Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Publication year range
1.
Nitric Oxide ; 147: 13-25, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38588917

ABSTRACT

In the developing lung, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling are essential in regulating lung formation and vascular tone. Animal studies have linked many anatomical and pathophysiological features of newborn lung disease to abnormalities in the NO/cGMP signaling system. They have demonstrated that driving this system with agonists and antagonists alleviates many of them. This research has spurred the rapid clinical development, testing, and application of several NO/cGMP-targeting therapies with the hope of treating and potentially preventing significant pediatric lung diseases. However, there are instances when the therapeutic effectiveness of these agents is limited. Studies indicate that injury-induced disruption of several critical components within the signaling system may hinder the promise of some of these therapies. Recent research has identified basic mechanisms that suppress NO/cGMP signaling in the injured newborn lung. They have also pinpointed biomarkers that offer insight into the activation of these pathogenic mechanisms and their influence on the NO/cGMP signaling system's integrity in vivo. Together, these will guide the development of new therapies to protect NO/cGMP signaling and safeguard newborn lung development and function. This review summarizes the important role of the NO/cGMP signaling system in regulating pulmonary development and function and our evolving understanding of how it is disrupted by newborn lung injury.


Subject(s)
Cyclic GMP , Lung , Nitric Oxide , Nitric Oxide/metabolism , Humans , Lung/metabolism , Animals , Cyclic GMP/metabolism , Infant, Newborn , Signal Transduction , Fetus/metabolism
2.
Nitric Oxide ; 152: 31-47, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39299646

ABSTRACT

The biochemical interplay between antioxidants and pro-oxidants maintains the redox homeostatic balance of the cell, which, when perturbed to moderate or high extents, has been implicated in the onset and/or progression of chronic diseases such as diabetes mellitus, cancer, and neurodegenerative diseases. Thioredoxin, glutaredoxin, and lipoic acid-like thiol oxidoreductase systems constitute a unique ensemble of robust cellular antioxidant defenses, owing to their indispensable roles as S-denitrosylases, S-deglutathionylases, and disulfide reductants in maintaining a reduced free thiol state with biological relevance. Thus, in cells subjected to nitrosative stress, cellular antioxidants will S-denitrosylate their cognate S-nitrosoprotein substrates, rather than participate in trans-S-nitrosylation via protein-protein interactions. Researchers have been at the forefront of vaguely establishing the concept of 'transnitrosylation' and its influence on pathophysiology with experimental evidence from in vitro studies that lack proper biochemical logic. The suggestive and reiterative use of antioxidants as transnitrosylases in the scientific literature leaves us on a cliffhanger with several open-ended questions that prompted us to 'hunt' for scientific logic behind the trans-S-nitrosylation chemistry. Given the gravity of the situation and to look at the bigger picture of 'trans-S-nitrosylation', we aim to present a novel attempt at justifying the hesitance in accepting antioxidants as capable of transnitrosylating their cognate protein partners and reflecting on the need to resolve the controversy that would be crucial from the perspective of understanding therapeutic outcomes involving such cellular antioxidants in disease pathogenesis. Further characterization is required to identify the regulatory mechanisms or conditions where an antioxidant like Trx, Grx, or DJ-1 can act as a cellular transnitrosylase.


Subject(s)
Antioxidants , Humans , Animals , Antioxidants/metabolism , Thioredoxins/metabolism
3.
Nitric Oxide ; 127: 10-17, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35835264

