Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Sens Actuators B Chem ; 337: 129786, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33753963

ABSTRACT

The rapid and sensitive diagnosis of the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the crucial issues at the outbreak of the ongoing global pandemic that has no valid cure. Here, we propose a SARS-CoV-2 antibody conjugated magnetic graphene quantum dots (GQDs)-based magnetic relaxation switch (MRSw) that specifically recognizes the SARS-CoV-2. The probe of MRSw can be directly mixed with the test sample in a fully sealed vial without sample pretreatment, which largely reduces the testers' risk of infection during the operation. The closed-tube one-step strategy to detect SARS-CoV-2 is developed with home-made ultra-low field nuclear magnetic resonance (ULF NMR) relaxometry working at 118 µT. The magnetic GQDs-based probe shows ultra-high sensitivity in the detection of SARS-CoV-2 due to its high magnetic relaxivity, and the limit of detection is optimized to 248 Particles mL‒1. Meanwhile, the detection time in ULF NMR system is only 2 min, which can significantly improve the efficiency of detection. In short, the magnetic GQDs-based MRSw coupled with ULF NMR can realize a rapid, safe, and sensitive detection of SARS-CoV-2.

2.
Saudi Pharm J ; 29(8): 857-873, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34408546

ABSTRACT

BACKGROUND: Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). METHODS: CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. RESULTS: CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an 'initial burst effect' followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. CONCLUSION: The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.

3.
Saudi Pharm J ; 26(6): 790-800, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30202219

ABSTRACT

PURPOSE: Development of a new dosage-form of antiepileptic-drugs appropriated for children. METHODS: Clonazepam (Cl) was formulated as cubosomal-gel (cub-gel) to be used as a patch reservoir through transdermal-route. Cubosomes prepared using glycerol-mono-oleate(GMO)/Pluronic-F127(PF127) mixture. An actual-statistical design was used to investigate the effect of different stabilizing agents (Ethanol and PVA) and surfactant concentration on cubosomes' particle size and entrapping-efficiency. The selected formulae were evaluated by testing particle-morphology, in vitro drug release and stability. Cub-gel was prepared using selected cubosome formulae. The optimal cub-gel subjected to in vitro dissolution, ex-vivo permeation and skin deposition studies followed by studying its pharmacological effect. RESULTS: Using PVA or Et as stabilizers with PF127 significantly decreases the average cubosomes'PS (352 ±â€¯ 2.8 and 264 ±â€¯2.16 nm) and increases EE (58.97 ±â€¯4.57% and 54.21 ±â€¯3.89%). Cubosomes increase the initial release rate of Cl to ensure rapid therapeutic effect (37.39% and 46.04% in the first hour) followed by a prolonged release till 4 h. Cub-gel containing PVA showed significantly higher Cl-transdermal permeation when compared to Cl-suspension. Moreover, increases the retention-time (89.57% at 48 h) and skin-deposition up to 6-times. It also reduces the epileptic seizures and alters the behavioral parameters induced by pilocarpine. CONCLUSIONS: Cubosomal-gel could be considered an innovative dosage-form for Cl through the transdermal route.

4.
J Herb Med ; 38: 100633, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36711250

ABSTRACT

To harness the antimicrobial properties of a crude methanolic extract of Henna (Lawsonia inermis) leaf as a potential alternative sanitiser, there is the need to test its performance in different solutions. In this work, the effects of distilled water (dH20), Acetate-HCL (AH) Buffer (pH 4.6), Phosphate Buffer Saline (PBS) (pH 7.2) and Tris-HCL (TBH) Buffer (pH 8.6) on the antibacterial and antiviral activity of the extract were assessed. Through standard phytochemical screening and HPLC-MS (LCMS STANDARD 7.M), it was found that the extract consisted of about 30 different compounds including flavonoids. The extent of the antimicrobial activity of the extract in solutions was in the increasing order of AH > dH2O >>>> TBH > PBS. Under the same conditions, reduced antibacterial activity and complete cessation of the antiviral activity of the extract in TBH and PBS was observed. However, in AH and dH20, within 1-5 min, 1 mg ml-1, 0.125 mg ml-1 and 0.0625 mg ml-1 of the extract caused complete inactivation of E.coli (reductions of 8.2 log CFU ml-1), B. subtilis (reductions of 8.2 log CFU ml-1) and MS2 (reductions of 9.7 log PFU ml-1) respectively. The fluorescence microscopy images of the live/dead staining of the inactivated bacterial samples validated the extent of the inactivation. The broad spectrum and high antimicrobial activity of the extract, coupled with the plant not a staple food, has long history of safe use by humans as a medicine and cosmetic, cheaply available in abundance in many regions of the world, thus making the extract a potential candidate as an alternative sanitiser in the time of COVID-19 Pandemic and beyond.

