance Imaging , Brain Injuries/pathology , Brain Injuries/physiopathology , Aged
2.
EMBO Rep ; 25(3): 1623-1649, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253690

ABSTRACT

Psychiatric and neurological symptoms, as well as cognitive deficits, represent a prominent phenotype associated with variable forms of autoimmune encephalitis, regardless of the neurotransmitter receptor targeted by autoantibodies. The mechanistic underpinnings of these shared major neuropsychiatric symptoms remain however unclear. Here, we investigate the impacts of patient-derived monoclonal autoantibodies against the glutamatergic NMDAR (NMDAR mAb) and inhibitory GABAaR (GABAaR mAb) signalling in the hippocampal network. Unexpectedly, both excitatory and inhibitory synaptic receptor membrane dynamics, content and transmissions are altered by NMDAR or GABAaR mAb, irrespective of the affinity or antagonistic effect of the autoantibodies. The effect of NMDAR mAb on inhibitory synapses and GABAaR mAb on excitatory synapses requires neuronal activity and involves protein kinase signalling. At the cell level, both autoantibodies increase the excitation/inhibition balance of principal cell inputs. Furthermore, NMDAR or GABAaR mAb leads to hyperactivation of hippocampal networks through distinct alterations of principal cell and interneuron properties. Thus, autoantibodies targeting excitatory NMDAR or inhibitory GABAaR trigger convergent network dysfunctions through a combination of shared and distinct mechanisms.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Humans , Receptors, GABA-A/metabolism , Autoantibodies/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055214

ABSTRACT

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Subject(s)
Calcium-Binding Proteins , Mitochondrial Diseases , Calcium-Binding Proteins/genetics , Homeostasis/genetics , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nervous System/metabolism , Saccharomyces cerevisiae/metabolism
4.
J Med Genet ; 61(10): 999-1002, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39084904

ABSTRACT

We aim to describe double gonosomal mosaicism in the GRIN2A gene in a mother who passed on two different pathogenic variants at the same nucleotide to her two affected children. We studied a boy with epilepsy and intellectual disability, along with his sister and mother who exhibited language impairment and learning difficulties without epilepsy. We identified in the proband a splice-site variant in GRIN2A (c.1008-1G>A) inherited from his mother. Subsequent testing of his sister revealed a different change at the same nucleotide c.1008-1G>T, which was also present in the mother's DNA at 3.9% allele frequency. The co-occurrence of two mutational events at the same nucleotide is extremely rare. Since a chance occurrence is unlikely, we hypothesise that a base mismatch may introduce instability triggering a second event. In this family, the mother carries three alleles, of which one is at very low frequency. This complex genetic landscape poses diagnostic challenges since low-level mosaicism may escape detection via conventional methods. Applying specific technology becomes crucial, as double mosaicism might prove to be more prevalent than anticipated severely impacting diagnostic accuracy and genetic counselling.


Subject(s)
Mosaicism , Pedigree , Receptors, N-Methyl-D-Aspartate , Humans , Male , Female , Receptors, N-Methyl-D-Aspartate/genetics , Mutation/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Epilepsy/genetics , Epilepsy/pathology , Child , Alleles , Adult
5.
J Med Genet ; 61(9): 904-907, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-38825366