ABSTRACT

Neuronal differentiation of adipose tissue-derived stem cells (ASCs) is potently promoted by valproic acid (VPA) through a gaseous signaling molecule, nitric oxide (NO). Here, we investigated the involvement of hydrogen sulfide (H2S), another gaseous signaling molecule, in neuronal differentiation of ASCs. VPA-promoted neuronal differentiation of ASCs was accompanied by increased intracellular H2S and sulfane sulfur with increased mRNA expression of enzymes synthesizing sulfane sulfur including cystathionine ß-synthase (CBS), of which inhibition reduced the differentiation efficiency. H2S donors, GYY4137 (GYY) or NaHS, potently promoted neuronal differentiation of ASCs when cAMP-elevating agents, dibutyryl cyclic adenosine monophosphate and isobutyl methyl-xanthine, were added as neuronal induction medium (NIM). Neuronal differentiation of ASCs promoted by NaHS or GYY was accompanied by Ca2+ entry and increased mRNA expression of voltage-gated Ca2+ channels. NaHS or GYY also increased mRNA expression of enzymes of the NO-citrulline cycle including inducible NO synthase (iNOS). It was concluded from these results that H2S potently promoted differentiation of ASCs into neuronal cells expressing functional voltage-gated Ca2+ channels with the aid of cAMP-elevating agents, involving NO-mediated signaling cascade. These effects of H2S were also considered as a partial mechanism for the VPA-promoted neuronal differentiation of ASCs.


Subject(s)
Hydrogen Sulfide , Adipose Tissue/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Nitric Oxide/metabolism , RNA, Messenger , Stem Cells/metabolism , Sulfur
4.
Appl Microbiol Biotechnol ; 106(7): 2619-2636, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35291023

ABSTRACT

Perylenequinones (PQ) are natural polyketides used as anti-microbial, -cancers, and -viral photodynamic therapy agents. Herein, the effects of L-arginine (Arg) on PQ biosynthesis of Shiraia sp. Slf14(w) and the underlying molecular mechanism were investigated. The total content of PQ reached 817.64 ± 72.53 mg/L under optimal conditions of Arg addition, indicating a 30.52-fold improvement over controls. Comparative transcriptome analysis demonstrated that Arg supplement promoted PQ precursors biosynthesis of Slf14(w) by upregulating the expression of critical genes associated with the glycolysis pathway, and acetyl-CoA and malonyl-CoA synthesis. By downregulating the expression of genes related to the glyoxylate cycle pathway and succinate dehydrogenase, more acetyl-CoA flow into the formation of PQ. Arg supplement upregulated the putative biosynthetic gene clusters for PQ and activated the transporter proteins (MFS and ABC) for exudation of PQ. Further studies showed that Arg increased the gene transcription levels of nitric oxide synthase (NOS) and nitrate reductase (NR), and activated NOS and NR, thus promoting the formation of nitric oxide (NO). A supplement of NO donor sodium nitroprusside (SNP) also confirmed that NO triggered promoted biosynthesis and efflux of PQ. PQ production stimulated by Arg or/and SNP can be significantly inhibited upon the addition of NO scavenger carboxy-PTIO, NOS inhibitor Nω-nitro-L-arginine, or soluble guanylate cyclase inhibitor NS-2028. These results showed that Arg-derived NO, as a signaling molecule, is involved in the biosynthesis and regulation of PQ in Slf14(W) through the NO-cGMP-PKG signaling pathway. Our results provide a valuable strategy for large-scale PQ production and contribute to further understanding of NO signaling in the fungal metabolite biosynthesis. KEY POINTS: • PQ production of Shiraia sp. Slf14(w) was significantly improved by L-arginine addition. • Arginine-derived NO was firstly reported to be involved in the biosynthesis and regulation of PQ. • The NO-cGMP-PKG signaling pathway was proposed for the first time to participate in PQ biosynthesis.


Subject(s)
Ascomycota , Acetyl Coenzyme A/metabolism , Arginine/metabolism , Ascomycota/metabolism , Cyclic GMP/metabolism , Nitric Oxide/metabolism , Nitroprusside , Perylene/analogs & derivatives , Quinones , Signal Transduction
5.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232819

ABSTRACT

Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3-), nitrite (NO2-), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3- and NO2-, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants' survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.


Subject(s)
Greenhouse Gases , Nitrites , Antioxidants/metabolism , Hypoxia , Nitrates/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Nitrogen Dioxide , Nitrous Oxide/metabolism , Oxygen/metabolism , Plants/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
6.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35887304

ABSTRACT

Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.