5.
J Tradit Complement Med ; 13(1): 11-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685073

ABSTRACT

Common treatments for the management of diabetes have limitations due to side effects, hence the need for continuous research to discover new remedies with better therapeutic efficacy. Previously, we have reported that the combination treatment of gallic acid (20 mg/kg) and andrographolide (10 mg/kg) for 15 days demonstrated synergistic hypoglycemic activity in the streptozotocin (STZ)-induced insulin-deficient diabetes rat model. Here, we attempt to further elucidate the effect of this combination therapy at the biochemical, histological and molecular levels. Our biochemical analyses showed that the combination treatment significantly increased the serum insulin level and decreased the total cholesterol and triglyceride level of the diabetic animals. Histological examinations of H&E stained pancreas, liver, kidney and adipose tissues of combination-treated diabetic animals showed restoration to the normalcy of the tissues. Besides, the combination treatment significantly enhanced the level of glucose transporter-4 (GLUT4) protein expression in the skeletal muscle of treated diabetic animals compared to single compound treated and untreated diabetic animals. The molecular docking analysis on the interaction of gallic acid and/or andrographolide with the adiponectin receptor 1 (AdipoR1), a key component in the regulation of pancreatic insulin secretion, revealed a greater binding affinity of AdipoR1 to both compounds compared to individual compounds. Taken together, these findings suggest the combination of gallic acid and andrographolide as a potent therapy for the management of diabetes mellitus.

6.
Int J Pharm X ; 5: 100157, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36687375

ABSTRACT

Antibody-based T cell-activating biologics are promising therapeutic medicines being developed for a number of indications, mainly in the oncology field. Among those, T cell bispecific antibodies are designed to bind one tumor-specific antigen and the T cell receptor at the same time, leading to a robust T cell response against the tumor. Although their unique format and the versatility of the CrossMab technology allows for the generation of safer molecules in an efficient manner, product-related variants cannot be completely avoided. Therefore, it is of extreme importance that both a manufacturing process that limits or depletes product-related impurities, as well as a thorough analytical characterization are in place, starting from the development of the manufacturing cell line until the assessment of potential toxicities. Here, we describe such an end-to-end approach to minimize, quantify and control impurities and -upon their functional characterization- derive specifications that allow for the release of clinical material.

7.
Fish Shellfish Immunol Rep ; 4: 100079, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36589260

ABSTRACT

Global temperature is increasing due to anthropogenic activities and the effects of elevated temperature on DNA lesions are not well documented in marine organisms. The American oyster (Crassostrea virginica, an edible and commercially important marine mollusk) is an ideal shellfish species to study oxidative DNA lesions during heat stress. In this study, we examined the effects of elevated temperatures (24, 28, and 32 °C for one-week exposure) on heat shock protein-70 (HSP70, a biomarker of heat stress), 8­hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), γ-histone family member X (γH2AX, a molecular biomarker of DNA damage), caspase-3 (CAS-3, a key enzyme of apoptotic pathway) and Bcl-2-associated X (BAX, an apoptosis regulator) protein and/or mRNA expressions in the gills of American oysters. Immunohistochemical and qRT-PCR results showed that HSP70, 8-OHdG, dsDNA, and γH2AX expressions in gills were significantly increased at high temperatures (28 and 32 °C) compared with control (24°C). In situ TUNEL analysis showed that the apoptotic cells in gill tissues were increased in heat-exposed oysters. Interestingly, the enhanced apoptotic cells were associated with increased CAS-3 and BAX mRNA and/or protein expressions, along with 8-OHdG levels in gills after heat exposure. Moreover, the extrapallial (EP) fluid (i.e., extracellular body fluid) protein concentrations were lower; however, the EP glucose levels were higher in heat-exposed oysters. Taken together, these results suggest that heat shock-driven oxidative stress alters extracellular body fluid conditions and induces cellular apoptosis and DNA damage, which may lead to increased 8-OHdG levels in cells/tissues in oysters.

