Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Plant Cell Physiol ; 61(6): 1158-1167, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32267948

ABSTRACT

Desiccation tolerance is a developmental program enabling seed survival in a dry state and is common in seeds categorized as orthodox. We focused on NAD and its phosphorylated form (NADP) because their continual switching between reduced (NAD(P)H) and oxidized (NAD(P)+) forms is involved in the modulation of redox signaling and the determination of the reducing power and further antioxidant responses. Norway maple and sycamore seeds representing the orthodox and recalcitrant categories, respectively, were used as models in a comparison of responses to water loss. The process of desiccation up to 10% water content (WC) was monitored in Norway maple seeds, while dehydration up to 30% WC was monitored in desiccation-sensitive sycamore seeds. Norway maple and sycamore seeds, particularly their embryonic axes, exhibited a distinct redox status during dehydration and desiccation. High NADPH levels, NAD+ accumulation, low and stable NAD(P)H/NAD(P)+ ratios expressed as reducing power and high NADPH-dependent enzyme activity were reported in Norway maple seeds and were considered attributes of orthodox-type seeds. The contrasting results of sycamore seeds contributed to their low antioxidant capacity and high sensitivity to desiccation. NADPH deficiency, low NADPH-dependent enzyme activity and lack of NAD+ accumulation were primary features of sycamore seeds, with implications for their NAD(P)H/NAD(P)+ ratios and reducing power and with effects on many seed traits. Thus, we propose that the distinct levels of pyridine nucleotides and their redox status contribute to orthodox and recalcitrant phenotype differentiation in seeds by affecting cellular redox signaling, metabolism and the antioxidant system.


Subject(s)
Acer/metabolism , NADP/metabolism , Oxidation-Reduction , Seeds/metabolism , Acer/physiology , Dehydration , NADP/physiology , Seeds/physiology
2.
Antioxidants (Basel) ; 9(5)2020 May 07.
Article in English | MEDLINE | ID: mdl-32392756

ABSTRACT

Norway maple and sycamore produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. Drying affects reduction and oxidation (redox) status in seeds. Oxidation of methionine to methionine sulfoxide (MetO) and reduction via methionine sulfoxide reductases (Msrs) have never been investigated in relation to seed desiccation tolerance. MetO levels and the abundance of Msrs were investigated in relation to levels of reactive oxygen species (ROS) such as hydrogen peroxide, superoxide anion radical and hydroxyl radical (•OH), and the levels of ascorbate and glutathione redox couples in gradually dried seeds. Peptide-bound MetO levels were positively correlated with ROS concentrations in the orthodox seeds. In particular, •OH affected MetO levels as well as the abundance of MsrB2 solely in the embryonic axes of Norway maple seeds. In this species, MsrB2 was present in oxidized and reduced forms, and the latter was favored by reduced glutathione and ascorbic acid. In contrast, sycamore seeds accumulated higher ROS levels. Additionally, MsrB2 was oxidized in sycamore throughout dehydration. In this context, the three elements •OH level, MetO content and MsrB2 abundance, linked together uniquely to Norway maple seeds, might be considered important players of the redox network associated with desiccation tolerance.

3.
Saudi J Biol Sci ; 27(11): 2912-2916, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33100846

ABSTRACT

The study, which covers the period between 2014 and 2018, was carried out in the city of Naberezhnye Chelny, Republic of Tatarstan, Russia. The aim of the study was to examine the biochemical response of maple trees growing in the anthropogenic environments. Leaf samples from 600 trees (Acer platanoides L. and Acer negundo L.) were collected at monthly intervals from June through August. Sampling was performed early in the morning (11 a.m.) in the middle of the month. The study offers statistical data on the tannin content, determined via permanganometry; the ascorbic acid concentration, found via titration with 2.6-dichlorophenolindophenol; the ascorbate oxidase activity determined by absorbance at 265 nm; and the polyphenol oxidase activity, found by the spectrophotometric method. Relatively higher ascorbate oxidase activity was detected in August among ash-leaved Acer platanoides L. and Acer negundo L. in areas with strong anthropogenic impact. Due to increased air pollution, maple trees were found to exhibit an increase of polyphenol oxidase activities. The condensed tannin content in Norway maple trees dropped over time: by 1.24 in July (avenue); by 0.94 (buffer area) and 0.76 (avenue) in August. The condensed tannin content in the ash-leaved maple trees also decreased: by 0.69 (buffer area) and 0.22 (avenue) in July; by 0.37 (buffer area) and 0.61(avenue) in August.