Subject(s)
Metal Nanoparticles , Nanoparticles , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Oxidative Stress , Signal Transduction
7.
Nitric Oxide ; 117: 1-6, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34536587

ABSTRACT

Cysteine S-nitrosation mediates NO signaling and protein function under pathophysiological conditions. Herein, we provide a detailed protocol regarding the organic mercury chemoselective enrichment of S-nitrosated proteins and peptides. We discuss key aspects of the enrichment strategy and provide technical tips for the best performance of the experimental protocol.


Subject(s)
Mercury/chemistry , Nitrates , Proteins , Proteomics/methods , Chromatography , Cysteine/analysis , Cysteine/isolation & purification , Cysteine/metabolism , Nitrates/analysis , Nitrates/isolation & purification , Nitrates/metabolism , Nitric Oxide/metabolism , Nitrosation , Peptides/analysis , Peptides/isolation & purification , Peptides/metabolism , Proteins/analysis , Proteins/isolation & purification , Proteins/metabolism
8.
Biochem J ; 477(19): 3649-3672, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33017470

ABSTRACT

S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.


Subject(s)
Neoplasms , Nitric Oxide/metabolism , Protein Processing, Post-Translational , Cell Death , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy
9.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924895

ABSTRACT

Precise flowering timing is critical for the plant life cycle. Here, we examined the molecular mechanisms and regulatory network associated with flowering in Chinese cabbage (Brassica rapa L.) by comparative transcriptome profiling of two Chinese cabbage inbred lines, "4004" (early bolting) and "50" (late bolting). RNA-Seq and quantitative reverse transcription PCR (qPCR) analyses showed that two positive nitric oxide (NO) signaling regulator genes, nitrite reductase (BrNIR) and nitrate reductase (BrNIA), were up-regulated in line "50" with or without vernalization. In agreement with the transcription analysis, the shoots in line "50" had substantially higher nitrogen levels than those in "4004". Upon vernalization, the flowering repressor gene Circadian 1 (BrCIR1) was significantly up-regulated in line "50", whereas the flowering enhancer genes named SUPPRESSOR OF OVEREXPRESSION OF CONSTANCE 1 homologs (BrSOC1s) were substantially up-regulated in line "4004". CRISPR/Cas9-mediated mutagenesis in Chinese cabbage demonstrated that the BrSOC1-1/1-2/1-3 genes were involved in late flowering, and their expression was mutually exclusive with that of the nitrogen signaling genes. Thus, we identified two flowering mechanisms in Chinese cabbage: a reciprocal negative feedback loop between nitrogen signaling genes (BrNIA1 and BrNIR1) and BrSOC1s to control flowering time and positive feedback control of the expression of BrSOC1s.


Subject(s)
Brassica rapa/physiology , Flowers/physiology , MADS Domain Proteins/physiology , Nitrogen/metabolism , Plant Proteins/physiology , CRISPR-Cas Systems , Feedback, Physiological , Gene Regulatory Networks , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Sequence Analysis, RNA , Transcriptome
10.
Mol Cell Biochem ; 472(1-2): 231-240, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32577946

ABSTRACT

Hydrogen sulfide (H2S), an endogenously produced gas, is a cardioprotective agent against neurotoxin-induced neurodegeneration in Parkinson's disease (PD). However, the roles of H2S in 1-methyl-4-phenylpyridinium ion (MPP+)-treated SH-SY5Y cells with the involvement of reactive oxygen species-nitric oxide (ROS-NO) signaling pathway in PD remain unclear. For this study, a MPP+-treated SH-SY5Y cell model was established to explore the regulatory role of H2S in oxidative stress injury and cell apoptosis. With the cell viability, apoptosis, cytotoxicity, levels of reactive oxygen species (ROS) and nitric oxide (NO), mitochondrial transmembrane potential (Δψm), contents of oxidative stress injury-related markers (glutathione, superoxide dismutase, malondialdehyde), levels of apoptosis-related proteins (Caspase 3, Bax, Bcl-2) and inducible nitric oxide synthase (iNOS) determined, this study demonstrated that NaHS (an H2S donor) treatment could alleviated the reduction of cell viability and cytotoxicity, cell apoptosis, Δψm loss, contents of ROS and NO, and oxidative stress injury induced by MPP+. The present study showed that H2S may protect SH-SY5Y cells from MPP+-induced injury in PD cell model via the inhibition of ROS-NO signaling pathway and provide insight into the potential of H2S for PD therapy.