8.
Genes Dis ; 9(6): 1650-1661, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36157487

ABSTRACT

Progranulin (PGRN) is a growth factor that is involved in the progression of multiple tumors. However, the effects and molecular mechanisms by which PGRN induces lung cancer remain unclear. The expression level of PGRN was analyzed by conducting immunohistochemistry of the histological sections of lung tissues from non-small-cell lung carcinoma (NSCLC) patients. The proliferation, apoptosis, migration, and invasion of NSCLC cells were assessed by the MTT assay, Western blot, degree of wound healing, and Transwell assays. A nude mouse xenograft model was used to validate the role of PGRN in vivo. The expression level of PGRN was higher in male patients with lung adenocarcinoma than in those with lung squamous cell carcinoma; by contrast, no difference was observed in female patients. The overexpression of PGRN promoted the proliferation and anti-apoptosis of H520 (derived from lung squamous cell carcinoma) cells, whereas knockdown of PGRN inhibited the proliferation and anti-apoptosis of A549 (derived from lung adenocarcinoma) cells. Copanlisib (targeting PI3K) inhibited the increase in the expression of cell anti-apoptosis marker Bcl-2 induced by rhPGRN protein; the PI3K agonist 740 Y-P partially reversed the decrease in Bcl-2 expression induced by PGRN deficiency in both A549 and H520 cells. PGRN increased the expression of Ki-67, PCNA, and Bcl-2 in vivo. PGRN inhibited cell apoptosis depending on the PI3K/Akt/Bcl-2 signaling axis; PGRN positivity correlated with lung adenocarcinoma. PGRN is a potential biomarker for the treatment and diagnosis of NSCLC, especially in lung adenocarcinoma.

9.
Food Chem (Oxf) ; 4: 100104, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35480228

ABSTRACT

The effects of various purification techniques on kiwifruit enzyme characteristics (protease activity, kinetic parameters, and protein patterns) and production of wheat gluten bio-active peptides were investigated. The enzyme extract purified by ammonium sulfate precipitation method exhibited the highest protease activity (26), Km (0.04 ± 0.002 mM), Kcat /Km (40), and yield (96%). Using actinidin, the hard and soft wheat gluten subunit proteins produced antidiabetic inhibitory (α-glucosidase and α-amylase) peptides. The smallest Mw fraction of soft wheat gliadin peptide (<1 kDa) showed the highest inhibitory capacity against α-glucosidase (18.4 ± 0.7%) and α-amylase (53.3 ± 1.9%). The presence of high levels of amino acids with hydroxyl groups and proline in P3 sub-fraction had a critical role on α-glucosidase (47.2%) and α-amylase (71.2%) inhibitory activities. In conclusion, wheat gluten subunit peptides showed significant metabolic effects relevant to glucose and insulin control in vitro.