ABSTRACT

Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic congenital condition characterised by ocular, cutaneous and central nervous system involvement. Mosaic activating variants in FGFR1 and KRAS have been reported in several individuals with this syndrome. We report on a patient with neurofibromatosis type 1 (NF1) with a germline pathogenic variant in the NF1 gene and an ECCL phenotype, suggesting ECCL to be part of a spectrum of malformations associated with NF1 pathogenic variants. An anatomical hemispherectomy was performed for intractable epilepsy. Through genetic analysis of blood, cerebral tissue and giant cell lesions in both jaws, we identified the germline NF1 pathogenic variant in all samples and a second-hit pathogenic NF1 variant in cerebral tissue and both giant cell lesions. Both NF1 variants were located on different alleles resulting in somatic mosaicism for a biallelic NF1 inactivation originating in early embryogenesis (second-hit mosaicism or Happle type 2 mosaicism). The biallelic deficit in NF1 in the left hemicranium explains the severe localised, congenital abnormality in this patient. Identical first and second-hit variants in a giant cell lesion of both upper and lower jaws provide confirmatory evidence for an early embryonic second hit involving at least the neural crest. We suggest that the ECCL phenotype may be part of a spectrum of congenital problems associated with mosaic NF1 nullisomy originating during early embryogenesis. The biallelic NF1 inactivation during early embryogenesis mimics the severe activation of the RAS-MAPK pathway seen in ECCL caused by embryonic mosaic activating FGFR1 and KRAS variants in the cranial region. We propose that distinct mechanisms of mosaicism can cause the ECCL phenotype through convergence on the RAS-MAPK pathway.


Subject(s)
Lipomatosis , Mosaicism , Neurocutaneous Syndromes , Neurofibromin 1 , Phenotype , Humans , Lipomatosis/genetics , Lipomatosis/pathology , Neurocutaneous Syndromes/genetics , Neurocutaneous Syndromes/pathology , Neurofibromin 1/genetics , Alleles , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Female , Male , Germ-Line Mutation/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Eye Diseases
6.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37857482

ABSTRACT

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Subject(s)
Intellectual Disability , Nervous System Malformations , Infant, Newborn , Female , Humans , Corpus Callosum , Agenesis of Corpus Callosum/genetics , Nervous System Malformations/genetics , Intellectual Disability/genetics , Cognition , Zinc Finger E-box-Binding Homeobox 1/genetics
7.
J Med Genet ; 61(4): 340-346, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37923380

ABSTRACT

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease, associated with CGG repeat expansions in the 5' untranslated region of LRP12, GIPC1, NOTCH2NLC and RILPL1. However, the genetic cause of a proportion of pathoclinically confirmed cases remains unknown. METHODS: A total of 26 OPDM patients with unknown genetic cause(s) from 4 tertiary referral hospitals were included in this study. Clinical data and laboratory findings were collected. Muscle samples were observed by histological and immunofluorescent staining. Long-read sequencing was initially conducted in six patients with OPDM. Repeat-primed PCR was used to screen the CGG repeat expansions in LOC642361/NUTM2B-AS1 in all 26 patients. RESULTS: We identified CGG repeat expansion in the non-coding transcripts of LOC642361/NUTM2B-AS1 in another two unrelated Chinese cases with typical pathoclinical features of OPDM. The repeat expansion was more than 70 times in the patients but less than 40 times in the normal controls. Both patients showed no leucoencephalopathy but one showed mild cognitive impairment detected by Montreal Cognitive Assessment. Rimmed vacuoles and p62-positive intranuclear inclusions (INIs) were identified in muscle pathology, and colocalisation of CGG RNA foci with p62 was also found in the INIs of patient-derived fibroblasts. CONCLUSIONS: We identified another two unrelated cases with CGG repeat expansion in the long non-coding RNA of the LOC642361/NUTM2B-AS1 gene, presenting with a phenotype of OPDM. Our cases broadened the recognised phenotypic spectrum and pathogenesis in the disease associated with CGG repeat expansion in LOC642361/NUTM2B-AS1.


Subject(s)
Muscular Dystrophies , Adult , Humans , Muscular Dystrophies/genetics , Phenotype , Intranuclear Inclusion Bodies/genetics , Trinucleotide Repeat Expansion/genetics
8.
J Med Genet ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39366741