Subject(s)
1-Methyl-4-phenylpyridinium/adverse effects , Apoptosis , Hydrogen Sulfide/pharmacology , Neuroblastoma/drug therapy , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , Reactive Oxygen Species/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Survival , Gasotransmitters/pharmacology , Herbicides/adverse effects , Humans , Malondialdehyde/metabolism , Neuroblastoma/chemically induced , Neuroblastoma/pathology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Parkinson Disease/etiology , Parkinson Disease/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Tumor Cells, Cultured
11.
Int J Mol Sci ; 20(7)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970667

ABSTRACT

Important functions of intestinal epithelial cells (IECs) include enabling nutrient absorption to occur passively and acting as a defense barrier against potential xenobiotic components and pathogens. A compromise to IEC function can result in the translocation of bacteria, toxins, and allergens that lead to the onset of disease. Thus, the maintenance and optimal function of IECs are critically important to ensure health. Endogenous biosynthesis of nitric oxide (NO) regulates IEC functionality both directly, through free radical activity, and indirectly through cell signaling mechanisms that impact tight junction protein expression. In this paper, we review the current knowledge on factors that regulate inducible nitric oxide synthase (iNOS) and the subsequent roles that NO has on maintaining IECs' intestinal epithelial barrier structure, functions, and associated mechanisms of action. We also summarize important findings on the effects of bioactive dietary food components that interact with NO production and affect downstream intestinal epithelium integrity.


Subject(s)
Intestines/cytology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Animals , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Oxidation-Reduction , Signal Transduction , Tight Junctions/metabolism
12.
J Mol Cell Cardiol ; 107: 41-51, 2017 06.
Article in English | MEDLINE | ID: mdl-28457941

ABSTRACT

Steroid hormone receptors including estrogen receptors (ER) classically function as ligand-regulated transcription factors. However, estrogens also elicit cellular effects through binding to extra-nuclear ER (ERα, ERß, and G protein-coupled ER or GPER) that are coupled to kinases. How extra-nuclear ER actions impact cardiac ischemia-reperfusion (I/R) injury is unknown. We treated ovariectomized wild-type female mice with estradiol or an estrogen-dendrimer conjugate (EDC), which selectively activates extra-nuclear ER, or vehicle interventions for two weeks. I/R injury was then evaluated in isolated Langendorff perfused hearts. Two weeks of treatment with estradiol significantly decreased infarct size and improved post-ischemic contractile function. Similarly, EDC treatment significantly decreased infarct size and increased post-ischemic functional recovery compared to vehicle-treated hearts. EDC also caused an increase in myocardial protein S-nitrosylation, consistent with previous studies showing a role for this post-translational modification in cardioprotection. In further support of a role for S-nitrosylation, inhibition of nitric oxide synthase, but not soluble guanylyl cyclase blocked the EDC mediated protection. The administration of ICI182,780, which is an agonist of G-protein coupled estrogen receptor (GPER) and an antagonist of ERα and ERß, did not result in protection; however, ICI182,780 significantly blocked EDC-mediated cardioprotection, indicating participation of ERα and/or ERß. In studies determining the specific ER subtype and cellular target involved, EDC decreased infarct size and improved functional recovery in mice lacking ERα in cardiomyocytes. In contrast, protection was lost in mice deficient in endothelial cell ERα. Thus, extra-nuclear ERα activation in endothelium reduces cardiac I/R injury in mice, and this likely entails increased protein S-nitrosylation. Since EDC does not stimulate uterine growth, in the clinical setting EDC-like compounds may provide myocardial protection without undesired uterotrophic and cancer-promoting effects.