10.
Phytomedicine ; 98: 153919, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35104757

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatocyte injury, is an obesity-induced metabolic dysregulation with few available therapeutic options. Enhancement of the mitochondrial function was considered as an effective treatment for NALFD. Unsaturated fatty acids (UFAs) have been shown to have beneficial effects on metabolic syndrome disease such as hyperlipidemia, coronary artery disease and cardiovascular diseases. The seed oil of Rosa roxburghii Tratt (ORRT) was of high quality in terms of its high amount of unsaturated fatty acids. However, the effects of ORRT on NALFD have not been reported so far. PURPOSE: The study aimed to evaluate the protective effects and molecular mechanism of ORRT for the treatment of NAFLD in vivo and in vitro. METHODS: The beneficial effects, especially improving the mitochondrial function, and the potential mechanism of ORRT on NAFLD were studied both in vivo and in vitro. Lipid levels were determined by triglyceride (TG), total cholesterol (TC), and Oil Red O staining. Oxidative stress and inflammation were assessed by detecting antioxidant enzyme activity, MDA content, and ELISA assay. Blood TG, TC, HDL-c and LDL-c levels were measured in HFD mice. Western blot analyses were used to determine the levels of the protein involved in fatty acid oxidation, oxidative metabolism, and mitochondria biogenesis and function. The mitochondrial membrane potential level was measured by JC-1 staining to teste the effect of ORRT on mitochondrial function in vitro. GW6471 (inhibitor of PPARα) was used to confirm the relationship between PPARα and PGC-1α. RESULTS: ORRT significantly restrained NAFLD progression by attenuating lipid accumulation, oxidative stress and inflammatory response. Furthermore, ORRT upregulated thermogenesis-related gene expressions, such as uncoupling protein 1 (UCP1) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that the expression of key genes involved in fatty acid oxidation (e.g., CPT-1α, ACADL, PPARα) and in mitochondrial biogenesis and function (e.g., TFAM, NRF1, PGC-1α, and COX IV) was significantly increased. Together with the observed MMP improvement, these findings suggested that ORRT activated the mitochondrial oxidative pathway. Additionally, GW6471 inhibited the ORRT on promoting the expression of PGC-1α, CPT-1α, and ACADL. In conclusion, ORRT possessed the potential to prevent lipid accumulation via the PPARα/PGC-1α signaling pathway, which could be developed as a natural health-promoting oil against NAFLD.

11.
Acta Pharm Sin B ; 12(2): 876-889, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35256952

ABSTRACT

SIRT6 belongs to the conserved NAD+-dependent deacetylase superfamily and mediates multiple biological and pathological processes. Targeting SIRT6 by allosteric modulators represents a novel direction for therapeutics, which can overcome the selectivity problem caused by the structural similarity of orthosteric sites among deacetylases. Here, developing a reversed allosteric strategy AlloReverse, we identified a cryptic allosteric site, Pocket Z, which was only induced by the bi-directional allosteric signal triggered upon orthosteric binding of NAD+. Based on Pocket Z, we discovered an SIRT6 allosteric inhibitor named JYQ-42. JYQ-42 selectively targets SIRT6 among other histone deacetylases and effectively inhibits SIRT6 deacetylation, with an IC50 of 2.33 µmol/L. JYQ-42 significantly suppresses SIRT6-mediated cancer cell migration and pro-inflammatory cytokine production. JYQ-42, to our knowledge, is the most potent and selective allosteric SIRT6 inhibitor. This study provides a novel strategy for allosteric drug design and will help in the challenging development of therapeutic agents that can selectively bind SIRT6.

12.
Mater Today Bio ; 16: 100286, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36186846

ABSTRACT

Irinotecan (CTP-11) is one of the standard therapies for colorectal cancer (CRC). CTP-11 is enzymatically converted to the hydrophobic 7-ethyl-10-hydroxycamptothecin (SN38), a one hundred-fold more active metabolite. Conjugation of hydrophobic anticancer drugs to nanomaterials is a strategy to improve their solubility, efficacy, and selectivity. Carbon dots (CDs) have garnered interest for their small sizes (<10 â€‹nm), low toxicity, high water solubility, and bright fluorescence. This paper describes the use of CDs to improve drug vehiculation, stability, and chemotherapeutic efficiency of SN38 through a direct intracellular uptake in CRC. The covalent conjugation of SN38 to CDs via a carbamate bond provides a CD-SN38 hybrid material for slow, sustained, and pH-responsive drug release. CD-SN38 successfully penetrates the CRC cells with a release in the nucleus affecting first the cell cycle and then the cytoskeleton. Moreover, CD-SN38 leads to a deregulation of the extracellular matrix (ECM), one of the major components of the cancer niche considered a possible target therapy for reducing the cancer progression. This work shows the combined therapeutic and imaging potential of CD-based hybrid materials for the treatment of CRC. Future efforts for targeted therapy of chronic diseases characterized by altered ECM deposition, such as chronic kidney disease and chronic allograft nephropathy in kidney transplant patients are envisaged.