ABSTRACT

BACKGROUND: The Upstream Binding Transcription Factor (UBTF) gene encodes two nucleolar proteins, UBTF1 and UBTF2. UBTF1 regulates rRNA transcription by RNA polymerase I, while UBTF2 regulates mRNA transcription by RNA polymerase II. A recurrent de novo dominant mutation c.628G>A (p.Glu210Lys) has been identified as a gain-of-function mutation associated with childhood onset neurodegeneration with brain atrophy (CONDBA). Evidence from large-scale population databases and Ubtf+/- mouse models indicates that UBTF haploinsufficiency is not tolerated. METHODS: Three unrelated patients with global developmental delay and distinctive facial features were recruited for the study. Whole exome sequencing (WES) was performed to identify potential genetic abnormalities. Additionally, copy number variation analysis was conducted based on the WES data. RESULTS: All three patients exhibited intellectual disabilities, social challenges and developmental delays in language and gross motor skills. Distinctive facial features included a wide forehead, sparse eyebrows, hypertelorism, narrow palpebral fissures, single-fold eyelids, a flat nasal bridge, anteverted nares, a long philtrum and a thin upper lip. Additionally, patient C presented with more severe language delay, recurrent hepatic dysfunction and an atrial septal defect. Patient A was found to have a nonsense variant, c.1327C>T (p.R443Ter), in the exon 13 of UBTF. Patients B and C both carried a heterozygous deletion encompassing the UBTF gene. CONCLUSION: In this study, we analysed the detailed phenotypes associated with UBTF haploinsufficiency, which, to our knowledge, have not been previously reported. We propose that UBTF haploinsufficiency-related global developmental delay and distinctive facial features, without neuroregression, constitute a new syndrome distinct from CONDBA.

9.
J Med Genet ; 61(7): 661-665, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38458755

ABSTRACT

All people with motor neuron disease (pwMND) in England are eligible for genome sequencing (GS), with panel-based testing. With the advent of genetically targeted MND treatments, and increasing demand for GS, it is important that clinicians have the knowledge and skills to support pwMND in making informed decisions around GS. We undertook an online survey of clinical genomic knowledge and genetic counselling skills in English clinicians who see pwMND. There were 245 respondents to the survey (160 neurology clinicians and 85 genetic clinicians). Neurology clinicians reported multiple, overlapping barriers to offering pwMND GS. Lack of time to discuss GS in clinic and lack of training in genetics were reported. Neurology clinicians scored significantly less well on self-rated genomic knowledge and genetic counselling skills than genetic clinicians. The majority of neurology clinicians reported that they do not have adequate educational or patient information resources to support GS discussions. We identify low levels of genomic knowledge and skills in the neurology workforce. This may impede access to GS and precision medicine for pwMND.


Subject(s)
Motor Neuron Disease , Humans , Motor Neuron Disease/genetics , Motor Neuron Disease/epidemiology , Surveys and Questionnaires , England , Neurology/education , Whole Genome Sequencing , Genetic Counseling , Male , State Medicine , Genetic Testing , Female , Genomics/methods
10.
J Med Genet ; 61(6): 536-542, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38272663

ABSTRACT

BACKGROUND: PHACTR1 (phosphatase and actin regulators) plays a key role in cortical migration and synaptic activity by binding and regulating G-actin and PPP1CA. This study aimed to expand the genotype and phenotype of patients with de novo variants in PHACTR1 and analyse the impact of variants on protein-protein interaction. METHODS: We identified seven patients with PHACTR1 variants by trio-based whole-exome sequencing. Additional two subjects were ascertained from two centres through GeneMatcher. The genotype-phenotype correlation was determined, and AlphaFold-Multimer was used to predict protein-protein interactions and interfaces. RESULTS: Eight individuals carried missense variants and one had CNV in the PHACTR1. Infantile epileptic spasms syndrome (IESS) was the unifying phenotype in eight patients with missense variants of PHACTR1. They could present with other types of seizures and often exhibit drug-resistant epilepsy with a poor prognosis. One patient with CNV displayed a developmental encephalopathy phenotype. Using AlphaFold-Multimer, our findings indicate that PHACTR1 and G-actin-binding sequences overlap with PPP1CA at the RPEL3 domain, which suggests possible competition between PPP1CA and G-actin for binding to PHACTR1 through a similar polymerisation interface. In addition, patients carrying missense variants located at the PHACTR1-PPP1CA or PHACTR1-G-actin interfaces consistently exhibit the IESS phenotype. These missense variants are mostly concentrated in the overlapping sequence (RPEL3 domain). CONCLUSIONS: Patients with variants in PHACTR1 can have a phenotype of developmental encephalopathy in addition to IESS. Moreover, our study confirmed that the variants affect the binding of PHACTR1 to G-actin or PPP1CA, resulting in neurological disorders in patients.