Subject(s)
Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Ischemia/genetics , Reperfusion Injury/genetics , Animals , Endothelium/metabolism , Endothelium/pathology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor beta/antagonists & inhibitors , Estrogens/genetics , Estrogens/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Ischemia/metabolism , Ischemia/pathology , Mice , Ovariectomy , Protein Processing, Post-Translational/drug effects , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction/drug effects
13.
Am J Physiol Lung Cell Mol Physiol ; 311(4): L743-L753, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27542807

ABSTRACT

We previously showed that newborn piglets who develop pulmonary hypertension during exposure to chronic hypoxia have diminished pulmonary vascular nitric oxide (NO) production and evidence of endothelial NO synthase (eNOS) uncoupling (Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Am J Respir Cell Mol Biol 53: 255-264, 2015). Tetrahydrobiopterin (BH4) is a cofactor that promotes eNOS coupling. Current clinical strategies typically invoke initiating treatment after the diagnosis of pulmonary hypertension, rather than prophylactically. The major purpose of this study was to determine whether starting treatment with an oral BH4 compound, sapropterin dihydrochloride (sapropterin), after the onset of pulmonary hypertension would recouple eNOS in the pulmonary vasculature and ameliorate disease progression in chronically hypoxic piglets. Normoxic (control) and hypoxic piglets were studied. Some hypoxic piglets received oral sapropterin starting on day 3 of hypoxia and continued throughout an additional 7 days of hypoxic exposure. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess eNOS dimer-to-monomer ratios (a measure of eNOS coupling), NO production, and superoxide (O2·-) generation. Although higher than in normoxic controls, pulmonary vascular resistance was lower in sapropterin-treated hypoxic piglets than in untreated hypoxic piglets. Consistent with eNOS recoupling, eNOS dimer-to-monomer ratios and NO production were greater and O2·- generation was less in pulmonary arteries from sapropterin-treated than untreated hypoxic animals. When started after disease onset, oral sapropterin treatment inhibits chronic hypoxia-induced pulmonary hypertension at least in part by recoupling eNOS in the pulmonary vasculature of newborn piglets. Rescue treatment with sapropterin may be an effective strategy to inhibit further development of pulmonary hypertension in newborn infants suffering from chronic cardiopulmonary conditions associated with episodes of prolonged hypoxia.


Subject(s)
Biopterins/analogs & derivatives , Hypertension, Pulmonary/drug therapy , Nitric Oxide Synthase Type III/metabolism , Administration, Oral , Animals , Arterial Pressure , Biopterins/administration & dosage , Cell Hypoxia , Drug Evaluation, Preclinical , Hypertension, Pulmonary/enzymology , Pulmonary Artery/enzymology , Sus scrofa
14.
Am J Physiol Heart Circ Physiol ; 311(1): H137-45, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27199125

ABSTRACT

Associated abnormalities of the lymphatic circulation are well described in congenital heart disease. However, their mechanisms remain poorly elucidated. Using a clinically relevant ovine model of a congenital cardiac defect with chronically increased pulmonary blood flow (shunt), we previously demonstrated that exposure to chronically elevated pulmonary lymph flow is associated with: 1) decreased bioavailable nitric oxide (NO) in pulmonary lymph; and 2) attenuated endothelium-dependent relaxation of thoracic duct rings, suggesting disrupted lymphatic endothelial NO signaling in shunt lambs. To further elucidate the mechanisms responsible for this altered NO signaling, primary lymphatic endothelial cells (LECs) were isolated from the efferent lymphatic of the caudal mediastinal node in 4-wk-old control and shunt lambs. We found that shunt LECs (n = 3) had decreased bioavailable NO and decreased endothelial nitric oxide synthase (eNOS) mRNA and protein expression compared with control LECs (n = 3). eNOS activity was also low in shunt LECs, but, interestingly, inducible nitric oxide synthase (iNOS) expression and activity were increased in shunt LECs, as were total cellular nitration, including eNOS-specific nitration, and accumulation of reactive oxygen species (ROS). Pharmacological inhibition of iNOS reduced ROS in shunt LECs to levels measured in control LECs. These data support the conclusion that NOS signaling is disrupted in the lymphatic endothelium of lambs exposed to chronically increased pulmonary blood and lymph flow and may contribute to decreased pulmonary lymphatic bioavailable NO.