13.
Saudi J Biol Sci ; 29(3): 1842-1852, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280527

ABSTRACT

The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25-25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.

14.
J Adv Res ; 37: 19-31, 2022 03.
Article in English | MEDLINE | ID: mdl-35499050

ABSTRACT

Introduction: The functional relevance of intra-species diversity in natural microbial communities remains largely unexplored. The guts of two closely related honey bee species, Apis cerana and A. mellifera, are colonised by a similar set of core bacterial species composed of host-specific strains, thereby providing a good model for an intra-species diversity study. Objectives: We aim to assess the functional relevance of intra-species diversity of A. cerana and A. mellifera gut microbiota. Methods: Honey bee workers were collected from four regions of China. Their gut microbiomes were investigated by shotgun metagenomic sequencing, and the bacterial compositions were compared at the species level. A cross-species colonisation assay was conducted, with the gut metabolomes being characterised by LC-MS/MS. Results: Comparative analysis showed that the strain composition of the core bacterial species was host-specific. These core bacterial species presented distinctive functional profiles between the hosts. However, the overall functional profiles of the A. cerana and A. mellifera gut microbiomes were similar; this was further supported by the consistency of the honey bees' gut metabolome, as the gut microbiota of different honey bee species showed rather similar metabolic profiles in the cross-species colonisation assay. Moreover, this experiment also demonstrated that the gut microbiota of A. cerana and A. mellifera could cross colonise between the two honey bee species. Conclusion: Our findings revealed functional differences in most core gut bacteria between the guts of A. cerana and A. mellifera, which may be associated with their inter-species diversity. However, the functional profiles of the overall gut microbiomes between the two honey bee species converge, probably as a result of the overlapping ecological niches of the two species. Our findings provide critical insights into the evolution and functional roles of the mutualistic microbiota of honey bees and reveal that functional redundancy could stabilise the gene content diversity at the strain-level within the gut community.


Subject(s)
Gastrointestinal Microbiome , Animals , Bacteria/genetics , Bees/genetics , Chromatography, Liquid , Gastrointestinal Microbiome/genetics , Metagenome , Tandem Mass Spectrometry
15.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Article in English | MEDLINE | ID: mdl-35685361

ABSTRACT

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

16.
J Clin Tuberc Other Mycobact Dis ; 23: 100215, 2021 May.
Article in English | MEDLINE | ID: mdl-33532629

ABSTRACT

This study examined the hypothesis that there is an impairment of macrophageal function in spinal TB. We examined macrophageal functions in spinal TB patients. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of five spinal TB patients and five healthy persons as control. The isolated monocytes were cultured with stimulation of macrophage colony-stimulating factor (M-CSF) for seven days for maturation. The phagocytic ability of the macrophages derived from monocytes was measured. Also, nitric oxide (NO), myeloperoxidase (MPO), beta-glucuronide, and acid phosphatase activity was investigated. We found that the monocytes collected from patient PBMCs were significantly fewer than those of the control group (2992.103 vs. 6474.103 (cells/mL)). There were also fewer macrophages that had adhered to sheep red blood cells (SRBC) (598.103 vs. 264.103 (cells/mL)). However, NO production (2346 vs. 325.17 (µmol/gram of protein)), and the MPO (570.7 vs. 17.4 (unit/mg), beta-glucuronide (0.149 vs. 0.123 (µmol/hour/100 mg of protein)), and acid phosphatase activities (1776.9 vs. 287.9 (µmol/hour/100 mg of protein)) of the macrophages in the spinal TB group were markedly higher than in the healthy group. Despite the low adhesion to foreign bodies, the intracellular processing of TB macrophages, including oxidative activity and lysosome function, was significantly high. These results suggested the impairment of macrophageal function in spinal TB. Possibly, there is a dominance of innate non-specific immunity in spinal TB infection.

