Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Fungal Genet Biol ; 138: 103351, 2020 05.
Article in English | MEDLINE | ID: mdl-32028048

ABSTRACT

Modern genome analysis and phylogenomic methods have increased the number of fungal species, as well as enhanced appreciation of the degree of diversity within the fungal kingdom. In this context, we describe a new Parengyodontium species, P. americanum, which is phylogenetically related to the opportunistic human fungal pathogen P. album. Five unusual fungal isolates were recovered from five unique and confirmed coccidioidomycosis patients, and these isolates were subsequently submitted to detailed molecular and morphological identification procedures to determine identity. Molecular and morphological diagnostic analyses showed that the isolates belong to the Cordycipitaceae. Subsequently, three representative genomes were sequenced and annotated, and a new species, P. americanum, was identified. Using various genomic analyses, gene family expansions related to novel compounds and potential for ability to grow in diverse habitats are predicted. A general description of the genomic composition of this newly described species and comparison of genome content with Beauveria bassiana, Isaria fumosorosea and Cordyceps militaris shows a shared core genome of 6371 genes, and 148 genes that appear to be specific for P. americanum. This work provides the framework for future investigations of this interesting fungal species.


Subject(s)
Coccidioidomycosis/microbiology , Hypocreales , Beauveria/genetics , Cordyceps/genetics , Fungal Proteins/genetics , Genome, Fungal , Humans , Hypocreales/classification , Hypocreales/cytology , Hypocreales/genetics , Hypocreales/isolation & purification , Opportunistic Infections/microbiology , Phylogeny , Proteomics
3.
Curr Clin Microbiol Rep ; 9(4): 60-68, 2022.
Article in English | MEDLINE | ID: mdl-36345368

ABSTRACT

Purpose of Review: Severe-acute respiratory coronavirus 2 (SARS-CoV-2) has been driving the health care delivery system for over 2 years. With time, many issues related to co-infections in COVID-19 patients are constantly surfacing. There have been numerous reports about various fungal co-infections in patients with COVID-19. The extent of severity of fungal pathogens has been recognized as a substantial cause of morbidity and mortality in this population. Awareness, understanding, and a systematic approach to managing fungal co-infections in COVID-19 patients are important. No guidelines have enumerated the stepwise approach to managing the fungal infections co-occurring with COVID-19. This review is intended to present an overview of the fungal co-infections in COVID-19 patients and their stepwise screening and management. Recent Findings: The most common fungal infections that have been reported to co-exist with COVID-19 are Candidemia, Aspergillosis, and Mucormycosis. Prevalence of co-infections in COVID-19 patients has been reported to be much higher in hospitalized COVID-19 patients, especially those in intensive care units. While clear pathogenetic mechanisms have not been delineated, COVID-19 patients are at a high risk of invasive fungal infections. Summary: As secondary fungal infections have been challenging to treat in COVID-19 patients, as they tend to affect the critically ill or immunocompromised patients, a delay in diagnosis and treatment may be fatal. Antifungal drugs should be initiated with caution after carefully assessing the immune status of the patients, drug interactions, and adverse effects. The crucial factors in successfully treating fungal infections in COVID-19 patients are optimal diagnostic approach, routine screening, and timely initiation of antifungal therapy.

4.
Front Fungal Biol ; 2: 740845, 2021.
Article in English | MEDLINE | ID: mdl-37744131

ABSTRACT

Pneumocystis species (spp.) are host-obligate fungal parasites that colonize and propagate almost exclusively in the alveolar lumen within the lungs of mammals where they can cause a lethal pneumonia. The emergence of this pneumonia in non-HIV infected persons caused by Pneumocystis jirovecii (PjP), illustrates the continued importance of and the need to understand its associated pathologies and to develop new therapies and preventative strategies. In the proposed life cycle, Pneumocystis spp. attach to alveolar type 1 epithelial cells (AEC1) and prevent gas exchange. This process among other mechanisms of Pneumocystis spp. pathogenesis is challenging to observe in real time due to the absence of a continuous ex vivo or in vitro culture system. The study presented here provides a proof-of-concept for the development of murine lung organoids that mimic the lung alveolar sacs expressing alveolar epithelial type 1 cells (AEC1) and alveolar type 2 epithelial cells (AEC2). Use of these 3-dimensional organoids should facilitate studies of a multitude of unanswered questions and serve as an improved means to screen new anti- PjP agents.

SELECTION OF CITATIONS
SEARCH DETAIL