4.
Environ Sci Pollut Res Int ; 25(27): 27260-27273, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30030760

ABSTRACT

The aim of the study was to estimate the significance of the role of arsenite (As(III)), arsenate (As(V)), and dimethylarsinic acid (DMA) presence in modified Knop medium in the efficiency of phytoextraction of arsenic (As) in Acer platanoides root, stem, and leaves. The addition of particular As forms in single, double, and triple experimental systems was associated with a lower increase of seedling biomass compared to control plants (system free of As forms addition). Depending on As forms and their concentration in solution, negative symptoms from slight visible changes (inorganic forms separately or jointly), through smaller and discolored leaves (after DMA addition), and finally to their withering (after high DMA addition) were observed. Changes of color and shape for root systems exposed to particular As forms separately or jointly were also observed, in spite of the fact that there were no significant changes in biomass of seedlings growing in all experimental systems. The highest mean concentrations of As in root, stem, and leaves (590, 70, and 140 mg kg-1 dry weight (DW), respectively) were observed in plants growing under different experimental systems. The highest bioconcentration factor values were 10.8 for plants exposed to 0.06 mM of As(III) and DMA, while the highest translocation factor (1.0) was recorded for plants growing under the same As forms (0.6 and 0.06 mM, respectively). The obtained results indicate that the presence of particular As forms not only determines As phytoextraction and transport of this metalloid form but also has a decisive influence on plant morphology and survivability. As regards the practical aspects of phytoremediation, the kind of As forms present in substrate are more important than their total concentration.


Subject(s)
Acer/chemistry , Arsenates/analysis , Arsenites/analysis , Cacodylic Acid/analysis , Acer/metabolism , Arsenates/metabolism , Arsenites/metabolism , Biodegradation, Environmental , Biomass , Cacodylic Acid/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Plant Stems/chemistry , Plant Stems/metabolism , Seedlings/chemistry , Seedlings/metabolism
5.
Plant Dis ; 88(7): 688-694, 2004 Jul.
Article in English | MEDLINE | ID: mdl-30812477

ABSTRACT

Biological soil disinfestation (BSD), involving incorporation of grass combined with plastic mulching, eliminates many soilborne pests and diseases through the creation of anaerobic conditions. BSD was compared at two locations with a nontreated control, Italian ryegrass amendment alone, and plastic mulch alone. After the soil treatments, plots were cropped with Acer platanoides and Catalpa bignonioides and grown for 4 years. Relative to the control, soil inoculum levels of Verticillium dahliae were reduced by 85% after BSD and did not increase for 4 years. Populations of Pratylenchus fallax, known for their interaction with V. dahliae, in the soil and in roots were reduced by 95 to 99%. The incidence of infection by V. dahliae was reduced by 80 to 90%. Verticillium wilt severity was significantly reduced in A. platanoides in all 4 years at one location and in the first 2 years at the other location, and significantly fewer plants died at one location. Shoot length and trunk width were larger after BSD compared with the control at one location. Market value of the crop in BSD plots was up to € 140,000 ha-1 higher for A. platanoides and up to € 190,000 ha-1 higher for C. bignonioides than in the untreated control. BSD is an effective, economically profitable, and environmentally friendly control method for tree nurseries.

SELECTION OF CITATIONS
SEARCH DETAIL