Subject(s)
Exome Sequencing , Genetic Association Studies , Microfilament Proteins , Mutation, Missense , Phenotype , Spasms, Infantile , Child , Child, Preschool , Female , Humans , Infant , Male , Actins/genetics , Genetic Predisposition to Disease , Genotype , Microfilament Proteins/genetics , Mutation, Missense/genetics , Nervous System Diseases/genetics , Protein Phosphatase 1/genetics , Spasms, Infantile/genetics
11.
J Med Genet ; 61(3): 212-223, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37788905

ABSTRACT

INTRODUCTION: Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterised by partial oculocutaneous albinism, a bleeding diathesis, immunological dysfunction and neurological impairment. Bi-allelic loss-of-function variants in LYST cause CHS. LYST encodes the lysosomal trafficking regulator, a highly conserved 429 kDa cytoplasmic protein with an unknown function. METHODS: To further our understanding of the pathogenesis of CHS, we conducted clinical evaluations on individuals with CHS enrolled in our natural history study. Using genomic DNA Sanger sequencing, we identified novel pathogenic LYST variants. Additionally, we performed an extensive literature review to curate reported LYST variants and classified these novel and reported variants according to the American College of Medical Genetics/Association for Molecular Pathology variant interpretation guidelines. RESULTS: Our investigation unveiled 11 novel pathogenic LYST variants in eight patients with a clinical diagnosis of CHS, substantiated by the presence of pathognomonic giant intracellular granules. From these novel variants, together with a comprehensive review of the literature, we compiled a total of 147 variants in LYST, including 61 frameshift variants (41%), 44 nonsense variants (30%), 23 missense variants (16%), 13 splice site variants or small genomic deletions for which the coding effect is unknown (9%), 5 in-frame variants (3%) and 1 start-loss variant (1%). Notably, a genotype-phenotype correlation emerged, whereby individuals harbouring at least one missense or in-frame variant generally resulted in milder disease, while those with two nonsense or frameshift variants generally had more severe disease. CONCLUSION: The identification of novel pathogenic LYST variants and improvements in variant classification will provide earlier diagnoses and improved care to individuals with CHS.


Subject(s)
Chediak-Higashi Syndrome , Humans , Chediak-Higashi Syndrome/genetics , Chediak-Higashi Syndrome/diagnosis , Chediak-Higashi Syndrome/pathology , Mutation , Proteins/genetics , Mutation, Missense , Base Sequence , Vesicular Transport Proteins/genetics
12.
J Med Genet ; 61(5): 430-434, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38050071

ABSTRACT

BACKGROUND: Cases of RNF216-related disorder have been reported sporadically. However, the clinical and genetic spectrum of this disorder has not been fully studied. METHODS: We identified an individual with a novel causative RNF216 variant in our institution and reviewed all individuals with causative RNF216 variants in previous reports. The clinical and genetic features of all the described individuals were analysed and summarised. RESULTS: Twenty-four individuals from 17 families with causative RNF216 variants were identified. The mean age at the onset of neurological symptoms was 29.2 years (range 18-49 years). Ataxia (57%) was the most frequent initial symptoms in individuals under 30 years old, while chorea (63%) was the most frequent initial symptom in individuals over 30 years old. Over 90% of individuals presented with cognitive impairment and hypogonadotropic hypogonadism throughout the disease. White matter lesions (96%) and cerebellar atrophy (92%) were the most common imaging findings. Twenty pathogenic variants in RNF216 were detected. The variants in 12 (71%) families were inherited in a monogenic recessive pattern, whereas the variants in 5 (29%) were inherited in a digenic pattern by acting with variants in other genes. The majority of the RNF216 variants (85%) resulted in amino acid changes or the truncation of the 'RING between RING' (RBR) domain or C-terminal extension. CONCLUSION: RNF216-related disorder is an inherited neuroendocrine disease characterised by cerebellar ataxia, chorea, cognitive impairment and hypogonadotropic hypogonadism. Most causative variants in patients with RNF216-related disorder influence the RBR domain or C-terminal extension of RNF216.