Subject(s)
Endothelial Cells/enzymology , Heart Defects, Congenital/enzymology , Lymph/metabolism , Lymphatic Diseases/enzymology , Lymphatic Vessels/enzymology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Down-Regulation , Endothelial Cells/drug effects , Enzyme Inhibitors/pharmacology , Heart Defects, Congenital/complications , Heart Defects, Congenital/physiopathology , Lymphatic Diseases/etiology , Lymphatic Diseases/physiopathology , Lymphatic Vessels/drug effects , Lymphatic Vessels/physiopathology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type III/genetics , Pulmonary Circulation , Reactive Oxygen Species/metabolism , Sheep , Signal Transduction , Stress, Mechanical
15.
Appl Microbiol Biotechnol ; 100(22): 9483-9497, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27722918

ABSTRACT

As a cellular signaling molecule, nitric oxide (NO) is widely conserved from microorganisms, such as bacteria, yeasts, and fungi, to higher eukaryotes including plants and mammals. NO is mainly produced by NO synthase (NOS) or nitrite reductase (NIR) activity. There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis based on the balance between NO synthesis and degradation is important for the regulation of its physiological functions because an excess level of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but NO and its signaling have been poorly understood due to the lack of mammalian NOS orthologs in the genome. Even though the activities of NOS and NIR have been observed in yeast cells, the gene encoding NOS and the NO production mechanism catalyzed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain an intracellular redox balance following endogenous NO production, exogenous NO treatment, or environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed here. Such investigations into NO signaling are essential for understanding the NO-dependent genetic and physiological modulations. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signaling may be a potential target for the construction and engineering of industrial yeast strains.


Subject(s)
Homeostasis , Nitric Oxide/metabolism , Signal Transduction , Yeasts/metabolism , Oxidative Stress , Stress, Physiological
16.
Am J Respir Cell Mol Biol ; 53(2): 255-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25536367

ABSTRACT

Infants with cardiopulmonary disorders associated with hypoxia develop pulmonary hypertension. We previously showed that initiation of oral L-citrulline before and continued throughout hypoxic exposure improves nitric oxide (NO) production and ameliorates pulmonary hypertension in newborn piglets. Rescue treatments, initiated after the onset of pulmonary hypertension, better approximate clinical strategies. Mechanisms by which L-citrulline improves NO production merit elucidation. The objective of this study was to determine whether starting L-citrulline after the onset of pulmonary hypertension inhibits disease progression and improves NO production by recoupling endothelial NO synthase (eNOS). Hypoxic and normoxic (control) piglets were studied. Some hypoxic piglets received oral L-citrulline starting on Day 3 of hypoxia and continuing throughout the remaining 7 days of hypoxic exposure. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess NO production and eNOS dimer-to-monomer ratios (a measure of eNOS coupling). Pulmonary vascular resistance was lower in L-citrulline-treated hypoxic piglets than in untreated hypoxic piglets but was higher than in normoxic controls. NO production and eNOS dimer-to-monomer ratios were greater in pulmonary arteries from L-citrulline-treated than from untreated hypoxic animals but were lower than in normoxic controls. When started after disease onset, oral L-citrulline treatment improves NO production by recoupling eNOS and inhibits the further development of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Oral L-citrulline may be a novel strategy to halt or reverse pulmonary hypertension in infants suffering from cardiopulmonary conditions associated with hypoxia.


Subject(s)
Citrulline/administration & dosage , Hypertension, Pulmonary/drug therapy , Animals , Animals, Newborn , Arginine/blood , Cell Hypoxia , Drug Evaluation, Preclinical , Hypertension, Pulmonary/metabolism , Sus scrofa
17.
Nitric Oxide ; 47: 34-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25795592

ABSTRACT

Nitric oxide is a versatile and powerful signaling molecule in plants. However, most of our understanding stems from studies on terrestrial plants and very little is known about marine autotrophs. This review summarizes current knowledge about the source of nitric oxide synthesis in marine photosynthetic organisms and its role in various physiological processes under normal and stress conditions. The interactions of nitric oxide with other stress signals and cross talk among secondary messengers are also highlighted.