17.
Biochem Biophys Rep ; 28: 101170, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34778573

ABSTRACT

SARS-CoV-2 has become a big challenge for the scientific community worldwide. SARS-CoV-2 enters into the host cell by the spike protein binding with an ACE2 receptor present on the host cell. Developing safe and effective inhibitor appears an urgent need to interrupt the binding of SARS-CoV-2 spike protein with ACE2 receptor in order to reduce the SARS-CoV-2 infection. We have examined the penta-peptide ATN-161 as potential inhibitor of ACE2 and SARS-CoV-2 spike protein binding, where ATN-161 has been commercially approved for the safety and possess high affinity and specificity towards the receptor binding domain (RBD) of S1 subunit in SARS-CoV-2 spike protein. We carried out experiments and confirmed these phenomena that the virus bindings were indeed minimized. ATN-161 peptide can be used as an inhibitor of protein-protein interaction (PPI) stands as a crucial interaction in biological systems. The molecular docking finding suggests that the binding energy of the ACE2-spike protein complex is reduced in the presence of ATN-161. Protein-protein docking binding energy (-40.50 kcal/mol) of the spike glycoprotein toward the human ACE2 and binding of ATN-161 at their binding interface reduced the biding energy (-26.25 kcal/mol). The finding of this study suggests that ATN-161 peptide can mask the RBD of the spike protein and be considered as a neutralizing candidate by binding with the ACE2 receptor. Peptide-based masking of spike S1 protein (RBD) and its neutralization is a highly promising strategy to prevent virus penetration into the host cell. Thus masking of the RBD leads to the loss of receptor recognition property which can reduce the chance of infection host cells.

18.
J Bone Oncol ; 31: 100406, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917467

ABSTRACT

Cancer stem cells (CSCs) have been documented to be closely related with tumor metastasis and recurrence, and the same important role were identified in Ewing Sarcoma (ES). In our previous study, we found that let-7a expression was repressed in ES. Herein, we further identified its putative effects in the CSCs of ES (ES-CSCs). The expression of let-7a was consistently suppressed in the separated side population (SP) cells, which were identified to contain the characteristics of the stem cells. Then, we increased the expression of let-7a in ES-CSCs, and found that the ability of colony formation and invasion of ES-CSCs were suppressed in vitro. The same results were found in the tumor growth of ES-CSCs' xenograft mice in vivo. To further explore the putative mechanism involved, we also explored whether signal transducer and activator of transcription 3 (STAT3) was involved in the suppressive effects. As expected, excessive expression of let-7a could suppress the expression STAT3 in the ES-CSCs, and repressed the expression of STAT3 imitated the suppressive effects of let-7a on ES-CSCs, suppressing the ability of colony formation and invasion of ES-CSCs. Furthermore, we found lin28 was involved in the relative impacts of let-7a, as well as STAT3. Let-7a, STAT3 and lin28 might form a positive feedback circuit, which serve a pivotal role in the carcinogensis of ES-CSCs. These findings maybe provide assistance for patients with ES in the future, especially those with metastasis and recurrence, and new directions for their treatment.

19.
Comput Struct Biotechnol J ; 19: 4192-4206, 2021.
Article in English | MEDLINE | ID: mdl-34527192

ABSTRACT

The amyloid conformation is considered a fundamental state of proteins and the propensity to populate it a generic property of polypeptides. Multiple proteome-wide analyses addressed the presence of amyloidogenic regions in proteins, nurturing our understanding of their nature and biological implications. However, these analyses focused on highly aggregation-prone and hydrophobic stretches that are only marginally found in intrinsically disordered regions (IDRs). Here, we explore the prevalence of cryptic amyloidogenic regions (CARs) of polar nature in IDRs. CARs are widespread in IDRs and associated with IDPs function, with particular involvement in protein-protein interactions, but their presence is also connected to a risk of malfunction. By exploring this function/malfunction dichotomy, we speculate that ancestral CARs might have evolved into functional interacting regions playing a significant role in protein evolution at the origins of life.

20.
Photoacoustics ; 24: 100297, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34522608

ABSTRACT

Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.

SELECTION OF CITATIONS
SEARCH DETAIL