13.
J Med Genet ; 61(10): 950-958, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38960580

ABSTRACT

BACKGROUND: SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A. METHODS: We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses. RESULTS: A 2.8 kb insertion was detected deep within the intron of the patient's ATP7A gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago. CONCLUSION: This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.


Subject(s)
Copper-Transporting ATPases , Introns , Retroelements , Humans , Copper-Transporting ATPases/genetics , Male , Retroelements/genetics , Adolescent , Introns/genetics , Central Nervous System Cysts/genetics , Central Nervous System Cysts/pathology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Alu Elements/genetics , Mutagenesis, Insertional/genetics , Brain Diseases/genetics , Brain Diseases/pathology , RNA Splicing/genetics , Cutis Laxa , Ehlers-Danlos Syndrome
14.
J Med Genet ; 61(6): 578-585, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38290825

ABSTRACT

OBJECTIVES: Speech and language impairments are core features of the neurodevelopmental genetic condition Kleefstra syndrome. Communication has not been systematically examined to guide intervention recommendations. We define the speech, language and cognitive phenotypic spectrum in a large cohort of individuals with Kleefstra syndrome. METHOD: 103 individuals with Kleefstra syndrome (40 males, median age 9.5 years, range 1-43 years) with pathogenic variants (52 9q34.3 deletions, 50 intragenic variants, 1 balanced translocation) were included. Speech, language and non-verbal communication were assessed. Cognitive, health and neurodevelopmental data were obtained. RESULTS: The cognitive spectrum ranged from average intelligence (12/79, 15%) to severe intellectual disability (12/79, 15%). Language ability also ranged from average intelligence (10/90, 11%) to severe intellectual disability (53/90, 59%). Speech disorders occurred in 48/49 (98%) verbal individuals and even occurred alongside average language and cognition. Developmental regression occurred in 11/80 (14%) individuals across motor, language and psychosocial domains. Communication aids, such as sign and speech-generating devices, were crucial for 61/103 (59%) individuals including those who were minimally verbal, had a speech disorder or following regression. CONCLUSIONS: The speech, language and cognitive profile of Kleefstra syndrome is broad, ranging from severe impairment to average ability. Genotype and age do not explain the phenotypic variability. Early access to communication aids may improve communication and quality of life.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 9 , Cognition , Craniofacial Abnormalities , Intellectual Disability , Phenotype , Humans , Male , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Child , Adolescent , Female , Adult , Child, Preschool , Chromosomes, Human, Pair 9/genetics , Young Adult , Infant , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/physiopathology , Speech , Speech Disorders/genetics , Speech Disorders/physiopathology , Language , Intelligence/genetics , Language Disorders/genetics , Language Disorders/physiopathology , Heart Defects, Congenital
15.
J Med Genet ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39237363

ABSTRACT

OBJECTIVES: Mutations in the X-linked endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome (CS). Here, in the largest study to date, we examine genetic diversity and clinical progression in CS into adulthood. METHOD: Data were collected as part of the International Christianson Syndrome and NHE6 (SLC9A6) Gene Network Study. 44 individuals with 31 unique NHE6 mutations, age 2-32 years, were followed prospectively, herein reporting baseline, 1 year follow-up and retrospective natural history. RESULTS: We present data on the CS phenotype with regard to physical growth and adaptive and motor regression across the lifespan including information on mortality. Longitudinal data on body weight and height were examined using a linear mixed model. The rate of growth across development was slow and resulted in prominently decreased age-normed height and weight by adulthood. Adaptive functioning was longitudinally examined; a majority of adult participants (18+ years) lost gross and fine motor skills over a 1 year follow-up. Previously defined core diagnostic criteria for CS (present in>85%)-namely non-verbal status, intellectual disability, epilepsy, postnatal microcephaly, ataxia, hyperkinesia-were universally present in age 6-16; however, an additional core feature of high pain tolerance was added (present in 91%). While neurologic examinations were consistent with cerebellar dysfunction, importantly, a majority of individuals (>50% older than 10) also had corticospinal tract abnormalities. Three participants died during the period of the study. CONCLUSIONS: In this large and longitudinal study of CS, we begin to define the trajectory of symptoms and the adult phenotype thereby identifying critical targets for treatment.