Subject(s)
Aquatic Organisms/metabolism , Nitric Oxide/biosynthesis , Photosynthesis
18.
Toxicol Appl Pharmacol ; 280(1): 107-16, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25058445

ABSTRACT

We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100ppm) through drinking water for 90 consecutive days. Atorvastatin (10mg/kg bw, orally) was administered once daily during the last 30days of arsenic exposure. On the 91(st) day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited Emax of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1ß, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules.


Subject(s)
Arsenic/toxicity , Endothelium, Vascular/drug effects , Heptanoic Acids/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation Mediators/physiology , Nitric Oxide/physiology , Pyrroles/pharmacology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Atorvastatin , Dose-Response Relationship, Drug , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Male , Organ Culture Techniques , Random Allocation , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/physiology
19.
Biomech Model Mechanobiol ; 23(4): 1091-1120, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38507180

ABSTRACT

Vascular tone regulation is a crucial aspect of cardiovascular physiology, with significant implications for overall cardiovascular health. However, the precise physiological mechanisms governing smooth muscle cell contraction and relaxation remain uncertain. The complexity of vascular tone regulation stems from its multiscale and multifactorial nature, involving global hemodynamics, local flow conditions, tissue mechanics, and biochemical pathways. Bridging this knowledge gap and translating it into clinical practice presents a challenge. In this paper, a computational model is presented to integrate chemo-mechano-biological pathways with cardiovascular biomechanics, aiming to unravel the intricacies of vascular tone regulation. The computational framework combines an algebraic description of global hemodynamics with detailed finite element analyses at the scale of vascular segments for describing their passive and active mechanical response, as well as the molecular transport problem linked with chemo-biological pathways triggered by wall shear stresses. Their coupling is accounted for by considering a two-way interaction. Specifically, the focus is on the role of nitric oxide-related molecular pathways, which play a critical role in modulating smooth muscle contraction and relaxation to maintain vascular tone. The computational framework is employed to examine the interplay between localized alterations in the biomechanical response of a specific vessel segment-such as those induced by calcifications or endothelial dysfunction-and the broader global hemodynamic conditions-both under basal and altered states. The proposed approach aims to advance our understanding of vascular tone regulation and its impact on cardiovascular health. By incorporating chemo-mechano-biological mechanisms into in silico models, this study allows us to investigate cardiovascular responses to multifactorial stimuli and incorporate the role of adaptive homeostasis in computational biomechanics frameworks.


Subject(s)
Computer Simulation , Finite Element Analysis , Models, Cardiovascular , Biomechanical Phenomena , Humans , Stress, Mechanical , Hemodynamics/physiology , Nitric Oxide/metabolism , Mechanotransduction, Cellular/physiology , Blood Vessels/physiology
20.
Cureus ; 16(2): e53558, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38445143

ABSTRACT

This comprehensive review explores the multifaceted landscape of inhaled nitric oxide (iNO) therapy, tracing its historical evolution, mechanisms of action, clinical applications, challenges, and future directions. The nitric oxide signaling pathway, characterized by vasodilatory effects and anti-inflammatory properties, forms the foundation of iNO's therapeutic efficacy. Clinical applications are found in neonatal respiratory distress syndrome, pulmonary hypertension, and acute respiratory distress syndrome, showcasing its versatility. However, challenges, including cost considerations, technical intricacies, safety concerns, and resistance, highlight the nuanced landscape surrounding iNO therapy. Implications for clinical practice underscore the need for a tailored and evidence-based approach, considering individual patient characteristics and indications. Recommendations for future research emphasize ongoing exploration, novel indications, and the development of targeted therapies. In conclusion, this review positions iNO as a dynamic and adaptable intervention, poised to reshape therapeutic strategies and enhance patient outcomes in critical care.

SELECTION OF CITATIONS
SEARCH DETAIL