16.
BMC Bioinformatics ; 25(1): 325, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39379815

ABSTRACT

BACKGROUND: We present the NeuroimaGene resource as an R package designed to assist researchers in identifying genes and neurologic features relevant to psychiatric and neurological health. While recent studies have identified hundreds of genes as potential components of pathophysiology in neurologic and psychiatric disease, interpreting the physiological consequences of this variation is challenging. The integration of neuroimaging data with molecular findings is a step toward addressing this challenge. In addition to sharing associations with both molecular variation and clinical phenotypes, neuroimaging features are intrinsically informative of cognitive processes. NeuroimaGene provides a tool to understand how disease-associated genes relate to the intermediate structure of the brain. RESULTS: We created NeuroimaGene, a user-friendly, open access R package now available for public use. Its primary function is to identify neuroimaging derived brain features that are impacted by genetically regulated expression of user-provided genes or gene sets. This resource can be used to (1) characterize individual genes or gene sets as relevant to the structure and function of the brain, (2) identify the region(s) of the brain or body in which expression of target gene(s) is neurologically relevant, (3) impute the brain features most impacted by user-defined gene sets such as those produced by cohort level gene association studies, and (4) generate publication level, modifiable visual plots of significant findings. We demonstrate the utility of the resource by identifying neurologic correlates of stroke-associated genes derived from pre-existing analyses. CONCLUSIONS: Integrating neurologic data as an intermediate phenotype in the pathway from genes to brain-based diagnostic phenotypes increases the interpretability of molecular studies and enriches our understanding of disease pathophysiology. The NeuroimaGene R package is designed to assist in this process and is publicly available for use.


Subject(s)
Brain , Neuroimaging , Software , Humans , Brain/metabolism , Brain/diagnostic imaging , Neuroimaging/methods , Gene Expression Regulation
17.
Stroke ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39355905

ABSTRACT

Telemedicine for stroke (Telestroke) has been a key component to efficient, widespread acute stroke care for many years. The expansion of reimbursement through the Furthering Access to Stroke Telemedicine Act and rapid deployment of telemedicine resources during the COVID-19 public health emergency have further expanded remote care, with practitioners of varying educational backgrounds, and experience providing acute stroke care via telemedicine (Telestroke). Some Telestroke practitioners have not had fellowship-level vascular neurology training and many are without training specific to virtual modalities. While many vascular neurology fellowship programs incorporate Telestroke training into the curriculum, components of this curriculum are not consistent, extent of involvement is variable, and not all fellows receive hands-on training in remote care. Furthermore, the extent of training and evaluation of Telestroke in American Board of Psychiatry and Neurology training requirements and Accreditation Council for Graduate Medical Education assessments for vascular neurology fellowship are not standardized. We suggest that Telestroke be formally incorporated into vascular neurology fellowship curricula and provide considerations for key components of this training and metrics for evaluation.

18.
Stroke ; 55(5): 1438-1448, 2024 May.
Article in English | MEDLINE | ID: mdl-38648281

ABSTRACT

ARISE (Aneurysm/AVM/cSDH Roundtable Discussion With Industry and Stroke Experts) organized a one-and-a-half day meeting and workshop and brought together representatives from academia, industry, and government to discuss the most promising approaches to improve outcomes for patients with chronic subdural hematoma (cSDH). The emerging role of middle meningeal artery embolization in clinical practice and the design of current and potential future trials were the primary focuses of discussion. Existing evidence for imaging, indications, agents, and techniques was reviewed, and areas of priority for study and key questions surrounding the development of new and existing treatments for cSDH were identified. Multiple randomized, controlled trials have met their primary efficacy end points, providing high-level evidence that middle meningeal artery embolization is a potent adjunctive therapy to the standard (surgical and nonsurgical) management of neurologically stable cSDH patients in terms of reducing rates of disease recurrence. Pooled data analyses following the formal conclusion and publication of these trials will form a robust foundation upon which guidelines can be strengthened for cSDH treatment modalities and optimal patient selection, as well as delineate future lines of investigation.


Subject(s)
Hematoma, Subdural, Chronic , Humans , Consensus , Embolization, Therapeutic/methods , Hematoma, Subdural, Chronic/therapy , Randomized Controlled Trials as Topic
19.
Stroke ; 55(10): 2567-2572, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39315824

ABSTRACT

In the 2024 David G. Sherman Lecture, Steven J. Warach, illustrating with examples from his research, walks through the history of magnetic resonance imaging in acute stroke from the 1990s and early 2000s with the introduction, validation, and application of diffusion-weighted imaging, penumbral imaging (the diffusion-perfusion mismatch), and other imaging markers of the acute stroke pathology into routine clinical practice and stroke trials. The adaptation of diffusion-weighted imaging for clinical scanners in the acute hospital setting began a revolution in ischemic stroke diagnosis as the presence, location, and size of ischemic lesions could now be visualized at the earliest times after stroke onset when computed tomography and conventional magnetic resonance imaging still appeared normal. In combination with perfusion magnetic resonance imaging, diffusion-weighted imaging made imaging of the ischemic penumbra a practical reality for routine clinical use and feasible for integration as a selection tool into clinical trials. It was apparent from the initial use of diffusion-perfusion imaging in acute stroke that many patients had persistence of penumbra as late as 24 hours after stroke onset although the probability of penumbra decreased over time. The therapeutic time window for ischemic stroke selected by clinical and temporal criteria reflected the decreased proportion of patients with the therapeutic target over time rather than the absence of the penumbral target in all patients at later times. This work provided the empirical and conceptual framework for the shift toward selection and evaluation of patients for acute stroke therapies based on direct observation of the target pathology and away from the exclusive dependence on clinical and temporal surrogates to infer the presence of stroke therapeutic targets, a shift that has expanded the indications for acute reperfusion therapies over the last 10 years.


Subject(s)
Stroke , Humans , Stroke/therapy , Stroke/diagnostic imaging , Stroke/diagnosis , Diffusion Magnetic Resonance Imaging , Ischemic Stroke/therapy , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/diagnosis
20.
J Neurophysiol ; 131(5): 825-831, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38533950

ABSTRACT

This article evaluates the ethical implications of utilizing artificial intelligence (AI) algorithms in neurological diagnostic examinations. Applications of AI technology have been utilized to aid in the determination of pharmacological dosages of gadolinium for brain lesion detection, localization of seizure foci, and the characterization of large vessel occlusion in ischemic stroke patients. Multiple subtypes of AI/machine learning (ML) algorithms are analyzed, as AI-assisted neurology utilizes supervised, unsupervised, artificial neural network (ANN), and deep neural network (DNN) learning models. As ANN and DNN analyses can be applied to data with an unknown clinical diagnosis, these algorithms are evaluated according to Bayesian statistical analyses. Bayesian neural network analyses are incorporated, as these algorithms indicate that the predictive accuracy and model performance are dependent upon accurate configurations of the model's hyperparameters and neural inputs. Thus, mathematical evaluations of AI algorithms are comprehensively explored to examine their clinical utility, as underperformance of AI/ML models may have deleterious consequences that affect patient outcomes due to misdiagnosis and false-negative test results.


Subject(s)
Artificial Intelligence , Machine Learning , Humans , Neural Networks, Computer , Algorithms , Bayes Theorem
SELECTION OF CITATIONS
SEARCH DETAIL